
Research on Application Automation

Operations Based on Win32com

Jing LI1, Peizhang WANG, Qian LI, Yongle HE, Lin SUN, Yi SUN,

Pinwang ZHAO and Lu JIA

Huaishuling 4#, Network Information Department, China North Vehicle Research
Institute; Fengtai, Beijing, China

Abstract. This article aims to explore the method of utilizing the win32com module

to interact with application API for achieving automation operations. Taking the

AutoCAD application as an example, it introduces the automation operations of

common tasks (such as file opening, property retrieval, etc.) by invoking the API

interface. By studying the API documentation of AutoCAD and combining it with

the win32com. client. Dispatch function, sample code is written to demonstrate the

application of this technique in automation operations.

Keywords. win32com, python, pywin32, Automation operations, AutoCAD

1. Introduction

With the widespread use of computer applications, achieving automation operations for

applications has become an important means to improve work efficiency and reduce

labor costs. The win32com module, as a powerful tool, enables interaction with the COM

interface of applications to achieve the goal of automation operations. Win32com can

only be used on the Windows operating system. This paper takes the AutoCAD

application as an example and explores how to interact with its API using the

win32com.client.Dispatch function to achieve automation operations.

2. Brief Introduction, Installation, Usage Steps, and Applications of win32com

2.1. What is win32com

The win32com module is a module in the Python language that provides automation and

interaction with COM (Component Object Model) components on the Windows platform.

COM is an object-oriented binary interface standard used to achieve interoperability

between different applications[1]. Every software installed on Windows usually registers

its important components with the system[2]. Built on the Python extension library

pywin32, the win32com module enables access to the Windows API and COM interfaces,

allowing Python programs to interact with various COM-supported applications. With

1Corresponding Author: Jing LI, Associate Researcher, China North Vehicle Research Institute;

e-mail: 30952197@qq.com

Advances in Artificial Intelligence, Big Data and Algorithms
G. Grigoras and P. Lorenz (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230799

113

win32com, it is possible to create, manipulate, and control COM objects, invoke methods,

and access properties, implement automated operations.

It should be noted that the win32com module depends on the third-party module

pywin32. The pywin32 can be installed by executing "pip install pywin32" at Command

Prompt. To verify the installation, you can enter "import win32api" fand if there are no

errors occur, it indicates the installation has been successful. But if the error "ImportError:

DLL load failed while importing win32api: The specified module could not be found."

occurs, you will need to execute "pip install pypiwin32", and then find the full path of

the file "pywin32_postinstall.py", which is generally under the Scripts folder of the

installed directory, and execute "python pywin32_postinstall.py install" under that path

to install successfully. If you are using the Anaconda Python environment, there is no

need for additional installation of third-party libraries as pywin32 is already included in

Anaconda.

2.2. How to use win32com

After setting up the environment, using the win32com module requires these following

steps:

� Create a COM object:

Use the win32com.client.Dispatch function to create a COM object associated with

a specific application. This function takes the ProgID (Programmatic Identifier) or

CLSID (Class Identifier) of the application as a parameter to instantiate the

corresponding COM object[3].

 Common Applications and the sentence which create the COM objects by

python is shown in table 1.

Table 1. Examples of common applications and how to create the COM objects by python

Application Create the COM Objects by Python
Doc

Excel

doc= win32com.client.Dispatch("Word.Application")

xl= win32com.client.Dispatch("Excel.Application")

PowerPoint ppt= win32com.client.Dispatch("PowerPoint.Application")

AutoCAD acad = win32com.client.Dispatch("AutoCAD.Application")

Internet Explorer ie = win32com.client.Dispatch("InternetExplorer.Application")

For example, when passing "AutoCAD.Application" as a parameter,

win32com.client. Dispatch will look up the registry to obtain the ProgID of the COM

component associated with the AutoCAD application. ProgID is a human readable string

name used to identify COM components.

