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Abstract. In particle physics experiments, calorimeters are in charge of measur-
ing the energy of incoming particles. In order to correctly estimate and evaluate
the energy and other properties of these particles, a process, called reconstruction,
is required. Because of the amount of collisions and the data-flow, reconstruction
algorithms need to be time savvy. The nature of the problem seems appropriate
for deep neural networks, yet the approach shows constraints. This paper presents
the application to the calorimeter of LHCb in the first upgrade phase under the so-
called Real Time Analysis framework, which is in charge of processing 30 MHz of
data in real time, with its pros and cons.
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1. The calorimeter reconstruction challenge

In the field of high energy physics (HEP) there are many computational challenges re-
garding data. As an example, the LHCb experiment at CERN currently processes 30
MHz of non-empty proton-proton collisions, which generate a data flow of 5 TB/s pro-
duced by the eight sub-detectors readout [2]. Far beyond the limits of storage technology,
this rate is filtered by a factor 400 by the called trigger system [1] before its storage. This
trigger relays on a full reconstruction of the collision events in order to make specific
selections of physics signatures to decide which events are stored for further analysis.
There are two stages in the trigger system: the High Level Trigger 1 (HLT1) [4], which
processes the full detector readout in a GPU framework and performs a partial recon-
struction of events and primarily selections; and the High Level Trigger 2 (HLT2) which
makes a full reconstruction of events using a quasi-real-time alignment and calibration of
the detector together with the order of a thousand specific selection algorithms. HLT2 has
a throughput of 10 GB/s of reconstructed events and is executed in a CPU framework.
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With independence of the trigger stage, the reconstruction of events consists on a
series of specific algorithms that process the data generated by each of the LHCb sub-
detectors. By analysing the interaction of particles with the detector, the particles pro-
duced in the collision are identified.

One of the eight sub-detectors in LHCb is the electromagnetic calorimeter (ECAL)
[10]. It is designed to measure the energy and position of particles as they interact with
the detector material with high precision and is the only detector capable to identify neu-
tral particles. It has a rectangular shape of 7.8×6.3 m and is placed perpendicular to the
accelerator beam pipe. The ECAL structure is segmented into individual square-shaped
modules that perform the energy measurement. Each module has a variable number of
readout cells depending on the position, which conform three rectangular regions with
increasing granularity around the central beam pipe. The output data obtained from the
calorimeter are the values from the 6016 readout cells concerning the accumulated en-
ergy deposited by incident particles in a single collision. The energy deposits from a
single collision are values from 0 to 10.240 called digits.

Regarding the reconstruction process, it consists on clustering together the energy
deposits that belong to the same incident particle, which are then called clusters. Al-
though the module shape is designed to contain the full energy of an incident particle,
they may not impact at the center of a module. Therefore, the energy shower deposited
by a particle is reconstructed as a 3× 3 cell group. Given the current LHCb running
conditions, ECAL has a high occupancy with the order of 250 clusters per event. This
implies that many clusters are overlapping in the inner-most region, which adds more
complexity to the reconstruction process.

Entering in the detail of a generic reconstruction for ECAL, it can be segmented
into three processes. The first step is to identify the seeds of clusters, defined as the most
energetic deposit in a local cell matrix of 3× 3. Only deposits of more than 50 MeV
are considered to be a seed as ECAL is focused in the reconstruction of photons and
electrons that deposit all of its energy in the calorimeter cells. This also helps to filter
out the background noise. The second step in the reconstruction chain is to tag the rest
of the digits from a single collision to the closest seed. If a digit is in between two seeds,
it is tagged to both of them and later processed as an overlapping cell. The final step
consists in accumulating the energy of all the digits tagged to a seed and account it as a
reconstructed cluster. In case of an overlapping cell, its energy is split according to the
energy of the overlapping clusters and each part is linked to the respective cluster.

