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Abstract. Multiple sclerosis is a chronic autoimmune disease that affects the
central nervous systems. The detection of new lesions through conventional
magnetic resonance imaging is particularly important in the management of people
with multiple sclerosis. The advancements in machine learning technology in
recent years have significantly transformed the analysis of medical images for
multiple sclerosis, particularly in identifying and segmenting lesions., improving
the accuracy and efficiency of this process. In this context, the objective of this
work is to develop a system for the detection of new lesions in people with
multiple sclerosis using consecutive magnetic resonance scans. The proposed
system uses only pre-processed FLAIR images to train a nnU-Net, a type of deep
learning architecture that has been proven very successful for image segmentation
tasks. The resulting model is able to generate masks that highlight changes
between baseline and follow-up images, identifying new lesions that may have
appeared in the meantime. The model achieved an average Dice score coefficient
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of 0.58 on the evaluation set. Overall, this work demonstrates the potential of
machine learning tools for improving the detection and monitoring of multiple
sclerosis lesions in clinical practice, particularly in the context of longitudinal
studies.
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1. Introduction

Multiple sclerosis (MS) is a complex neurological disease that affects millions
of people worldwide. Assessing the presence of new MS lesions and evidence of new
disease activity is crucial for evaluating the efficiency of disease-modifying therapies
[1,2]. Conventional magnetic resonance imaging (MRI) serves as an essential hallmark
for MS progression, and an indispensable tool for diagnosing, monitoring disease
activity, and gauging treatment response [3,4]. Despite its importance, MRI techniques
have several limitations, including low specificity and sensitivity for assessing focal
tissue damage, noise, and the presence of artifacts [5]. Despite this, longitudinal lesion
segmentation is a research field with increasing interest. Recent advances in machine
learning and the organization of several challenges in the field over the last decade,
have eased the appearance of deep learning based solutions for detecting new lesions
[6].

Although the task of detecting new lesions may seem straightforward,
assessing the results can involve different considerations. Unlike other segmentation
tasks like tissue segmentation or parcellation, the areas to detect new lesions can vary
in size, with the majority being small or very small, and can appear in different
locations of the brain tissue, predominantly in the white matter but also in the gray
matter. Detecting the absence of new lesions is crucial from both a methodological and
clinical perspective. While the appearance of new lesions is the primary sign of disease
progression in MS, a stable MS patient may not have any new lesions. Therefore, if an
algorithm correctly identifies the absence of new lesions in people with MS who have
not developed new lesions, it should be considered a good segmentation, even if most
segmentation metrics evaluate it as 0. As a result, the effectiveness of a new lesion
segmentation technique should be evaluated based on its ability to detect new lesions
and its ability to prevent over-segmentation in the absence of new lesions.

Manual delineation, while considered the gold standard, provides higher
reliability in detecting enlarging lesions and new lesions in regions of accumulated
damage, such as periventricular areas. However, it is time-consuming and subject to
inter-observer variability, which can significantly impact the accuracy of the lesion
assessment [7,8]. In response to these challenges, automatic lesion segmentation has
emerged as a promising alternative, It offers more consistent segmentations,
reproducible results and improved processing speed. The MS research community
would greatly benefit from a common dataset for accurate estimation and comparison
of proposed methods. Publicly available datasets, such as those released by ISBI 2015
[9] and MSSEG-2 challenges, provide a limited but valuable resource [10]. The recent
MSSEG-2 challenge, which focuses solely on new lesions, has been another vital step
for benchmarking the current methods on the field towards the potential adoption of
these methods in clinical practice.

In recent years, techniques for longitudinal MS lesion segmentation have
evolved significantly [6,9,10]. From image subtraction and thresholding to Bayesian
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generative models and deep neural network-based methods, such as convolutional
neural networks (CNN), substantial progress has been made in this field. The nnU-Net
is a powerful and flexible 3D CNN that has demonstrated remarkable performance in
various medical imaging tasks [11]. Its benefits include robustness against data class
imbalance, which is a common issue in MS segmentation, and the ability to adapt to
different datasets with minimal modifications. We hypothesize that the utilization of
nnU-Net will significantly enhance the detection of new MS lesions in longitudinal
MRI studies.

2. Method

In this section we introduce the used dataset, the data preprocessing strategy
and the implemented method for segmenting longitudinal MS lesions.

