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Abstract. Current skeleton-based human action recognition methods usually apply
to complete skeletons. However, in real scenarios, capturing incomplete or noisy
skeletons is inevitable. When some joints information is occluded or interfered, it
may significantly reduce the performance of current methods. To improve the
robustness of action recognition models, a multi-stream dynamic graph
convolutional network (GCN) is proposed to explore sufficient discriminative
features distributed on all skeleton joints. By a multi-stream structure, gradient
information of the graph structure is aggregated in a progressive manner. We
introduce class activation map (CAM) techniques to extract the joints with the
maximum amount of information in each stream. The activation maps in each
stream are input to the next stream as mask matrices so that the new stream can
explore the unactivated parts. Meanwhile, we set up a depth module so that we can
still distinguish the characteristic values between nodes after multiple aggregations.
Experiments prove that our model achieves the state-of-the-art performance on the
NTU-RGB+D dataset. At the same time, it also shows strong robustness on the
jittering dataset.
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1. Introduction

Action recognition is a crucial task in computer vision that plays a significant role in
accurately identifying human behaviors within a given scene, thereby enabling a
greater understanding of the overall context. A fundamental problem in human
behaviour recognition is how to extract differentiated and rich features that adequately
describe the dynamics of the spatial and temporal in human behaviour.

Early deep learning-based methods treated human joints as a set of independent
features, organizing them into feature sequences or pseudo-images, which were then
fed into RNN or CNN models to predict action labels. These methods, which used
RGB images and optical flow, outperformed previous handcrafted feature-based
methods.[1][2][3] However, they disregarded the inherent correlation between joints,
which reveal the topology of the human body's skeletal structure and, when compared
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to traditional RGB-based action recognition methods, skeleton-based representations
are more robust to lighting, camera viewpoint, and other background changes.

Yan et al. [4] were the first to model the correlation between human joints using a
graph structure and apply GCN and temporal convolutions to extract motion features.
Subsequent research using GCN models has grown, with Shi et al. [5] proposing a
dual-stream adaptive graph convolutional network that added an adaptive adjacency
matrix. This adaptive adjacency matrix represented a topology that was no longer fixed
according to the human body structure, as in ST-GCN, but could be learned along with
other parameters. Chen et al. [6] proposed multi-scale spatial graph convolution
modules and multi-scale temporal graph convolution modules to enrich the model's
receptive field in both spatial and temporal dimensions. Recent methods [7][8] have
achieved good results by refining the topology of the skeleton through various
techniques, improving the model's upper limit. However, these methods have their
limitations, as recognition becomes difficult when the skeleton dataset is incomplete or
is plagued by noise interference. To address this issue, Weinland et al. [9] proposed a
gradient-oriented 3D histogram of oriented gradients (HOG) descriptor with local
partitioning and hierarchical classification to provide robustness against occlusion and
viewpoint changes. Song et al. proposed the RA-GCN model [10], which used class
activation maps (CAM) to learn unique features of missing joints across multiple
streams. Yu et al. [11] trained their model by maximizing the mutual information
between normal and noisy skeletons using a predictive coding approach.

However, the aforementioned models have some shortcomings, such as lower
recognition rates in the backbone network and a lack of use of gradient information
between joints, thereby limiting their ability to recognize noisy skeleton models. To
solve these problems, in this paper we propose a multi-stream dynamic topological
activation map convolution, which enhances the robustness of the network by fusing
gradient information with a multi-stream structure. MGA-GCN draws inspiration from
Grad-CAM++[12] and improves upon the activation module in RA-GCN. Each stream
in the model can dynamically explore feature parts on previously unactivated joints
using CAM technology to extract the joint with the most informative feature in each
stream, forming an activation map that is inputted to the next stream in the form of a
mask matrix containing joint activation information, while the new stream explores the
unactivated parts. At the same time, the joint information contained in the activation
module is used to calculate the gradient information between each joint and its adjacent
joints, thereby enhancing the model's recognition ability through local gradient features.
The MGA-GCN model structure is shown in Figure 1.

Our main contributions are as follows:

1. We propose a method that uses a multi-stream structure to capture the gradient
information between nodes and dynamically adjusts the weights to enhance the
performance of the network.

2. In the spatial convolution module, we propose a depth module to address the
convergence of node values caused by the deep layers of the GCN, allowing the deep
multi-stream graph convolutional network to more effectively learn features.