� Operating COM objects:

After creating a COM object, you can invoke the methods and access the properties

of the application. For example, you can use the methods of the COM object to open

files, modify properties and perform other operations. To understand the automation

interfaces and methods provided by the application, you can refer to its API

documentation or developer resources. These documents serve as the foundation for

performing automation operations.

However, not all applications provide automation interfaces. Before using

win32com.client.Dispatch, it is important to determine whether the desired application

supports COM automation. This can be done by consulting the API documentation or

J. Li et al. / Research on Application Automation Operations Based on Win32com114

other developer resources to understand its automation capabilities and interfaces.

Additionally, when interacting with an application for automation, it is necessary to

know and comply with the automation rules and security restrictions imposed by the

application. Some applications may require security settings or specific authorization to

allow automation access by external programs.

� Event handling:

In general, COM components support an event-driven programming model. You can

use the "WithEvents" method to register event handlers and perform corresponding

actions when events are triggered by the COM component.

� Resource release:

After completing the operations, make sure to close the COM objects to free

resources. You can use the Close method of the COM object to perform the closing or

releasing, to avoid memory leaks and unstable behavior.

2.3. The example program: Classifying DWG Drawings by Sheet Size Using win32com

During the engineering design process, Numerous CAD drawings are generated to record

the structural information and parameter details of the products. These historical

drawings are mainly in AutoCAD's DWG format, which doesn't directly display the

width and height of the drawings. Designers need to manually open each file and place

the mouse in the top right and bottom left corners of the drawing to confirm the sheet

size by subtracting these two coordinates. For example, if it is calculated to be (420, 297),

it can be confirmed as an A3 sheet size. Due to the enormous quantity of historical

drawings, manually checking the sheet size information one by one is time-consuming

and error-prone. To reduce the workload on engineers, improve work efficiency, and

enhance accuracy, it is necessary to develop a program to extract the width and height

information of DWG format drawings in batch. In this context, I wrote an example

program based on win32com using Python script language[4].

After querying the API documentation provided by AUTODESK, decisive system

variables related to the DWG drawings sheet size and their description were found, as

shown in table 2:

Table 2. System variables and their description

System Variable Description
EXTMIN Stores the lower-left point of the drawing extents.

EXTMAX Stores the upper-right point of the drawing extents.

The Python statement that calls system variables is:

acad = win32com.client.Dispatch("AutoCAD.Application")

cad = acad.Documents.Open(file)

max = cad.GetVariable("EXTMAX")

min=cad.GetVariable("EXTMIN")

It is worth mentioning that AUTODESK provides "LIMITS" command with the

function of "Sets an invisible rectangular boundary in the drawing area that can limit the

grid display and limit clicking or entering point locations[5]". However, the default layout

size for new DWG drawings is (420, 297). If the actual layout size is larger than this size,

the designer will modify it to the actual size on their own; But if it is smaller than this

size, such as (210, 297), the designer may skip it without making any modifications,

which may result in incorrect size read by "cad.LIMITS". Therefore, it is more accurate

J. Li et al. / Research on Application Automation Operations Based on Win32com 115

to use the difference between the system variables "EXTMAX" and "EXTMIN" to

confirm the DWG drawings sheet size.

The flowchart of the example program is shown in figure 1 as follows:

Figure 1. The flowchart of the example program

The written Python script is converted into an executable (.exe) file using the

pyinstaller library, It supports Python 3.7 and newer, bundling a Python application and

all its dependencies into a single package[6], enabling it to run directly on the Windows

7 operating system. The executable file can effortlessly be delivered and provided by the

developer to others, empowering them to make utilize of the statistical functionalities of

the program without installing a Python interpreter or any added installation steps. Users

can simply double click the executable file to perform the statistical and classification

work. This greatly enhances the usability and accessibility of the tool. As indicated in

figure 2, the size of this executable file is only 12.1 MB.

