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Abstract. With the advent of the big data era, the explosive growth of data volume

has put enormous computing and storage pressure on electric power companies.  As

a powerful technical means, supercomputing clouds are widely used in data

processing, storage, and online services. However, critical services in

supercomputing clouds are often deployed with overprovisioned resources to ensure

the quality of service for users, resulting in significant energy consumption and

additional costs. At the same time, insufficient resources for service provisioning

can lead to performance degradation and service violations.  To this end, this paper

proposes an automatic resource scaling management system on electric power

supercomputing clouds. Specifically, the proposed system is based on Transformer's

long-sequence prediction model to predict the future load intensity of the service

and calculate the number of instances required by the service in the future through

the runtime service requirement estimation component, thus automatically scaling

resources and minimizing resource costs. Experimental results show that our system

achieves the best scaling behavior based on performance metrics and the lowest cost

overhead compared to strong baselines.
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1. Introduction

Supercomputing clouds provide great convenience and cost-effectiveness for users [1].

More and more electric power companies rely on cloud resources to build information

support platforms, thus integrating resources internally and improving service quality.

With the popularity of the Internet and the development of big data, the cloud-based

business of electric power systems often faces massive data flow and high concurrency.
To ensure quality of service for users, critical services in the clouds are usually deployed

with overprovisioned resources, resulting in huge energy consumption and additional

costs. Statistically, supercomputing cloud centers have become one of the world's largest

sources of carbon emissions. Rising energy costs, regulatory requirements, and societal

concerns about greenhouse gas emissions make reducing energy consumption critical for

supercomputing clouds [2-3]. However, this is all for naught if supercomputing clouds

fail to meet pre-defined service level agreements or quality of service (QoS) targets. This
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is because excessive processing latency or even communication blockages are

unacceptable to users [4]. As a result, how to reduce energy consumption and meet user

service level agreements has become a major challenge for today's cloud computing
platforms.

Attracted by the emerging cloud computing paradigm, automatic resource scaling

has become an important part of the supercomputing clouds. Currently, most cloud

platforms provide a reactive threshold-based approach to help users automate the scaling

of resources [5-8]. A typical example is to add an instance when the monitoring system

detects that the CPU utilization of a service instance exceeds 70%. The "70%" is a

threshold value that is manually specified by the user. In theory, the simple threshold-

based approach does not involve an accurate resource estimation, only an empirical

estimation, which is hard-coded in the operational part of the rule, such as adding or

removing a certain number or percentage of instances. Obviously, specifying appropriate

thresholds is not always straightforward for users, especially in functionally complex
business scenarios and with diverse resource monitoring metrics [9-11]. At the same time,

additional service instances may consume time measured in minutes from startup to

service provisioning, making it difficult to apply to bursty network loads.

Ideally, cloud platforms can strike a balance between satisfying user requirements

and resource costs. To this end, this study proposes an automatic resource scaling

management system for power supercomputing clouds. The system uses the

Transformer-based long series prediction model to predict the future load intensity of the

service, which can adaptively adjust the model parameters according to different services

and application scenarios, thus improving the adaptability and flexibility of the system.

The number of instances required by each service in the future is calculated by the

runtime service demand estimation component. In this way, the different services can

rely on automatic scalers to obtain computing resources on demand.
The contributions of this paper can be summarized as follows:

� We incorporate a Transformer-based long series prediction model into an

automated scaling management system that effectively captures long-range

dependencies in time series.

� We design an intelligent resource auto-scaling management system. Services

under this system can access resources automatically and on-demand without

manual customization and preparation.

� Experimental results show that our proposed system achieves the best scaling

behavior and the lowest cost overhead compared to robust baselines.

2. Model Design

In this section, we detail the process of building the management system for automatic
resource scaling.

2.1. Overview

We propose an intelligent management system for automatically resource scaling on

electric power supercomputing clouds. The study is based on the real distributed

architecture Kubernetes [12], which is an efficient container orchestration system for

automating the management of deployment, scaling, and maintenance of containerized
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services. In the paper, each instance of an application service is composed of a container,

and each service can have multiple functionally consistent instances to meet the load

requirements of users. With Kubernetes' API Server directive, we can dynamically
control the number of instances of each service in the distributed architecture.

