
Ensembling Uncertainty Measures
to Improve Safety of Black-Box Classifiers

Tommaso Zoppia;*, Andrea Ceccarellia and Andrea Bondavallia

aDepartment of Mathematics and Informatics, University of Florence - Viale Morgagni 65, 50134 Florence, Italy
ORCiD ID: Tommaso Zoppi https://orcid.org/0000-0001-9820-6047,

Andrea Ceccarelli https://orcid.org/0000-0002-2291-2428,
Andrea Bondavalli https://orcid.org/0000-0001-7366-6530

Abstract. Machine Learning (ML) algorithms that perform classifi-
cation may predict the wrong class, experiencing misclassifications.
It is well-known that misclassifications may have cascading effects
on the encompassing system, possibly resulting in critical failures.
This paper proposes SPROUT, a Safety wraPper thROugh ensembles
of UncertainTy measures, which suspects misclassifications by com-
puting uncertainty measures on the inputs and outputs of a black-box
classifier. If a misclassification is detected, SPROUT blocks the prop-
agation of the output of the classifier to the encompassing system.
The resulting impact on safety is that SPROUT transforms erratic
outputs (misclassifications) into data omission failures, which can be
easily managed at the system level. SPROUT has a broad range of ap-
plications as it fits binary and multi-class classification, comprising
image and tabular datasets. We experimentally show that SPROUT
always identifies a huge fraction of the misclassifications of super-
vised classifiers, and it is able to detect all misclassifications in spe-
cific cases. SPROUT implementation contains pre-trained wrappers,
it is publicly available and ready to be deployed with minimal effort.

1 Introduction

A typical approach to guarantee safety [40] is to equip a functional
component with a detector [30], [33], [36], [37] so to trigger a fail-
safe or fail-stop behavior whenever the correct functioning is not
guaranteed. At the system level, it is often desirable that safety-
critical functions would either i) deliver a correct result or ii) omit
outputs i.e., the function should have fail-omission failures only. This
makes it easy for the system to timely detect the absence of outputs
and react accordingly. Through years, safety monitors or safety wrap-
pers have been applied to different functions with beneficial effects
on the non-functional (either safety or security [13], [17]) behavior of
the component and the encompassing systems. As a result, method-
ologies, techniques, and industrial applications of safety monitors
were largely applied to different functional components and became
solid literature with poor research-wise interest.

However, the last twenty years saw a growing interest in develop-
ing functional components that (partially) rely on Machine Learn-
ing (ML) algorithms that perform classification (classifiers in the
paper). Classifiers can model one or more expected behaviors of a
system or component and detect deviations that may be due to the

∗ Corresponding Author. Email: tommaso.zoppi@unifi.it.

occurrence of faults or attacks, and perform error detection, intru-
sion detection, failure prediction, or out-of-distribution detection [4],
[19], [34], to name a few. Straightforwardly, academia, industry, and
also National governments hugely invested in methodologies, mech-
anisms, and tools to embed classifiers into ICT systems, including
safety-critical ones. However, classifiers may predict a wrong class
for a given data point, which is typically called a misclassification.
This is a well-known limitation to the adoption of classifiers to op-
erate safety-critical functions, requiring countermeasures that avoid
or mitigate the potential cascading effects of misclassifications to the
encompassing system. A fail-omission classifier would either pro-
duce trusted outputs or omit them [30]. Clearly, this approach is dif-
ferent from building a classifier that never outputs misclassifications,
which is unrealistic to assess at the state of the art due to the dimen-
sion of the input space and the unpredictable behavior with inputs
close to the decision boundaries [34].