2.1. Dataset

The dataset used for the training model has been obtained by combining two
different open datasets: MSSEG-2 (https://portal.fli-iam.irisa.fr/msseg-2/data/) and
Open MS Data (https://github.com/muschellij2/open_ms_data). Respectively, each of
the datasets contributes with 40 and 20 distinct patients, each with their baseline and
follow-up FLAIR images (ranging from 80 to 1000 days apart between scans), as well
as the mask for new lesions. Therefore, there will be a total of 60 patients. It is
important to note that 11 of them belonging to the MSSEG-2 dataset did not have any
new lesions, so their mask for new lesions is blank. This aspect should be considered
when elaborating the model of training with this dataset.

2.2. Preprocessing

MRIs are taken under different acquisition protocols, and although efforts are
made to replicate the same parameters of the initial acquisition (baseline) when
obtaining follow-up images, it is necessary to standardize certain characteristics among
the different images of the dataset involved. The following preprocessing steps ensure
that the model being trained is based on more homogeneous MRI characteristics across
timepoints, resulting in a more reliable final model: orientation to MNI, skull stripping
and intensity inhomogeneity correction (see Figure 1).
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Figure 1. Example of the MSSEG-2 (left) and the Open MS Data (right) images.

A consistent orientation has been established for all images in the final
dataset. Specifically, the Montreal Neurological Institute (MNI) coordinate system
("Neurological") is used. This registration and reorientation phase entails aligning the
FLAIR images with the MNI template. This procedure uses a 6-degree-of-freedom (6
DOF) rigid registration transformation to ensure consistency across the dataset and
improve the learning process. After orienting the image, we proceeded with the skull
removal from the FLAIR images. This was carried out using the HD-BET algorithm
[12]. The result is crucial for accurate subsequent analyses and model training avoiding
the appearance of spurious results outside the white matter and gray matter brain
tissues. Finally, we correct the image intensities for inhomogeneities due to coil
uniformities, field strength or other biases [13]. For bias inhomogeneity correction, we
utilized the N4 algorithm [14] to achieve a more uniform intensity of the whole FLAIR
images of the dataset. Before starting the training process, images were cropped to
include only the brain area. A z-score intensity normalization with mean 0 and standard
deviation 1 was applied to each subject to regularize the intensity values.

2.3. nnU-Net architecture

The nnU-Net (no-new-Net) is a framework proposed by Insesee et al. [11] that
proposes an architecture based on the U-Net (see Figure 2), which is able to adapt to
the proposed dataset since up to now each case of use forced to specialize the
architecture of the network. Baseline and a follow-up FLAIR scan were used as model
inputs. The model output is a binary 3D prediction mask of new lesions in the
follow-up scan. The nnU-Net architecture includes a contracting and an expanding
path. Each resolution level in the contracting path contains two convolutional layers
with a 3 × 3 × 3 convolution kernel, followed by instance normalization and a leaky
ReLU (rectified linear unit) activation, similar to ReLU activations used in the original
architecture but with negative slope with value 0.01 which allows a more stable
network training and improved model performance.
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At each level of the contracting and expanding paths a combination of
convolutional layer, stride and activations were used (see Figure 2). By incorporating
skip connections, features extracted from the contracting path are concatenated with
features obtained from the expanding path at each respective resolution level.

Figure 2. Schema of our nnU-Net architecture.

2.4. Hyperparameters

We used the Adam optimizer with an initial learning rate of 0.01, defining an
epoch as iteration over 250 training batches, if the value of training and validation
losses is not reduced by at least 0.005 on passing 30 epochs, the value of the learning
rate is reduced by a factor of 5. On the other hand, no early stopping criterion was used,
but a maximum threshold of 300 epochs was established, carrying out a checkpoint to
be able to resume training in case of equipment failure every 25 epochs.

2.5. Training

The Dice score was selected as the evaluation metric for training progress.
Training was carried out using a 5-fold cross-validation technique, which offers a
dependable assessment of the model's capabilities while maintaining manageable
computational requirements. In this process, for each fold, a random selection of 80%
(48) was allocated for model training, and the remaining 20% (12) were designated for
validation. Furthermore, an inherent feature of nnU-Net's default architecture is its use
of data augmentation to enrich our training data and enhance the model's ability to
generalize.
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2.6. Evaluation metrics

Two classical evaluation metrics have been used for assessing the goodness of
the proposed solution: Dice score coefficient and recall. Mean and standard deviation
have been computed for each metric and dataset. If no lesions were present in the
ground truth, and no lesions are detected by the method, it has been assumed the best
result, for example 1 in Dice score coefficient instead of 0.

3. Results

The nnU-Net model achieved a good performance in terms of Dice score
coefficient in the training process, with the measure ranging between 0.3 and 0.6. The
average value for the final model of each k-fold is presented in Table 1.