As  shown in  Figure  1,  the  resource  scaling  management  system proposed in  this

paper mainly consists of the following components: (1) management center, (2)

Prometheus performance monitoring module [13], (3) demand analysis, (4) capacity

planning, (5) Traefik load balancer [14]. The management center is the hub of the system,

responsible for coordinating the work of the various components and specifying service

level agreements (SLA) in the form of Cartesian Modeling Language (DML). The

Prometheus performance monitoring module is used to collect, process, and aggregate

real-time quantitative data about the services, such as the number and type of requests.

We focus on latency, traffic, request rate and saturation, which are important indicators

of service performance and the basis for resource scaling. The demand analysis module
analyzes the load of the service in future periods based on Transformer's long series

forecasting model. The capacity planning module is designed to calculate the number of

instances required for a service, thereby optimizing the allocation of resources and

minimizing waste of resources. The Traefik load balancer is utilized to send user requests

to each instance of the service in an even manner.

Figure 1. The overview of our proposed automatic resource scaling management system.

In the process of resource scaling, the management system has four main tasks: at

first, the management center is responsible for periodically retrieving current service

status information from the Prometheus timing database and sending the data to the
demand analysis module. Then, after obtaining the time series data, the demand analysis

module removes the abnormal data such as the long tail and analyzes the load of the

service in the future period based on Transformer's long series prediction model. Next,

with information on the future load of the service, the capacity planning module

optimizes the resource allocation of the service through the SLA metrics and the resource

estimator. Finally, the management center sends the command for resource scaling to the

cluster management component KUBE-APISERVER of Kubernetes.

2.2. Demand Analysis

In contrast to traditional forecasting methods, the proposed forecasting model converts

the load information of historical time periods into vectors by means of a mapping

function. Similar to BERT's input, we sum multiple types of vectors to obtain the initial

feature input of the model at time t:
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where
1

, , , R xd

l p w he e e e �� denote the embeddings of load, position, time and holiday

respectively. By fusing multiple categories of encoding, it allows the prediction model

to explore the periodicity and stochasticity of the application's workload over time.

Next, we define the input sequence of the model. Let the historical rolling window

of the model be Lx. At time t, the model input sequence can be expressed as

1 2
{ , ..., }

x

t t t t

LX x x x� . Accordingly, the purpose of the model is to predict the load

sequence at future moments based on the inputs
1 2

{ , , , }
y

t t t t

LY y y y� � , where Ly denotes

the predicted scrolling window size.

The prediction model is based on the Transformer architecture. The multi-head self-

attention is the key to the prediction model, which can capture long-range dependencies

on time series and effectively   represent   the importance and relationships in the

sequence context, regardless of location. The formula of multi-head self-attention is

calculated as:

1
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head SelfAttention( , , )
Q K V

i i i iQW KW VW� (3)

( )
SelfAttention( )=Softmax( )

T

q k

v

k

XW XW
X XW

d
(4)

where Q, K, V denote the query matrix, key matrix, and value matrix, respectively. Wi

refers to the learnable parameter matrix. Concat(·) represents the aggregation operation

of the features. The processing of multi-headed self-attention can compute the feature

vectors at each position in parallel, thus providing high characterization capability and

operational efficiency.

The native Transformer architecture can only output one prediction per encoding.

To solve the problem of too slow prediction for long sequence encoding, the model

outputs multiple values at a time as predictions in a generative inference manner.

Specifically, in the decoding phase, the model intercepts a short fixed-length sequence

from  the  input  sequence  as  a  start  token  instead  of  a  flag.  Next,  the  model  fills  the

predicted multiple time slots with scalars that are 0 and inputs them to the encoder with
the start token. Finally, the encoder output acting on the position of 0 is considered to be

the predicted value of the corresponding time period load.

2.3. Capacity Planning

The capacity planning approach proposed in this paper obtains load forecasts through the

demand analysis module, then maps resources to the required capacity and deploys an

appropriate number of instances to ultimately achieve cost reduction.
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For the same service, there is a simple linear relationship between the number of

requests and the system load. Once the predicted value of the load that the service will

bear at the future moment and the processing capacity of the service instances are
available, the required number of instances can be obtained by derivation. We derive the

number of instances needed for the next period:
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where Ceil(·) is the upward rounding function, psys denotes the system load at the next

period, pref represents the maximum load that a service instance can handle and kcurr

denotes the number of instances at the current period. f(·) is the tolerance function, and

�  denotes the tolerance level. Psys / kcurr represents the workload borne by a single

instance  under  the  system  load  at  the  next  period.  If / ( )sys cuur refp k p  is less than the

tolerance � , the scaling operation is abandoned. The capacity planning module

optimizes the resource allocation scheme to meet the user's needs and minimize the waste
of resources based on the user's behavior and the characteristics of the service.

