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Abstract. Although the negative consequences of noise during induction have been
widely studied, previous work often lacks the use of validated data to measure its
impact. We propose a framework based on Bayesian Networks for modeling class
noise and generating synthetic data sets where the kind and amount of class noise
are under control. The benefits of the proposed approach are illustrated evaluating
the filtering of noise completely at random in class labels when inducing decision
trees. Unexpectedly, this kind of noise showed a low effect on accuracy and a low
occurrence on real datasets. The framework and the methodology developed here
seem promising to study other kinds of noise in class labels.
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1. Introduction

In supervised learning, noise refers to anything that obscures the relationship between
attributes and class labels [1]. However, previous studies often use not validated data to
measure its impact. A common approach while studying class corruption is to assume
that datasets from repositories are clean, which may produced biased results [2]. We
propose a Bayesian Network (BN) framework to model domains affected by class noise
and provide a controlled experimental setting. We illustrate its benefits with a case study
evaluating the effect of filtering completely random noise when inducing decision trees.

2. Modeling Class Noise

Frénay and Verleysen [3] pioneered the probabilistic approach to model class noise.
Their modeling represents complex relationships in noisy scenarios using a domain dis-
tribution and a noise mechanism. However, it requires a complete description, which
can cause problems when the parameters representing the full joint distribution of the
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domain grow exponentially. We propose a framework that extends their approach using
BNs to reduce the number of parameters and generate experimental data with sampling
algorithms. Three models arise considering certain statistical relationships, as shown in
Figure 1.

Figure 1. Models of class noise where Xi denotes the attributes, Y denotes the true class, E is a binary variable
symbolizing the probability of a labeling error, and Ỹ denotes the observed class. (1) Noisy Completely at
Random: errors are independent of other domain variables. (2) Noisy at Random: errors depends on the true
class. (3) Noisy Not at Random: errors depends on a set of attributes and the true class.

Building the domain distribution is not trivial and requires prior knowledge. We rec-
ommend using reliable sources such as curated data or a domain expert to avoid spurious
noise. Other suggestions for generating reliable data are: 1) defining the noise level to
be less than 50% and, 2) in case the model was learned from curated data, restricting the
generation of synthetic examples to those appearing in the original dataset.

3. Case Study

We illustrate the benefits of adopting our approach with a case study that evaluates the
efficiency of a new filter for class noise completely random. Class noise poses a challenge
to estimate the reliability of class labels and it has the most detrimental effect on learning
[4]. The Inconsistency Deletion Filter (IDF) identifies sets of examples with the same
attribute values but different class and keeps only the ones belonging to the majority
class, which are arguably the most likely to be clean. The case study has two parts:

Figure 2. NCAR model for the QB domain.

1. Evaluating IDF on synthetic data. We define an NCAR model using an ap-
parently clean domain, the Qualitative Bankruptcy (QB) dataset [5], see Figure 2. The
model is fed with noise levels from 10% to 40% with increments of 10%. For each level,
four datasets are generated with the following number of examples: 500, 2000, 5000, and
10000. A 10-fold cross-validation process is performed to obtain pairs of train and test
sets. To evaluate the efficiency of IDF, three metrics are considered: the ratio of clean
examples removed (ER1), the ratio of noisy examples not removed (ER2), and the per-
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centage of conserved examples (CE) after filtering. ER1 and ER2 are known as errors in
data cleansing [6]. To measure the impact on learning, decision trees are induced using
J48 (with default parameters) [7] and the area under the ROC curve (AUC) is measured
over clean and noisy test sets. Clean test sets are obtained by P(E = True) = 0, while
noisy test sets are produced by a cross-validation process over noisy data.

2. Evaluating IDF on UCI data. We adopt seven UCI datasets, see Table 1. For con-
tinuous data, five methods from the discretization R package [8] were adopted: AMECA,
CACC, CAIM, CHI2, and MDLP. Using various discretizers avoids their individual lim-
itations for certain types of data or models and allows the description of their average
performance. The methodology previously introduced is modified since the noisy exam-
ples in UCI datasets are unknown: 1) we use one type of test set obtained by a 10-folds
cross-validation, which might be noisy; 2) ER1 and ER2 are not measured.

Table 1. Characteristics of the adopted datasets.

