126 Machine Learning and Artificial Intelligence
J.-L. Kim (Ed.)

© 2023 The authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230774

Usage of Machine Learning Methods for
Cause-Effect Graph Feasibility Prediction

Ehlimana KRUPALIJA ®!, Emir COGO &, Damir POZDERAC 2,
Aya ALI AL ZAYAT ?, and Ingmar BESIC?

4 Department of Computer Science and Informatics, Faculty of Electrical Engineering,
University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina

Abstract. Cause-effect graphs (CEGs) are usually applied for black-box testing of
complex industrial systems. The specification process is time-consuming and can
result in many errors. In this work, machine learning methods were applied for pre-
dicting the feasibility of CEG elements. All information was extracted from graphs
contained in CEGSet, a dataset of CEGs. The data was converted to two different
formats. The Boolean features format represents relations as separate data rows,
whereas the Term-Frequency times Inverse-Document-Frequency (TF-IDF) format
represents graphs as data rows. Eight machine learning models were trained on this
data. The results of testing by using the 80-20 holdout method indicate that impor-
tant information is lost when converting the graphs to the TF-IDF format, whereas
the Boolean feature format enables 100%-accurate predictions of ensemble meth-
ods. The achieved results indicate that pre-trained models can be used as help for
domain experts during the CEG specification process.

Keywords. cause-effect graph, natural language processing, machine learning,
software quality

1. Introduction

The recent advances in technology have led to a significant increase in available com-
puter memory and processing power, as well as the possibility of usage of CPU and GPU
parallelization techniques. This has led to a wide usage of machine learning (ML) algo-
rithms and neural networks on large amounts of data in order to be able to accurately
predict future events based on past observations. These concepts have also proved to be
useful in the field of software quality, with successful application of ML for multiple
purposes such as prediction of fault-proneness [1], automatic generation of black-box
tests [2], and detection of code smells [3].

Cause-effect graphs (CEGs) [4] are a black-box testing method which is often ap-
plied on complex, industrial, safety-critical or real-time systems (e.g. access control
policies [5], high-speed trains [6], and quantum programming [7]) where the usage of
other methods would be very time-consuming or impossible due to different limitations.
Creating a CEG specification does not require programming knowledge or familiarity

ICorresponding Author: Ehlimana Krupalija, University of Sarajevo, 71 000 Sarajevo, Bosnia and
Herzegovina; E-mail: ekrupalijal @etf.unsa.ba.

E. Krupalija et al. / Usage of Machine Learning Methods for CEG Feasibility Prediction 127

with software quality metrics. However, due to the complexity of systems on which this
method is often applied, CEG specifications are usually manually created and this pro-
cess is very error-prone. It could be made easier if the user received feedback on which
CEG elements they added are infeasible, so that mistakes could easily be corrected.

This work presents the first attempt at using ML methods for the detection of CEG
feasibility. A summary of related work is given in Section 2. Natural language process-
ing (NLP) methods were used for converting the existing data into numerical matrices to
be used as ML model input, as described in Section 3. The achieved results are summa-
rized in Section 4. After calculating the most relevant performance metrics, different ML
models were compared and conclusions are given in Section 5.

2. Related work

The majority of previous works focusing on the CEG technique represent case stud-
ies where software requirements for different types of systems are manually converted
to CEG specifications. A small number of works propose the usage of ML techniques
on CEGs. Vogel-Hauser et al. [8] used a dataset of expert knowledge provided by an
industrial partner and trained logistic regression and decision tree models for predict-
ing product quality based on CEG elements specified in the dataset. Unfortunately, this
dataset is not publicly available. Jang and Kim first proposed the usage of NLP methods
(Cause/Conjunction/Clause (C3Tree) models) for converting system requirements into
CEG specifications [9], after which they developed Korean Requirement Analyzer for
Cause-Effect Graph (KRA-CE), a software tool for automatizing this process [10].

In our recent work [11], we created a compilation of CEGs in the form of a dataset,
named CEGSet. It contains 65 CEG specifications manually collected from previous pa-
pers and specified in our previously introduced graphical software tool, ETF-RI-CEG
[12]. These CEG specifications vary in size, types of nodes, logical relations and depen-
dency constraints. They can be used for training ML models for CEG feasibility predic-
tion. All CEG specifications are available in the TXT format, allowing for the usage of
NLP methods in order to convert these specifications into other forms which are adjusted
for training of different ML models (e.g. decision tree, naive Bayes, and support vector
machine - SVM) [13] and neural networks (e.g. long-short-term memory - LSTM).