2. Evolution of methodologies

The process of reconstructing calorimeter data can be viewed as a clustering problem,
where the primary objective is to group energy deposits from particles according to spe-
cific rules. Traditional unsupervised clustering algorithms use extensive recursive func-
tions with distance or density metrics for creating clusters [6]. However, the approach
taken for calorimeter data reconstruction in LHCb stands apart from classical clustering
algorithms. This distinction arises due to the strong physics and execution time require-
ments.

Focusing on the field of calorimetry in High Energy Physics, the Cellular Automaton
has been a benchmark solution for many years [3] in LHCb. A more recent optimization
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of the latter, an algorithm named Graph Clustering [14] is the current solution for the
ECAL reconstruction in HLT2. It is based in the use of graph data structures to store the
energy deposits from an event, such that the related digits are closely linked in the graph.
This allows for a fast and efficient processing of the overlapping clusters and a flexible
representation of data. Although Graph Clustering clearly outperforms the previously
used method in terms of execution time, it still has a quadratic complexity curve that
grows with the number of energy deposits. This points out the vision of future LHCb
upgrades in which the occupancy of the detector is expected to increase by a factor of 10
[8].

To keep up with such rates, there are two main approaches that can flatten the com-
plexity curve. The first one is to take advantage of parallel architectures such as GPUs
and FPGAs, which requires a non-trivial translation of the algorithms to take advantage
of small local operations that are highly parallelizable. In this direction, some efforts are
currently being made in order to adapt the logic of the Graph Clustering algorithm into
the preliminary ECAL reconstruction algorithm in the HLT1 GPU framework [15].

On the other hand, the second approach to reduce the reconstruction complexity
is through the use of deep learning models. If the ECAL readout data from a collision
would be modeled as an image, it would have 6016 pixels with values from 0 to 10.240
from which the reconstructed clusters energy and positions need to be extracted.

It has long been demonstrated that artificial intelligence is well suited for many dif-
ferent HEP challenges [11,9]. Specifically, deep learning models have proven to solve
many complex issues at very high speeds, only at the cost of increasing the time and
complexity of the training. However, complex models tend to explode in number of pa-
rameters, which end up causing the inference to be slow. There is a current trend in HEP
to make an efficient use of deep learning models by optimizing the networks itself. This
optimization is achieved when the needs of the problem to solve are well understood and
the network is modeled and trained accordingly.

On this same line, there is a proposed solution for the ECAL reconstruction that
uses a sequence of two convolutional neural networks [13]. The main aspect of such
approach is that segmenting the reconstruction process into steps allows to train neural
networks on the rules that solve a general formulation of the problem. Furthermore,
the understanding of the local nature of the problem leads to a simplification of the
data-set, where thousands of training samples are extracted from only 2000 full ECAL
simulations. Results regarding the inference time using simulation samples of LHCb
collisions show a nearly constant behavior towards the number of digits in a collision
compared to a version of the benchmark Cellular Automaton algorithm, as shown in
Figure 1.

3. Limitations and constraints

In the latest years, there has been an increasing interest in machine learning and deep
learning inference engines as a tool for fast deployment of AI models into production.
One of the standards used in HEP is the TMVA tool for performing multivariate analysis
in the ROOT framework [7]. It has long been used in LHCb for offline analysis of large
data samples using mainly boosted decision trees (BDT) and multi layered perceptrons
(MLP). But precisely because this tool is thought to be used in offline analysis, it priori-
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Figure 1. Scatter plot of the mean computational time over the number of digits per collision from LHCb
simulations. Comparing a Python version of the LHCb benchmark Cellular Automaton and the simplified deep
learning implementation [13].

tizes easy usability rather than inference performance. As an example, a fast neural net-
work based algorithm was proposed in 2017 for LHCb [5]. However the use of TMVA
tools was not sufficient to cope with the HLT2 throughput requirements and it required
by-hand modifications of the code to allow auto-vectorization and further optimizations
of the implementation.

Since this is not scalable and hard to maintain, other tools have started to come into
play. Focusing on the model deployment, ONNX is an open format built to represent ma-
chine learning models. It defines the building blocks of ML and DL models as common
operators and creates a common file format that allows to use the AI models in different
frameworks. On the same line, TensorRT is a software development key from NVIDIA
that provides high-performance deep learning inference for CUDA environments. It also
allows to read and use ONNX files.