Dataset Solar Flare Nursery Balance Scale Breast Cancer Diabetes Ecoli Semgent
Type Disc. Disc. Disc. Cont. Cont. Cont. Cont.
Attributes 13 9 4 9 9 8 20
Class labels 5 5 3 2 2 8 7
Examples 323 12960 625 683 768 336 2310

4. Results and Discussion

Table 2 summarizes the efficiency of IDF on the synthetic datasets generated by our
framework. Values of ER1 and ER2 closer to zero denote the best outcome, most of the
clean data is conserved while noise is removed. Our filter seems to be quite effective in
synthetic datasets with equal or less than 20% of noise. Increasing the noise level reduces
its efficiency. However, this effect is mitigated in larger datasets. The remaining noisy
examples in the filtered training set suggest that inconsistencies are a subset of noisy
examples, i.e., there are noisy examples that do not produce inconsistent sets. Regarding
the percentage of remaining examples, CE suggest that the proportion of deleted exam-
ples is closer to the noise level of a dataset, which is consistent with the low values of
errors in data cleansing.

Table 2. Mean values of ER1, ER2 and CE. The size of the training sets represent 90% of the generated data.

Noise 10% 20% 30% 40%
Size ER1 ER2 CE ER1 ER2 CE ER1 ER2 CE ER1 ER2 CE
450 1.6% 1.3% 89.9% 2.5% 2.2% 79.1% 7.0% 6.2% 66.6% 12.7% 12.3% 59.8%

1800 0.1% 0.0% 89.4% 0.4% 0.1% 79.3% 1.3% 0.9% 69.6% 6.8% 7.6% 60.2%
4500 0.0% 0.0% 89.6% 0.1% 0.0% 79.9% 1.1% 1.0% 70.1% 6.7% 5.6% 58.0%
9000 0.0% 0.0% 89.8% 0.0% 0.0% 79.9% 0.1% 0.0% 69.6% 1.6% 1.5% 59.4%

Accuracy results are not presented because of space limitations. However, in most
cases, IDF preserves the levels of AUC. Experiments were performed on clean and noisy
test sets. When facing clean test sets the induced decision trees seem robust to noise
(AUCs between 1.0 and 0.97), perhaps because of the low complexity of the QB do-
main. Noisy tests sets exhibits a linear degradation, e.g., AUCs near 0.9 for 10% noise,
decreasing to 0.6 in tests with 40% noise.
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Table 3 shows the results over UCI datasets. Even though the kind and amount of
noise affecting these datasets are unknown, it is possible to make assumptions about their
noise type. Balance Scale and Nursery do not seem to include NCAR given the lack of
data reductions. However, Balance Scale could probably have other types of noise that
affect the performance of induced decision trees. Poor reductions and high AUCs on
Breast Cancer and Segment suggest a low percentage of noise, possibly NCAR. Finally,
Solar Flare, Diabetes, and Ecoli seem to include NCAR since our filter reduces up to
15% of data. Indeed, these observations imply NCAR noise is not frequent in UCI data.

Table 3. Mean values of conserved examples and AUC on UCI datasets. For continuous sets, results are
calculated as an average of all discretized versions. J48 stands for the case where no filter was applied.

CE AUC CE AUC
Data IDF J48 IDF Data IDF J48 IDF
Balance Scale 100.0% 68.5 68.5 Breast Cancer 98.8% 96.5 96.4
Solar Flare 85.9% 71.9 71.5 Diabetes 84.4% 75.0 70.8
Nursery 100.0% 99.5 99.5 Ecoli 93.3% 79.4 78.5

Segment 99.8% 93.1 93.1

5. Conclusions and Future Work

Our BN framework allows the compressed description of noisy domains and provides
tools to build a controlled experimental setting. These benefits help to assess the effi-
ciency of thetechniques proposed to cope with noise since the kind and amount of noisy
examples are known. Our case study shows the significant filtering achieved by IDF, al-
though it does not improve the accuracy of decision trees. These observations are rel-
evant because they contradict some results from the literature. First, according to our
experiments, class noise seems not as harmful as suggested when assessed on clean test
sets. Second, filtering synthetic data does not lead to better predictive models, perhaps
because of the low complexity of the QB domain. The last observation, derived from our
experiments on real datasets, is that completely random class noise does not seem to be
usual in the UCI repository. These observations would not be possible without using our
framework. Future work includes investigating other types of class noise (NAR1, NAR2,
and NNAR) and exploring the application of IDF to inductive algorithms that do not use
noise-handling methods, e.g., naive Bayes.
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