Artificial Intelligence Research and Development 283
1 Sanz et al. (Eds.)

© 2023 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230695

A Real-World Dataset for Benchmarking
False Alarm Rate in Keyword Spotting

Sergi SANCHEZ DEUTSCH, Ivan HUERTA CASADO and Josep ESCRIG ESCRIG
i2CAT Foundation

Abstract. Over the past few years, Keyword Spotting (KWS) has emerged as a
popular area of research. Although numerous open-source KWS datasets have been
recently released, there is a general lack of realism in benchmarking the false alarm
rate (FAR) in real environments. This can produce models that achieve great ac-
curacies but are not able to work on real-world conditions due to a high number
of false triggers. In this work, we demonstrate that two recent KWS models re-
port state-of-the-art accuracies on Google Speech Command dataset but suffer from
high false alarm rates in presence of noisy environments. To this end, we propose
an extensive benchmark dataset comprising various real-world noises and sounds
to evaluate specifically the FAR across different acoustic environments.
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1. Introduction

Keyword Spotting (KWS) is widely used nowadays for wake-up word detection and
command recognition. One of the main challenges of KWS systems is to achieve a
good detection accuracy of the target keywords while maintaining a low false alarm rate
(FAR). An occurrence of a false alarm (FA) takes place when the model identifies a word
that was not actually spoken, leading to a wrong action. It is crucial to reduce the number
of false alarms to the minimum, as the impact of triggering the device when the keyword
is not present is equal or even greater than the cost of not detecting it [1].

In recent years, several datasets have been released for training and benchmarking
KWS models. The most well-known is Google Speech Commands (GSC) [2]. This cor-
pus has 10 target keywords along with another 25 words that are used as negative sam-
ples to train the unknown class. Other less common datasets are Mobvoi [3], which has
two target keywords and an extensive set of negative samples composed of other words
and speech, and Multilingual Spoken Corpus [4], with 340,000 keywords in 50 different
languages.

However, none of the abovementioned datasets include a set of negative samples that
is representative enough of the background noises and sounds that can be found in a real
environment. This can cause a model to report great accuracies on these datasets while
they fail to work in a real environment due to a high number of false alarms per hour.

In this paper, we demonstrate that two state-of-the-art KWS models suffer from high
false alarm rates on real acoustic conditions even though they report high accuracies
on Google Speech Commands dataset. To this end, we propose an extensive dataset to
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benchmark specifically the false alarm rate in real environments of any KWS model.
This corpus contains more than 52,000 negative samples recorded in a variety of real
environments that represent many acoustic situations, and can be used to evaluate FAR
of any KWS model.

2. Methods
2.1. FAR Benchmark Dataset

Many open-source KWS benchmarks focus mainly on the ability to discern between
the target keywords and other non-target words. However, there is a lack of realism in
benchmarking FAR in presence of real-world noises and sounds, so that models are ro-
bust enough to work under real conditions. To alleviate this issue, we create an extensive
dataset composed of 52,198 1-second audio samples to benchmark specifically the false
alarm rate of any KWS model in real-world conditions. These samples contain sounds,
speech, and background noises recorded in different real situations. All samples that
comprise speech have been manually reviewed to ensure that they do not contain any of
the target keywords of the Google Speech Commands dataset. The samples are recorded
using a standard laptop microphone at 16 kHz, and are divided in multiple categories, as
listed in Table 1: in the category TV show, we include samples with several TV contents
playing in the background. To gather these samples, the microphone was placed in sev-
eral locations around the room, and the TV volume was varied several times. The pod-
cast category contains a loudspeaker playing several chapters of a BBC podcast. Simi-
larly, the street category has a loudspeaker playing noises recorded from a real street in
New York City. In the people category, we include samples with different crowds talking
in the background and, finally, the living room category includes multiple daily sounds
that can be found in a house, such as people eating at a table or the sound of a vacuum
cleaner.