3. Experiment

3.1. Testbed and Workload

Our proposed automatic resource scaling management system (ARSMS) is deployed in

a real distributed Kubernetes environment. The Kubernetes cluster consists of five real

physical machines with 12-16 CPUs and 32-64G of memory. One physical machine is

the master node, and the other four physical machines are the worker nodes. Multiple

instances of each service consist of functionally identical containers.  We design a matrix

multiplication service as a test application that randomly generates two matrices of 100-

200 dimensions and returns the result of the multiplication.

In our experiments, we validate our model using two network loads. The Wikipedia
trace contains page requests for all languages during the period between September 19th

2007 and January 2nd 2008. In addition, we collect a web load flow from a news media

application (NewsFlow) that shows significant periodicity. Here, we evaluate the

performance and stability of the service by using two-day traces and simulating user

interactions with the application using the load testing tool JMeter.

3.2. Experimental Setup

For the sake of experimental fairness, we choose two typical resource scaling methods

as benchmarks:

R. Gan et al. / Automatic Resource Scaling Management System 233



(1) Reactive [15]. This is the classic threshold-based elastic scaling approach for

handling constantly changing workloads. This method allows users to set a number of

scaling trigger indicators, such as CPU and memory usage.
(2) ConPaas [16].  Similar  to  the  steps  in  our  work,  this  method  consists  of  a

process of detection, prediction, decision, and execution. The method dynamically

adjusts the number of resources served based on changes in load at fixed intervals of 10

minutes.

3.3. Experiment Results and Analysis

We demonstrate the superiority of the flexible scaling management system proposed in

this paper in terms of cost consumption and SLA violation rate. Cost consumption is

used to measure the sum of the number of container resources occupied by a service over

a period of time. It is expressed in container hours and represents the average number of

containers occupied by a service in an hour. SLA violation rate is the percentage of

vendors that fail to deliver services to customers in accordance with the service at the
agreed service level, calculated as (number of failures / total number of service requests)

* 100%.

As shown in Figure 2(a), the proposed ARSMS achieves the optimal resource

consumption compared to Reactive and ConPaas under two different network loads.

Reactive is a threshold-based elastic scaler. However, if the threshold is not set correctly,

it will perform frequent scaling operations, wasting more resources. ConPaas relies

mainly on machine learning methods to predict future load and thus resource scaling.

However, these prediction methods are only suitable for smooth time series, and the fixed

prediction interval of 10 minutes is hardly applicable to sudden changes in load. Our

proposed method ARSMS can optimize service resources in a timely and on-demand

manner through the deep learning-based demand analysis and resource planning modules.

(a) Performance of resource consumption                      (b) Performance of SLA violations

Figure 2. Performance of the automatic resource scaling management system On Wikipedia and NewsFlow.

As illustrated in Figure 2(b), the proposed ARSMS obtains the lowest SLA violation

rate under two different network loads. The threshold-based elastic scaler Reactive is

difficult to be applied to complex application scenarios. If the load of the system

fluctuates a lot, the method may not be able to optimize the allocation of resources
effectively. ConPaas is difficult to predict the future data at a long distance and is prone

to large prediction errors. Therefore the model has a high SLA violation rate. ARSMS

adopts the Transformer-based long series prediction model, which can have a better

prediction effect for long-range loads and is more robust to abnormal data and noise.
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4. Conclusion

In this paper, we propose an automatic resource scaling management system on electric

power supercomputing clouds. The system can effectively predict the future resource
demand of the service and optimize the resource allocation scheme according to the

characteristics of the application, thus satisfying the users' needs and minimizing the

waste of resources. Experiments show that our proposed system achieves optimal results.

In future research, we will focus on the collaboration and management of resources in

hybrid cloud environments to achieve more granular resource allocation.
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