Figure 2. The size of the tool after packaged into an EXE

J. Li et al. / Research on Application Automation Operations Based on Win32com116

3. Experimental Results and Discussion

The effectiveness of interacting with AutoCAD's API using the win32com module was

validated through experiments and testing. We developed a sample program

demonstrating how to automate operations using the win32com module with AutoCAD's

API. This sample program traverses DWG files in a specified directory. It automatically

opens each file, retrieves its properties, calculates the sheet size, closes the file, and then

copies it to the corresponding folder named after the sheet size. The program runtime for

handling different drawing sizes and page numbers is shown in the Table 3 below.

Table 3. Statistical table of program Runtime and number of drawings

Number of all A0 A1 A2 A3 A4 Non-standard Time(seconds)
32 3 3 3 10 12 1 17.002803

50 3 3 5 17 20 2 26.875725

91 4 4 10 32 36 5 53.364305

131 6 5 11 54 50 5 88.788696

The following observations were made during the experiments:

� Successful creation of a COM object associated with the AutoCAD application

using the win32com.client.Dispatch function, establishing a connection with

AutoCAD.

� Implementation of automatic file opening, extraction of drawing width and

height properties, and other functionalities by calling AutoCAD's API methods

and properties such as "acad.Documents.Open()", "cad.GetVariable()" and

"cad.Close()".

� Development of code for looping through the file list, enabling automation of

processing for all DWG files that meet the specified conditions in the selected

directory.

� The automation process exhibited swift and accurate operations, resulting in

significant savings in manual operation time and labor costs.

4. Conclusions

This article's example program showcases the application of automating operations by

using win32com module and the API of AutoCAD. The win32com module is one of the

essential tools for implementing automation operations and integrating with other

applications, providing developers with a wide range of applications and creative

solutions. By understanding the API documentation of the target application, we can call

appropriate methods and properties to achieve various automated tasks. This method is

particularly useful for batch processing, large-scale data processing, and repetitive tasks.

Automate tedious tasks, liberate productivity, and improve efficiency. Taking the

development of an automated tool for extracting sheet size information from DWG

drawings as an example, it addresses the issue of inefficient processing of large-scale

drawing data. The tool enables automated extraction and processing of DWG drawings,

swiftly retrieving layout width and height information in bulk, and generating output

results. This provides valuable data support for drawing management and categorization,

enhancing data processing efficiency and accuracy.

J. Li et al. / Research on Application Automation Operations Based on Win32com 117

Future research directions include exploring automation operations in other

applications in conjunction with the win32com, different applications may offer various

automation interfaces and functionalities, Additionally, we can optimize the code of

automation operations to enhance execution efficiency and stability, as well as exploring

the integration of machine learning with automation operations to achieve more

intelligent automation. For applications without COM interfaces or with restrictions,

alternative solutions or technologies need to be considered.

In summary, by researching and utilizing the win32com module and the

application's API for automation, it is possible to achieve efficient and accurate batch

task processing. This research provides a reference for similar automation tasks, has a

broad application prospect and promotion application value, and plays a positive role in

promoting the development of big data and artificial intelligence and other technologies

in practical applications.

References

[1] Chuanlu Huang, Zhiqiang Zhang, Zero Basis Python Second Edition, China Machine Press, Beijing, 2020.

[2] Preston Miller, Chapin Bryce, Learning Python for Forensics Second Edition, Packet Publishing,

Birmingham, 2019.

[3] Luciano Ramalho, Fluent Python, O'Reilly Media, California, 2015.

[4] HUANG Huan, XU Tan Development of Data Automatic Statistics for Flight Simulation Training

Equipment, Computer Knowledge and Technology 21(2020), 203-205.

[5] AUTODESK, https://help.autodesk.com/view/OARX/2019/ENU/, 2019.

[6] David C, PyInstaller Manual, https://pyinstaller.org/en/stable/,2023.

J. Li et al. / Research on Application Automation Operations Based on Win32com118