This paper uses uncertainty measures that quantify the confidence
in the classification to craft a safety wrapper for black-box classifiers.
Uncertainty measures [2], [10], [12], [35] analyze inputs and/or pre-
dictions of the classifier and provide a quantitative confidence evalu-
ation. Their goal is to quantify the uncertainty of the classifier’s pre-
dictions such that there is significantly different uncertainty between
i) the predictions that turn out to be correct, and ii) those that turn
out to be misclassifications. In case of high uncertainty, the wrap-
per should omit the output. We convey the observations above to de-
sign, implement and evaluate a Safety wraPper thROugh ensembles
of UncertainTy measures (SPROUT). SPROUT wraps a classifier,
computes different uncertainty measures, and produces a binary con-
fidence score to suspect misclassifications and decide whether the
prediction can be safely propagated to the encompassing system, or
if it should be omitted. It can be widely applied because the wrapped
classifier is seen as a black-box: internal details do not need to be
disclosed.

More in detail, this paper summarizes techniques to compute the
uncertainty in the predictions of classifiers, and considers a total of
9 uncertainty measures that can be instantiated with different param-
eters’ values depending on the needs of the user. These allow to in-
troduce the novel contributions of the paper, which we summarize in
three items:

• discuss the application of safety wrappers (or safety monitors) to
complement classifiers, converting misclassifications into omis-
sions, and the implications it has in the overall classification pro-

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230635

3156

cess and for the encompassing system;
• describe our Safety wraPper thROugh ensembles of UncertainTy

measures (SPROUT) for black-box classifiers, which builds upon
the discussion above. SPROUT is easy to use, adapts to any clas-
sifier, is publicly available at [5] and available as PIP package;

• show how SPROUT is capable of detecting a huge fraction of the
misclassifications of supervised classifiers, even omitting all mis-
classifications in specific cases.

The paper is organized as follows. Section 2 reviews safety wrap-
pers and the impact they have on failure modes of critical systems.
Section 3 describes uncertainty measures, allowing Section 4 to de-
sign SPROUT. Section 5 shows how to implement and exercise
SPROUT. Section 6 discusses the preliminary assessment, letting
Section 7 list threats to validity, and Section 8 concludes the paper.

2 Safety Wrappers for Machine Learning

2.1 On Misclassifications of Machine Learners

Decades of research and practice on ML provided us with plenty
of classifiers that are meant to always output a prediction. Super-
vised classifiers [4], [15], [20], and particularly Deep Learners [8],
[9] were proven to achieve excellent classification performance in
many domains: they learn their model using data points collected i)
during normal operation of the system, and ii) when errors, attacks
or failures activate; those data points are then labelled accordingly.

More formally, a classifier clf first devises a mathematical model
from a training dataset [4], which contains a given amount of data
points. Each data point dp contains a set of f feature values, where
each feature value is an image pixel / channel or a floating point
number dpj with 0 ≤ j < f and describes a specific input of the
classification problem. Once the model is learned, it can be used to
predict the label dp_label of a new data point, different from those in
the training dataset. The classification performance is usually com-
puted by applying clf to data points in a test dataset and computing
metrics such as accuracy [31], i.e., the percentage of correct predic-
tions of a classifier clf over all predictions. Noticeably, 1 - accuracy
quantifies the misclassification probability by difference.

2.2 Failure Modes of Classifiers and Safety Wrappers

Classifiers are typically meant to provide a best-effort prediction of
the class of input data according to the information they have, i.e., the
input data and its features. As a result, classifiers sometimes “bet” on
a prediction they are unsure of: in these cases, their accuracy may
drop significantly. It turns out evident that this best-effort behavior
does not pair well with safety-critical systems, which require guar-
antees of component and system-level behaviors.

It would be beneficial to change the failure semantics of classifiers
from uncontrolled content failures (i.e., misclassifications) to omis-
sion failures. Fail-controlled components [40] often rely on safety

clf behavior →
Correct Classification Mislassification Sum

SW(clf) behavior ↓
Not Omitted αw εw 1− φ

Omitted φc φm φ

Sum α ε 1

Table 1: Probabilities αw, εw, φc, φm for outputs of SW(clf) and
compound probabilities.

wrappers or monitors [13], [17], [30]. Safety wrappers are intended
to complement an existing critical component or task by continu-
ously checking invariants, or processing additional data to detect
dangerous behaviors and block the erroneous output of the compo-
nent before it is propagated through the system. Safety wrappers for
classifiers should perform runtime monitoring and aim at detecting
the misclassifications of the classifier itself. Regardless of how it
is implemented, a safety wrapper SW(clf) transforms a classifier clf
which has 0 ≤ α ≤ 1 accuracy and a misclassification probability
0 ≤ ε = (1− α) ≤ 1, into a component that has:

• accuracy αw ≤ α;
• omission probability 0 ≤ φ ≤ 1. The SW(clf) may omit mis-

classifications (φm, desirable and to be maximized), or correct
predictions (φc, to be minimized). Overall, φ = φm + φc, and
αw = α− φc;

• residual misclassification probability εw, 0 ≤ εw ≤ ε ≤ 1; over-
all, εw = ε− φm.

All those probabilities are sketched in Table 2. Ideally, SW(clf) has
almost the same accuracy as clf (i.e., αw ≈ α, or φc ≈ 0), a sub-
stantially lower residual misclassification probability, 0 ≈ εw << ε,
and an omission probability close to ε thus φ ≈ ε. A SW(clf) will
never have better accuracy than clf ; however, it will transform most
of the misclassifications, which are hardly predictable, detectable and
manageable, into omissions.

2.3 Related Work and Motivation

Recently, there have been few studies that specifically aim at build-
ing safety wrappers for classifiers [3], [33], [36], [37]. The paper [3]
ran a k-nearest neighbor classifier in parallel to a Deep Neural Net-
work (DNN) to detect misclassifications. The paper [33] conducted
an active monitoring of the behavior and the operational context of
the data-driven system based on distance measures of the Empiri-
cal Cumulative Distribution Function, and used them as triggers for
the safety wrapper. The work [36] used probabilistic neural networks
to model predictive distributions and thus estimate misclassifications
thanks to adversarial training. This technique performed well for im-
age classifiers. Lastly, [37] proposed a lightweight monitoring ar-
chitecture to enhance the model robustness against different unsafe
inputs, especially those due to adversarial attacks to neural networks.
The logic to detect misclassifications revolved around an analysis of
activation patterns of neurons in the layers of a specific neural net-
work, which authors showed to be distinguishable in case of an ad-
versarial input. It is worth mentioning that existing safety wrappers
above are classifier-specific (i.e., [3], [10], [37]), often rely on ex-
tensive knowledge of the classifier (e.g., [37] requires the structure
of the DNN to be disclosed), require the implementation of complex
and multi-step processes [33], or apply only to specific types of input
data (e.g., [12], [36] are specifically crafted for image classifiers).
Instead, we seek for an approach which i) applies to any classifier,
which is seen as a black-box; ii) is easy to automatize, adopt and
exercise to novel datasets or systems; iii) applies to binary and multi-
class classification problems, and iv) does not have any constraint on
the input data and as such works with tabular and image datasets.

3 Uncertainty Measures for Classifiers

This section summarizes uncertainty measures that were previously
applied to compute the confidence in the prediction of classifiers.

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers 3157

UM #
Name of the

Uncertainty Measure
Needs

Offline Setup
Uses

Input Data
Uses Classifier

Output
Uses

Classifier
Parameters of the Measure

UM1 Confidence Intervals w: confidence level
UM2 Maximum Likelihood -
UM3 Entropy of Probabilities -
UM4 Bayesian Uncertainty -
UM5 Combined Uncertainty chk_c: classifier to check agreement with
UM6 MultiCombined Uncertainty CC: classifiers to check agreement with
UM7 Feature Bagging bagC: classifier to build bagger set
UM8 Neighbourhood Agreement k: number of relevant neighbors
UM9 Reconstruction Loss layers: structure of the AutoEncoder