3. Extensive experimental results demonstrate that our proposed MGA-GCN
outperforms existing graph convolutional methods on two benchmarks in NTU
RGB+D, and also outperforms other methods in robustness experiments.
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2. Model Architecture
2.1. Dynamic Topological Non-Shared GCN

Whereas traditional CNNs use the same convolutional parameters for all samples and
the convolutional kernel parameters are determined through training, the dynamic
convolutional kernel in our method is data-dependent, meaning that different data
samples have different convolutions. This data dependency indicates that the dynamic
kernel has a stronger representation capacity than the single kernel in conventional
convolutions.

Currently, there are two categories of methods based on two different perspectives:
Static/Dynamic Methods and Topology-Shared/Topology-Non-Shared Methods. In the
GCN, static methods refer to the pre-defined topology structure that remains
unchanged during training, while dynamic methods infer the topology structure of the
GCN dynamically during inference. In action recognition, different types of motion
features are represented by different channels, and the correlation between joints varies
with the motion features. Therefore, a shared topology is not optimal. In the
Topology-Shared method, both dynamic and static methods share the same topology
structure across all channels. In contrast, the Topology-Non-Shared method uses
different topology structures for different channels or channel groups. The experiments
in [7] also demonstrate that the dynamic topology non-shared GCN has the least
constraints and the strongest representation capacity among other graph convolutions.
A dynamic topological non-shared GC can be expressed as:

k k [,k k
zZi = ZVjEN(vi) X ([rjaw.1 - Tije WD) (1)

where rl-’]‘-c is the dynamic topology of the k' sample in the c¢* channel
between v; and v;. w,¢ is the ct™ column of w, where k denotes the index of the
input sample.
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Figure 1. The multi-stream structure of the MGA-GCN. Each stream contains an MGA-GCN baseline
network, the data is fed into each stream through the pre-processing module, the joint information is fed into
the network through the mask matrix, the baseline network and the output of the Drop out layer are fed into
the activation module and the mask matrix of the next stream is calculated. Finally, the outputs of each
stream are joined to obtain the final output.
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2.2. Activation Module

The activation module's function is to guide the already activated joints in the previous
stream to the next graph, in order to reinforce the reinforcement learning of the inactive
joints in the next stream. Our inspiration came from Grad-CAM-++ [12], and the
previous RAGCN [10] proposed by Song et al. was the first to introduce the CAM
technique into human skeleton recognition. CAM can display where the model's
weights or centers of gravity are located during training, and which part of the features
the classification model is based on. In human skeleton recognition, the gradient
information between adjacent joints is also an important factor that cannot be ignored.
When classifying, the contribution of each joint is also different. Therefore, we
introduce a center-oriented local gradient feature to enhance the model's recognition
ability. We separately calculate the gradient information between each joint and its
adjacent joints, and set the weights based on this information. We replace the
coordinates (x, y) in the feature map with the frame number ¢ and joint number i, j
represents nodes other than i in the skeleton sequence. This enables us to locate the
activated joints and calculate their gradient information. Here, we define i as the source
joint, and j as the target joint. The source joint refers to the joint closest to the center of
gravity of the skeleton, while the target joint refers to the joint farthest from the center
of gravity of the skeleton. As shown in Figure 2, the weight of node i at time ¢ is as
follows:
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where A denotes the feature layer, Y denotes the score predicted by the network for
category c¢ before going through activation, and the score for each node is:

Se(t, 1) = relu(Xp w fi(t, D) (€))

The predefined parameter ¢ is then used to determine which joints are activated
by the corresponding stream, and Score. is used to represent the fractional graph of
all joints in stream st The activation graph of map$ is represented as follows,

o—min(Score,
map? = e(Co )

“

max(Scorec)

where min() and max() denote the minimum and maximum functions
respectively, £() denotes the Heaviside step function and the mask matrix of the st
stream is denoted as:

masks = ([[i2{ mask;) ® (1 — map™) 6))

Finally, the resulting maskg is combined with the pre-processed skeleton data to
obtain the final result by performing @ operations.