After importing the CEG specifications from TXT documents, they are contained
in a textual format. This format cannot be directly used for training ML models, which
expect numerical matrices as inputs. Many different methods can be used for convert-
ing natural language specifications to the numerical format. One such method is Term-
Frequency times Inverse-Document-Frequency (TF-IDF) [14] defined in Eq. 1. This
method uses the term frequency (TF) ¢; in document d, and inverse term #; frequency
(IDF) in the document corpus D. Document corpus represents the entire dataset, a single
document represents a CEG and a single term represents a relation of a CEG.

len(D)
count(d) containing t;

count(t;) in d
len(d)

TF —IDF (t;,d,D) = log, ((1)

128 E. Krupalija et al. / Usage of Machine Learning Methods for CEG Feasibility Prediction

3. Proposed data formats

Data preprocessing methods were applied on the original TXT representations of the 65
CEGs in order to be able to apply different ML algorithms on CEGSet. CEGSet only
contains feasible CEG specifications, so undersampling was performed to formulate new,
infeasible CEG specifications. Random numbers were used for ensuring that undersam-
pling would not affect the data in a negative way. A random number of relations was
added, smaller than or equal to the number of feasible relations. Relation types were ran-
domly chosen, and a random number of nodes was activated. In order for the relations to
be infeasible, multiple cause nodes were always activated, and constraints were applied
on wrong node types. A random number of relations was assigned to each new graph.
The undersampling resulted in 573 new relations (equal to the size of feasible data) and
25 new infeasible CEGs (27.78% of total dataset size). Afterwards, preprocessing was
applied for generating two different data models:

Boolean features format, which is shown on Figure 1, containing a total of 1,146
rows. All logical relationships of CEGs, which are usually represented as Boolean ex-
pressions [15], are dataset features in this format. Every data row contains the following
51 data features: index (the number of CEG in which the relation is defined), relation type
(Y for logical relations, N for dependency constraints), relation name (logical relations
- DIR, NOT, AND, OR, NAND, NOR, dependency constraints - EXC, INC, EXCINC,
REQ, MSK), separate features for all cause, intermediate and effect nodes C;, I;, E; (O -
the node is inactive, 1 - the node is an active cause, 2 - the node is an active effect) and
outcome (Feasible or Infeasible). The dataset was standardized by using the maximum
number of cause, intermediate and effect nodes.

] 1 Y AND 0 1 1 0 0 0 0 0 0 0 © 0 00 0 0 0 0O 0 0 O Feasbe

Feasible

Figure 1. Visualization of the Boolean features data format

TF-IDF graph format, which is shown on Figure 2, containing a total of 90 rows.
First a vocabulary of all different relations in the dataset was generated, containing a total
of 969 different terms used as data features. The TF-IDF graph format represents each
CEG as a single row, and data features represent the presence of the corresponding term
from the vocabulary in the given CEG. The value of each data cell is calculated by using
the TF-IDF method from Eq. 1.

@ 1 2 3 4 5 6 ... 963 964 965 966 967 968 969

0 119077 1417193 1417193 1417193 1417193 1417193 1417193 00 00 00 00 00 00 Feasible

00 0000000 0000000 0000000 0000000 0000000 O 000000 00 00 00 00 00 00 Feasible

00000 0.000000 0.000000 0.000000 0.000000 0.000000 00 00 00 00 00 00 Infeasible

0.000000 0000000 0000000 0000000 0000000 00 00 00 00 00 00 Infeasible

Figure 2. Visualization of the TF-IDF graph data format

In order to verify that the usage of undersampling did not result in examples without
any real value for training of ML models on CEGSet, Pearson correlation was calculated

E. Krupalija et al. / Usage of Machine Learning Methods for CEG Feasibility Prediction 129

for all data features of the Boolean features format. The resulting correlation is shown
on Figure 3, where the visualization on the left shows the matrix of Pearson correlation
coefficients for all 51 data features, whereas the visualization on the right shows only the
data features for which the correlation is higher than 25%. It can be easily discerned by
the lack of red color on the heatmaps that there is no high correlation in the dataset. The
highest correlation is 30% (Index-E12), which indicates that the usage of undersampling
yielded random incorrect CEG elements which did not affect the data in a negative way.