Taking advantage of the NVIDIA tools for CUDA, recent studies have used Ten-
sorRT to test the inference of two benchmark dense neural networks in the HLT1 GPU
platform in LHCb [12]. The two networks tested are both MLP architectures using 17
input features from the LHCb tracking detectors. Looking at the overall results, the ker-
nel overhead is the main bottleneck for throughput but large batch sizes minimize the
throughput decrease. To give more detail, the first model tested is a dense neural net-
work with two hidden layers. With the order of 1000 parameters, the HLT1 reconstruc-
tion sequence shows almost no throughput reduction using one instance of the network.
However, compared to the second, larger approach, with six hidden layers of up to 128
neurons each, the throughput shows a decrease of almost 5%.

We can extrapolate those numbers to the simplified deep learning approach for the
ECAL reconstruction. Recalling the network architectures of the approach, it consists of
a first convolutional neural network with 1272 parameters for each of the three ECAL
regions. The input data is represented as images of sizes 64× 52, 64× 40 and 48× 36
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pixels for the Outer, Middle and Inner regions respectively. As a second sequential step,
the data from the first networks is processed in windows of 7× 7 cells to isolate the
relevant information for a single cluster. Then, this window is convoluted with a MLP
kernel of size 5×5, which has 108,993 parameters. Further details on the network chain
can be found in the original paper [13]. Overall, the overhead of the data processing and
the MLP network inference can be approximated to have the same cost as the six hidden
layer model tested in HLT1. To have a broad estimation of the whole impact of the ECAL
reconstruction approach, we need to add the inference cost of the first CNN. Although
it is negligible for one instance, the approach has one instance per region, which has an
impact of almost 6% to the total throughput. Therefore, with a broad estimation, we can
say that the DL approach for ECAL reconstruction would imply a throughput reduction
of 11% of the whole HLT1 sequence when executed inside the GPU framework of LHCb.

This high inference impact is further enhanced when compared with the cost of the
current calorimeter reconstruction in HLT1, which uses a set of CUDA algorithms to
find the cluster seeds and build 3×3 clusters around them. This simplified algorithm that
does not take into account the overlap between clusters represents a 4% of the total HLT1
reconstruction throughput.

4. Discussion and conclusions

All the algorithms currently implemented for HLT1 and HLT2 have a strong dependency
in the number of digits in a collision. Even tho the parallelization of CUDA algorithms
can help to mitigate this effect, the future prospects for the LHC experiments include a
major upgrade in which the objective is to increase the number of particles generated in
every collision by a factor of 10. In such a scenario, a deep learning model with nearly
constant inference time, regardless of data complexity, becomes highly valuable.

However, although the many application of AI models in HEP have demonstrated to
be very effective in data analysis and reconstruction, the inference of such models to the
real experiments frameworks is a clear bottleneck.

Through the study of the LHCb calorimeter reconstruction, we have seen that the
standard HEP tools for the inference of models are not scalable and require an expert
knowledge in advanced code optimization which sets a huge barrier for deploying or
testing the models.

On the other hand, newer tools are starting to be mature enough to allow a gen-
eralized format for inferencing AI models that provide fast inferences in an optimized
environment. However, the ECAL reconstruction process requires a set of complex op-
erations that are non trivial for an AI application. Even with an optimized and simpli-
fied network architecture, the resulting algorithm is expected to have a non-negligible
decreasing effect on the throughput even with parallel architectures.

The first outcome we want to raise is that deep learning models will only be suited
for HEP trigger-like applications if they are small, simplified and well optimized. This
can only be achieved when the insights of the problem are well understood and a network
is modeled according to them, instead of expecting a model to learn the general rules of
the problem by itself.

As a second message, it is key for the future development of deep learning appli-
cations in HEP to push the development of fast and optimized tools for inferencing AI
models inside HEP frameworks either with CPUs or GPUs.
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