Compared to the previous method, we weigh the contributions between nodes and
gradient information and set the weights dynamically to enhance the correlation
between nodes. This also allows for a better exploration of all joint information.
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2.3. Depth Module

A significant portion of skeleton-based action recognition networks are multi-stream
GCN. Graph convolutional neural networks can be understood as performing a fully
connected transformation on the features during each aggregation operation, followed
by taking the average of the aggregated results. However, too many aggregation
operations on each vertex's neighboring nodes can lead to convergence of all vertex
values to the same value, making it impossible to distinguish individual vertex features.
To address this issue, we propose a depth module located in the spatial modeling
module. The data is first processed through an activation function to produce an output,
which is then refined by this module to extract joint features before generating the final
output. The formula is as follows:

output = %min(@, max(0,x + 6)) (6)

Where w and 6 are balancing parameters, with this module we can differentiate
feature values between nodes even after multiple aggregations, effectively improving
the accuracy of the deep multi-stream map convolutional network model.
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Figure 2. Description of the source and target joints. (a) Representation of joint orientation. The red joint is
the centre of gravity of the skeleton and the arrow is pointing from the source joint to the target joint. (b) For
joints that are adjacent we divided into two different ways of calculating the gradient: (1) When two joints
are at the same distance from the central node, we calculate the gradient information with j; and j, as the
centre respectively, that is, the gradient direction is j; to j, when calculating j,, and the opposite when j,
is the centre; (2) When two joints are at different distances from the central node, we only calculate the
gradient information with the source joint as the centre, that is, the gradient direction is j, to js.

3. Experiments

3.1. Ablation Studies

In this part, We conduct ablation experiments on the importance of the depth module
and the feasibility of our multi-stream structure, as well as an exploration of the

optimal configuration of the depth module, using NTU RGB+D for the experimental
dataset.
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Firstly, we conduct experiments on the settings of the equilibrium parameters w
and 6. We used the dual-stream MGA-GCN without the addition of the depth module
as a baseline and compared it on a benchmark of the CS. Without changing the other
parameters and structure of the network, only the w and 6 parameters were modified
to pursue the experiments. The experimental results are shown in Table 1. The optimal
solution can be obtained when w=3,0=8. After that, we make different configurations
of the positions of the depth modules to study their performance separately. There are
three options as follows, option 1 is configured in the spatial convolution module alone,
option 2 is configured in the temporal convolution module alone, and option 3 is
configured in both the spatial and temporal convolution modules. The results are shown
in Table 2.

To demonstrate the effectiveness of the depth module on multi-stream structured
GCN, we used the 2s-AGCN, which is also a two-stream framework, as a baseline for
comparison experiments on the CS benchmark of NTU60, and the results are shown in
Table 3.

To explore the limits of the multi-stream model, we conducted experiments with
the addition of the depth module, and the results are shown in Table 2, where the
precision will drop when the number of streams in the network is greater than 3. For
skeletal behaviour recognition, there are a limited number of joints in each action
category that play a judgement role, and more streams do not improve the recognition
ability of the network, but may lead to a decrease in accuracy due to overfitting.

Table 1. Comparison of different parameters of the depth module.

Model Parameters Accuracy(%)

- 89.72

w=1,0=2 89.85

w=1,0=4 90.37

w=1,0=6 90.18

w=2,0=4 90.52

(Noise lti/lgﬁl (Iil(c:)gule) ®=2,6=6 90.59
w=3,0=6 90.64

w=3,0=8 90.74

w=3,0=9 90.22

w=4,0=6 90.57

w=4,0=8 90.02

Table 2. Comparison of different model setups on NTU60.

Model Param Position CS(%) CV (%)
- 89.72 -
unit_gen 90.74 -
2s MGA-GCN w=3,0=8
Temporalconv 89.78 -
unit_gen and Temporalconv 90.03 -
Is MGA-GCN - 89.72 94.92
2s MGA-GCN - 90.74 95.68
w=3,0=8
3s MGA-GCN - 90.90 95.55

4s MGA-GCN - 90.31 95.28
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Table 3. Comparison of the accuracy of 2s-AGCN before and after setting up the depth module.