Correlation between all features Correlation higher than 25%
Index 1 10
o 0.280.270.270.260.28 0.3 0.270.27 I

oo 0.28

c1z -
C15 4
€18 -

-0.8
027

111 C18 Cl4index

027 06

-0.28 - 04
-0.27 o2
027

Vo o 0.0

Figure 3. The visualization of Pearson correlation coefficients for the Boolean features data format

n1 -
na -
E3
E6
E9 4
E12 -

El4 E13 E12 E1l E10
°
W

Index -
c14
cis
n
E10 -
Ell
E12
E13
E14

4. Experimental results

Different ML models were trained and tested on both data formats of the previously
preprocessed dataset: traditional models (naive Bayes, SVM and logistic regression),
ensemble models (random forest, voting ensemble, AdaBoost and XGBoost) and neural
networks (LSTM). The data was split into two subsets used for training and testing the
models by using the holdout method (80% training - 20% testing). The results achieved
on the test subset are summarized in Table 1. Performances were measured by using the
confusion matrix [13], a table containing results of ML models with the following values:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The

: : . TP+TN ‘o TP
following performance metrics were used: accuracy (7pr7y Fprry) Precision (751 75),

recall (TPZ%), and F-score (the harmonic mean of precision and recall).

Out of all traditional ML models, SVM achieved the highest average accuracy. This
is most likely a consequence of its geometric nature and the ability to correctly determine
the non-linear hyperplane that separates data points. Logistic regression did not achieve
high accuracy, which means that the hyperplane surface is not linear. Naive Bayes also
did not achieve high performances because it assumes probabilistic independence be-
tween different rows of data, however data rows are not independent as multiple data
rows belong to the same CEG. Only the voting ensemble achieved high performances on
the TF-IDF graph format. This means that the usage of decision trees in random forests
and XGBoost, and optimization of weak classifiers in AdaBoost, did not help for in-
ferring data relationships from CEGs. The best performances were instead achieved by
averaging decisions of multiple regression classifiers in the voting ensemble. Multiple
models trained by using the Boolean features data format managed to achieve accuracy
of 100%. On the contrary, neither of the models trained by using the TF-IDF graph for-

130 E. Krupalija et al. / Usage of Machine Learning Methods for CEG Feasibility Prediction
mat managed to achieve an accuracy of 90% or higher. This indicates that the usage of
TF-IDF method, which is based on the frequency of different relations in the dataset,

does not help in deducing important relationships between data features.

Table 1. Performance metrics of machine learning models for both data formats

Model Format Accuracy (%) Precision (%) Recall (%) F-score (%) Avg.acc. (%)
Naive Boolean 89.57 94.02 86.61 90.16

89.23
Bayes TF-IDF 88.89 100 85.71 92.31
Bool 100 100 100 100
SVM oorean 94.45
TF-IDF 88.89 100 85.71 92.31
Bool 1 1 1 1
XGBoost oolean 00 00 00 00 38.89
TF-IDF 77.78 71.78 100 87.5
Random Boolean 100 100 100 100 88,89
forest TF-IDF 77.78 77.78 100 87.5 ’
Boolean 100 100 100 100
AdaBoost
TF-IDF 72.22 100 64.29 78.26
Voting Boolean 100 100 100 100 94.45
ensemble TF-IDF 88.89 100 85.71 92.31 :
Logistic Boolean 99.13 99.21 99.21 99.21 88.46
Regression ~ TF-IDF 77.78 77.78 100 87.5 ’

Boolean 96.09 100 9291 96.33
LSTM
TF-IDF 71.78 71.78 100 87.5

The neural-network-based LSTM model was trained during 50 epochs (iterations in
which all data samples are used for updating model parameters) and an additional 20%
validation subset was used during the training. The results for both data formats are visu-
alized on Figure 4. The TF-IDF graph format did not contain enough useful information
for training the model through the epochs. Although the training accuracy quickly rose
to 100%, the validation accuracy did not increase from the initial 80%. Contrarily, the
Boolean features format was very useful for training the model, achieving validation ac-
curacy of around 96%. However, after around 20 epochs the validation accuracy started
constantly dropping, indicating that overfitting had occured.

Accuracy

0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

(a) Boolean features data format (b) TF-IDF graph data format

Figure 4. Visualization of training accuracy (blue) and validation accuracy (orange) for LSTM model

E. Krupalija et al. / Usage of Machine Learning Methods for CEG Feasibility Prediction 131

5. Conclusion

Two different data formats for converting CEGs to numerical matrices were proposed.
The Boolean features format resulted in 100% accuracy of ensemble models, whereas the
TF-IDF graph format did not result in accuracy of 90% or higher. The most likely cause
of this difference is the usage of undersampling for adding infeasible relations. However,
due to random indexing of the generated data rows, this did not result in a balanced
number of graphs. This led to TF-IDF graph format being unable to capture all relevant
information for accurate detection of CEG feasibility. The achieved results are promising
and indicate that pre-trained ML models can be incorporated in ETF-RI-CEG or another
similar software tool. The pre-trained model would be able to notify the user of the CEG
specification feasibility in the tool in real-time. This would reduce the number of errors in
the CEG specification process, improving the speed of this process and helping domain
experts create CEG specifications for complex systems more quickly.