Table 2: Summary of Uncertainty Measures used in this study

3.1 Related Works on Uncertainty Measures and their
Limitations

Research usually aims at minimizing the probability of misclassifi-
cations, thus maximizing accuracy. However, trusting each individ-
ual prediction of a classifier, to the extent that the prediction can be
propagated towards the encompassing system and used in a (safety-
)critical task, is a different problem that is still open [12]. Researchers
and practitioners are actively investigating ways to understand if clas-
sifiers’ predictions are correct, or if they are misclassifications. The
most relevant research results on uncertainty measures are very re-
cent (the last 5 years), which demonstrates the recent emergence and
timeliness of the topic. Uncertainty is often [38] referred to as a com-
bination of aleatoric and epistemic uncertainty. The former refers to
the notion of randomness, that is, the variability in the outcome of an
experiment which is due to inherently random effects e.g., coin-flip.
The latter describes uncertainty due to a lack of knowledge of any
underlying random phenomenon. In other words, epistemic uncer-
tainty refers to the reducible part of the (total) uncertainty, whereas
aleatoric uncertainty refers to the irreducible part [38]. Uncertainty
measures quantify the epistemic uncertainty, and can hardly provide
useful information to estimate aleatoric uncertainty.

Uncertainty can be statistically estimated through confidence in-
tervals [1] or using the Bayes theorem [2]. Works as [11] estimate un-
certainty by using ensembles of neural networks: scores from the en-
sembles are combined in a unified measure that describes the agree-
ment of predictions and quantifies uncertainty. In [10], [18], authors
processed softmax probabilities of neural networks to identify mis-
classified data points. A new proposal came from [12] and [3], where
authors paired a k-Nearest Neighbor classifier with a neural network
to compute uncertainty. The work [34] computed the cross-entropy
on the softmax probabilities of a neural network, and used it to detect
out-of-distribution input data that likely misclassified.

Uncertainty measures above compute either classifier-specific or
classifier-independent quantities. However, classifier-specific uncer-
tainty may not always be a meaningful indicator of misclassifica-
tions since “neural networks which yield a piecewise linear classifier
function [. . .] produce almost always high confidence predictions far
away from the training data” [32].

3.2 Quantitative Measures to Compute Uncertainty

This work focuses on uncertainty measures that are not classifier-
specific, but instead have a generic formulation that pairs well with
any classifier, which is seen as a black-box. This allows avoiding
classifier-specific uncertainty, which may be misleading [32]. Table

1 summarizes a total of 9 uncertainty measures UM1 to UM9, which
process at least one of: i) input data dp, ii) class prediction dp_prob.
Importantly, all measures but UM2, UM3 and UM8 require training
data for set-up, and all measures but UM2, UM3, UM4 are paramet-
ric, meaning that different values of parameters may be employed to
craft different instances of the same measure.

UM1: Confidence Interval A confidence interval defines the sta-
tistical distribution underlying the value of a feature and thus pro-
vides a range, constrained to the parameter 0 ≤ w ≤ 1, in which
feature values are expected to fall. The confidence level w represents
the long-run proportion of feature values (at the given confidence
level) that theoretically contain the true value of the feature [41].
UM1 measures how many feature values falls inside their confidence
interval. The higher the UM1, the more feature values of dp are out-
side their confidence interval, which indicates high uncertainty in the
prediction.

UM2: Maximum Likelihood Given dp_prob produced by a clas-
sifier for a given dp, we identify UM2 as the maximum probability
of dp_prob. The higher the UM2, the more uncertain the output of
the classifier [18].

UM3: Entropy of Probabilities We retrieve the dp_prob pro-
duced by a classifier for a given dp and we compute UM3 using
db_prob entropy [10]. The higher the UM3, the more uncertain the
classifier: a dp_prob array with constant values (i.e., all classes have
the same probability) generates the highest UM3 of 1.

UM4: Bayesian Uncertainty This measure uses a Naïve Bayes
process to estimate the probability that the input data point dp be-
longs to each of the possible c classes [2]. Briefly, this process applies
Bayes' theorem assuming strong (i.e., naive) independence between
the features. As such, UM4 may not apply to many classification
problems, especially those dealing with images, where a pixel (fea-
ture) clearly depends on its surrounding pixels.