Table 1. Average Dice score coefficients obtained for the final model of each k-fold.

k-fold Dice score
0 0.48
1 0.37
2
3
4

0.52
0.50
0.49

The testing set consisted of 12 MR FLAIR images, out of which 3 did not
have new lesions. The evaluation metrics obtained for the test set are shown in Table 2.

Table 2. Individual results, mean and standard deviation of the evaluation metrics for the test set.

Image Dice score Recall
MS_00001 0.37 0.75
MS_00006 1.00 1.00
MS_00007
MS_00010
MS_00014
MS_00017
MS_00019
MS_00021
MS_00028
MS_00042
MS_00047
MS_00056

All

0.00
0.81
0.00
1.00
0.50
0.71
0.57
0.65
0.38
1.00

0.58±0.35

0.00
0.73
0.00
1.00
0.39
0.63
0.46
0.74
0.28
1.00

0.62±0.36
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Figure 3. The mask produced by the model is shown in green, while the expert-segmented area is
represented in red. The figure displays three distinct examples of people withMS, with Dice score

coefficients of 0.37, 0.50, and 0.81, respectively.

4. Discussion

The primary aim of this work was to develop a model that can accurately
detect new MS lesions in MRI scans taken at different timepoints. By comparing our
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results with those obtained in MSSEG-2 Challenge, we observed that the model
generated achieved an average Dice score coefficient of 0.58, which reflected a good
performance compared to the majority of models proposed in MSSEG-2. Our work
presents a self-customisation of a publicly available nnU-Net architecture [11]. The
presented method uses the same architecture as Basaran et al. [15] but there are
important implementation differences that need to be highlighted. Unlike them, we
changed the preprocessing steps order by first registering to the MNI space, followed
by skull stripping, and finally applying bias field correction [15]. The reason for first
performing registration followed by skull stripping, is because we wanted to take
advantage of the skull as an immutable part of the head for getting an accurate
alignment between the two timepoints. We also normalize the intensity of the images
using a z-score to minimize differences between images coming from different
scanners. Moreover, during the training process, we used Dice score coefficient only
for assessing the goodness of the results and the hyperparameter optimization follows
two different strategies, Adam vs Nesterov. We also used different model
hyperparameters to adapt the training to our more limited hardware.

While the model exhibited proficiency in identifying new lesions, it faced
difficulties in accurately identifying the smallest lesions as exemplified by the
MS_00001 case in Figure 3. This case features small new lesions and a suboptimal
Dice score coefficient of 0.37 in comparison to other instances. The training process
emphasized optimizing the Dice score coefficient value, which led to better detection
of larger lesions at the expense of smaller ones. This is because larger lesions have a
more substantial impact on this similarity coefficient. Despite this drawback, the
selected model exhibited a relatively high success rate in identifying larger lesions, as
demonstrated in Figure 3. In the accuracy values of Table 2 reveal solid performance,
with a 62% correct identification rate for voxels with lesions. While the model's
performance may seem moderate, it's crucial to remember that it acts as a diagnostic
support tool, requiring expert validation before making final decisions. By effectively
directing physicians to potential new lesions, the model substantially reduces the time
needed to analyze the entire brain volume.

This work has certain limitations that must be acknowledged. Firstly, the
method was developed using a reduced dataset and will require further testing with real
clinical data and larger datasets to assess its overall effectiveness more thoroughly. We
used the Dice score coefficient alone for assessing the training progress, it would be
good to explore other metrics.

5. Conclusions

This work presents a nnU-Net model capable of detecting new lesions
between MRIs performed on the same subject followed up for MS, where both images
were taken months or years apart. The presented solution achieves good performance
using publicly available data. Future work should explore the performance of the
proposed method using a larger dataset from a clinical setting where scans can be
obtained from different scanner manufacturers and with variable acquisition
parameters.
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Code availability

The code derived from this publication is publicly available at:
https://github.com/ADaS-Lab/nnUnet-LongMS/. In order to ease the accessibility of
nnU-Net, we have developed a Docker container that simplifies the execution of the
models on new data. This container includes all the required dependencies, libraries,
and scripts for running the pre-trained models. By using this container, users can easily
deploy the models using their own data without having to worry about installing
additional software or configuring complex environments.

Data availability

The data described in this manuscript are in the public domain at MSSEG2
(https://portal.fli-iam.irisa.fr/msseg-2/data/) and Open MS Data
(https://github.com/muschellij2/open_ms_data) websites.
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