Table 1. Categories and number of samples in our proposed FAR Benchmark dataset

TV Show  Podcast  Street People Living Room

#Samples 23,759 4,713 6,060 3,174 14,492
#Hours 6.6 1.3 1.68 4.03 4.03

2.2. Neural Network Architectures

We conduct the experiments using two state-of-the-art KWS architectures: the Multi-
head attention RNN (MHAtt RNN) [5] and the Keyword Transformer (KWT) presented
in [6]. The Multi-head attention RNN is based on the “Attention RNN" architecture [7],
which combines a CNN, a bidirectional LSTM, and an attention layer. The model has
the ability to capture local relations in a feature map and the ability of RNNs to focus
on long-term dependencies. The MHAtt RNN model takes the same architecture as the
Attention RNN with two main changes, which are a) replacing the LSTM with Gated
Recurrent Units (GRU) and b) using the multi-head attention method presented in [8] to
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focus on more than one relevant part of the input audio. The Keyword Transformer is the
first Transformer-based architecture for keyword spotting that relies solely on attention
layers. It takes as input the Mel spectrogram of the audio divided into several patches
within the time domain. These patches are flattened and mapped to a higher dimension d
using a linear projection matrix. Two learnable embeddings are then added to the input
patches to provide the encoder layers with some extra information: a class embedding
and a positional embedding. These updated inputs (the original spectrogram patches with
the extra embeddings) are then fed into a set of L encoder layers, which perform multi-
head attention with k different heads. We employ the code released by [9] to train the
MHAtt RNN model. For the KWT, we use the implementation released by [6].

3. Experiments
3.1. Dataset

We train the two selected KWS architectures on the Google Speech Commands (GSC)
dataset [2]. GSC is a large-scale open-source dataset that comprises over 100,000 utter-
ances of 35 different words recorded by thousands of speakers. It is widely used in re-
search and industry, and it has been key in advancing the field of speech recognition in
recent years. From the 35 available words, 10 are used as target keywords and the rest of
them are used to train the unknown class, as described in Table 2. In our experiments, we
use the split files provided by [2] to divide the dataset into training, validation and testing
set, with ratio 80:10:10. The unknown class is composed of a subset of 3,500 samples
from the non-target utterances to maintain a balance among classes.

Table 2. Target and non-target keywords included in Google Speech Commands dataset.

Target yes no up down left
keywords right on off stop go
Zero one two three four
Non- five six seven eight nine
target bed bird cat dog happy
keywords house Marvin  Sheila tree wow
backward forward follow learn  visual

3.2. Results

In Table 3 we evaluate MHAtt RNN and KWT in terms of accuracy on GSC and FAR
on our proposed FAR benchmark dataset. The two architectures report state-of-the-art
accuracies on GSC, achieving 99.34% in the case of the MHAtt RNN and 99.72% in the
case of KWT.

However, FAR results on our proposed dataset show that both models suffer from a
serious false alarm problem when facing noisy samples recorded in multiple real envi-
ronments. If we consider the case of a commercial voice assistant, it would be unaccept-
able that the system gets triggered by a non-target utterance more than 100 times every
hour in the best case scenario (considering the MHAtt RNN). In the case of KWT, this
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FAR increases up to 902 FA per hour. Overall, this demonstrates that the robustness of

a KWS model can not be benchmarked with enough confidence using only the accuracy
on GSC, as it may lead to a FA issue in real-life conditions.

Table 3. Accuracy on GSC and FAR results in our proposed FAR Benchmark dataset.

Model | Accuracy (GSC) | FAR (%) FAR (FA/h)

MHAtt RNN 99.34 2.88 103.6
KWT 99.72 25.06 902.1

4. Conclusions and Future Work

In this paper, we demonstrated that current KWS benchmarks are not sufficient to eval-
uate the robustness of the models in terms of FAR in real-life conditions. To this end,
we created an extensive dataset of real-world noises and sounds to benchmark FAR in a
variety of acoustic environments. Using this dataset, we proved that two state-of-the-art
models suffer from a serious false alarm issue when trained on Google Speech Com-
mands dataset. In future work, we plan to further investigate this issue and propose a
false alarm mitigation solution at the dataset level. Our next steps will be thus devoted to
reduce FAR in real-world conditions with minor impact on the accuracy of the models.
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