References

[1] Boucher A, Badri M. Software metrics thresholds calculation techniques to predict fault-proneness:
An empirical comparison. Information and Software Technology. 2018;96:38-67. DOI: 10.1016/j.
infsof.2017.11.005.

[2] Kirag¢ MF, Aktemur B, Sozer H, Sahin Gebizli C. Automatically learning usage behavior and generating
event sequences for black-box testing of reactive systems. Software Quality Journal. 2019;27(2):861-83.
DOI: 10.1007/s11219-018-9439-1.

[3] Guggulothu T, Moiz SA. Code smell detection using multi-label classification approach. Software
Quality Journal. 2020;28(3):1063-86. DOI: 10.1007/s11219-020-09498~y.

[4] Myers GJ, Badgett T, Sandler C. The Art of Software Testing. John Wiley and Sons, Inc.; 2012.

[5] Khdairat Y, Sabri KE. Generating test cases from role-based access control policies using cause-effect
graph. Journal of Software. 2018;13(9):497-505. DOI: 10.17706/jsw.13.9.497-505.

[6] Dou L, Yang WD. Design of test case for ATP speed monitoring function based on cause-effect
graph. In: Proceedings of 2019 11th CAA SAFEPROCESS. Xiamen; 2019. p. 246-50. DOI:
10.1109/SAFEPROCESS45799.2019.9213325.

[7] Oldfield N, Yue T, Ali S. Investigating quantum cause-effect graphs. In: Proceedings - 3rd International
Workshop on Quantum Software Engineering, Q-SE 2022. Pittsburgh; 2022. p. 8-15. DOI: 10.1145/
3528230.3529186.

[8] Vogel-Heuser B, Karaseva V, Folmer J, Kirchen I. Operator knowledge inclusion in data-mining ap-
proaches for product quality assurance using cause-effect graphs. In: 20th IFAC World Congress.
Toulouse; 2017. p. 1358-65. DOI: 10.1016/j.ifacol.2017.08.233.

[9] Jang WS, Kim RYC. Automatic generation mechanism of cause-effect graph with informal requirement
specification based on the Korean language. Applied Sciences (Switzerland). 2021;11(24):1-13. DOI:
10.3390/app112411775.

[10] Jang WS, Kim RYC. Automatic cause-effect graph tool with informal Korean requirement specifica-
tions. Applied Sciences (Switzerland). 2022;12(18):1-16. DOI: 10.3390/app12189310.

[11] Krupalija E, Cogo E, Becirovi¢ S, Prazina I, Pozderac D, Besié¢ I. CEGSet: Collection of standardized
cause-effect graph specifications. In: 2023 12th Mediterranean Conference on Embedded Computing
(MECO). Budva; 2023. p. 1-4. DOI: 10.1109/MEC058584.2023.10155063.

[12] Krupalija E, Cogo E, Becirovi¢ §, Prazina I, Pozderac D, Besi¢ I. New graphical software tool
for creating cause-effect graph specifications. Journal of Communications Software and Systems.
2022;18(4):311-22. DOI: 10.24138/jcomss-2022-0076.

[13] Smolyakov V. Machine Learning Algorithms in Depth. Manning Publications; 2023.

[14] Lane H, Dyshel M. Natural Language Processing in Action. Manning Publications; 2023.

[15] Ayav T, Belli F. Mutation-based minimal test suite generation for Boolean expressions. International
Journal of Software Engineering and Knowledge Engineering. 2023;33(6):865-84. DOI: 10.1142/
50218194023500183.

10.1016/j.infsof.2017.11.005
10.1016/j.infsof.2017.11.005
10.1007/s11219-018-9439-1
10.1007/s11219-020-09498-y
10.17706/jsw.13.9.497-505
10.1109/SAFEPROCESS45799.2019.9213325
10.1145/3528230.3529186
10.1145/3528230.3529186
10.1016/j.ifacol.2017.08.233
10.3390/app112411775
10.3390/app12189310
10.1109/MECO58584.2023.10155063
10.24138/jcomss-2022-0076
10.1142/S0218194023500183
10.1142/S0218194023500183