Methods Position Param Accuracy(%)
2s-AGCN - - 86.32
25s-AGCN unit_gen w=3,6=8 86.68

3.2. Experimental Results on Standard Dataset

We compare our model with existing methods on the NTU RGB+D dataset, and the
network's parameters are set to the best values obtained from ablation studies. As can
be seen from the experimental results in Table 4, our multi-stream network outperforms
the current state-of-the-art GCN method on both CS and CV evaluation benchmarks.
Compared to the previous state-of-the-art methods, the MGA-GCN dual-stream
network has improved by 0.78% and 0.6% on CS and CV benchmarks, respectively,
and the three-stream network has improved by 0.94% and 0.47% on CS and CV
benchmarks, respectively. In comparison with the similarly robust RA-GCN and
PeGCN, 2s MGA-GCN has achieved an improvement of 4.14% and 5.14% on the CS
benchmark, and 2.35% and 2.28% on the CV benchmark, respectively; 3s MGA-GCN
has achieved an improvement of 4.3% and 5.3% on the CS benchmark, and 2.22% and
2.15% on the CV benchmark, respectively.

Table 4. Accuracy comparison with state-of-the-art methods on the NTU60 dataset.

Model NTU-RGB+D

X-Sub (%) X-View (%)
ST-GCN[4] 81.50 88.30
AS-GCN[13] 83.30 93.30
UNIK[14] 86.26 93.01
25-AGCN[5] 86.32 94.20
RA-GCN(2s)[10] 85.39 93.02
RA-GCN(3s)[10] 86.60 93.33
PcGCN[11] 85.60 93.40
PA-ResGCN-B19[15] 86.63 94.33
MS-G3D[16] 87.29 94.32
CTR-GCN[7] 89.96 95.08
MGA-GCN (1) 89.72 94.92
MGA-GCN (2s) 90.74 95.68
MGA-GCN (2s) 90.90 95.55

3.3. Experimental Results on Jittering Datasets

In order to evaluate the effects of jittered skeletons, we formulated two different jitter
datasets by introducing varying levels of Gaussian noise via methods proposed in [11].
The resulting experimental outcomes are comprehensively reported in Tables 5 and 6.
The jitter probability of the joints is set to 0.02, 0.04, 0.06, 0.08, 0.10. As shown in the
tables, the multi-stream network using activation maps for construction performs
significantly better on the jittered datasets of NTU 60 compared to other networks.
Moreover, the MGA-GCN model demonstrates high stability even at higher jitter
probabilities.
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Table 5. Experimental results(%) of the jitter skeleton (o = 0, v = 0.05) of the NTU60 (CS benchmark).

a=0 Probability of jitter

v=10.05 0 0.02 0.04 0.06 0.08 0.10
ST-GCN[4] 81.50 77.16 68.48 55.54 41.95 28.32
25-AGCN[5] 86.32 81.68 75.04 70.19 66.91 62.74
2s RA-GCN[10] 85.39 84.94 84.34 82.22 77.23 71.20
3s RA-GCN[10] 86.60 86.52 86.07 85.24 84.08 82.08
PeGCN[11] 84.36 80.65 73.23 65.13 51.70 42.02
CTR-GCN[7] 89.96 86.89 80.55 76.34 72.13 58.94
MGA-GCN (2s) 90.74 90.06 89.32 88.62 88.23 87.17
MGA-GCN (35s) 90.90 90.34 90.12 89.68 89.15 88.23

Table 6. Experimental results(%) of the jitter skeleton (a = 0, v =0.10) of the NTU60 (CS benchmark).

a=0 Probability of jitter

v=10.10 0 0.02 0.04 0.06 0.08 0.10
ST-GCN[4] 81.50 72.32 55.46 42.45 21.35 12.30
25s-AGCN[5] 86.32 76.76 62.89 56.03 49.84 31.31
2s RA-GCNJ[10] 85.39 84.18 81.79 76.13 67.40 58.23
3s RA-GCNJ10] 86.60 85.70 84.18 82.48 78.73 72.92
PeGCN[11] 84.36 76.31 67.84 58.72 36.71 27.87
CTR-GCN[7] 89.96 82.19 76.56 62.49 51.46 40.90
MGA-GCN (2s) 90.74 89.09 87.00 84.43 84.02 80.35
MGA-GCN (3s) 90.90 89.88 88.47 87.93 86.94 83.64

4. Conclusion

In this paper, we proposed a new multi-stream gradient activation map graph
convolutional network for skeleton-based action recognition. MGA-GCN captures
gradient information between nodes through a multi-stream structure and dynamically
sets weights to improve network performance. We also introduced a depth module to
address the problem of node value convergence resulting from multiple aggregations of
nodes. Additionally, our network exhibits strong effectiveness and robustness for noisy
skeletons. Through extensive experiments, MGA-GCN has been shown to outperform
current state-of-the-art methods on both standard and noisy datasets.
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