UM5: Combined Uncertainty UM5 uses a classifier chk_c that
acts as a checker of the main classifier clf. UM5 has positive sign if
clf and chk_c agree on the predicted class, negative otherwise. The
absolute value of UM5 is quantified according to the entropy (UM3)
in the results of chk_c. UM5 ranges from -1 to 1. UM5 = 1 trans-
lates to high confidence that the prediction of clf is correct, UM5 =
-1 means high confidence that the prediction is a misclassification,
letting UM5 = 0 show maximum uncertainty.

UM6: Multi-Combined Uncertainty UM6 computes uncertainty
relying on more than one checker. UM6 uses a set CC of ncc check-
ing classifiers, computes UM5 for each chkc ∈ CC with respect
to clf, and averages the results. The more checking classifiers in CC
agree with clf, the higher the UM6.

UM7: Feature Bagging UM7 exploits the concept of bagging

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers3158

[16], a method for generating multiple versions of a classifier bagC:
each instance of bagC is trained using different subsets of the original
training set, and decides using restricted knowledge. Should classi-
fiers predict different classes for a given data point dp, UM7 would
have low value and predictions should be treated with high uncer-
tainty.

UM8: Neighbor Agreement UM8 finds the k nearest neighbors
[15] of a data point dp. Then, it classifies dp and its k neighbors using
clf : the more neighbors are assigned to the same class predicted for
dp, the higher the UM8. The lower the value, the more disagreement
in classifying neighboring data points to dp. This means that the input
data point dp lies in an unstable region of the input space, which
translates to high uncertainty (low UM8) in the prediction.

UM9 Reconstruction Loss Reconstruction loss quantifies to what
extent the input data point is an unseen, out-of-distribution data point
[19], and as such it is likely to generate misclassifications. We com-
pute UM9 through the reconstruction error of autoencoders, which
are unsupervised neural networks composed of different layers to
learn efficient encodings of the input data. A low UM9 value instead
indicates that dp belongs to an expected distribution and as such is
likely to be correctly classified.

4 SPROUT: a Safety wraPper thROugh ensembles
of UncertainTy measures

This section describes our safety wrapper for black-box classifiers,
binary or multiclass, which works with tabular and image data.

4.1 Safety Wrappers for Black-Box Classifiers

Figure 1a depicts a typical classifier: the input data, and the features
contained therein, are fed into a classifier clf that predicts a class la-
bel dp_label for that specific input data dp. This classification process
always outputs a class label that is then provided to the encompass-
ing system, has α accuracy and ε = 1 − α misclassification proba-
bility. In this scenario, all the misclassifications are content failures.
Figure 1b still feeds the input data to the classifier, which predicts
the class dp_label for an input data dp. However, the adoption of a
safety wrapper SW(clf) provides the input data and the class predic-
tion of the clf to a misclassification detector, which outputs a binary
confidence score [30] (BCS) to decide if the class prediction is de-
tected to be a misclassification. In this case, the wrapper omits the
output (with probability φ); otherwise, the class prediction gets for-
warded to the encompassing system, is correct with probability αw

and is a misclassification with probability εw. There is still a residual
probability εw of content failure, while φm = ε − εw misclassifi-
cations are instead going to be omitted thanks to the safety wrapper.
Noticeably, insights of clf do not need to be disclosed for detecting
misclassifications: as a result, clf is treated as a black-box classifier.

The existence of a function to generate a dp_label and provide
the output probabilities of the classifier is the only assumption we
require for wrapping any classifier in such a SW(clf) wrapper. Note
that commonly used frameworks for machine learning (to name a
few: scikit-learn, xgboost, pyod, tensorflow, pytorch), expose such
interfaces; therefore SW(clf) is virtually applicable to any classifier
without requiring compliance with restrictive assumptions.

Another important observation regards the applicability of
SPROUT to any classifiers, regardless of the domain e.g., image clas-
sifiers or classifiers for tabular data, or the specific algorithm to be
used, either a DNN, a tree-based classifier, a statistical classifiers, or
any other binary or multi-class classifier.

4.2 A Misclassification Detector for SPROUT

The misclassification detector for SPROUT is structured as follows.
SPROUT computes multiple uncertainty measures for each in-

put data and / or the corresponding classifier output: the choice of
which uncertainty measures should be computed is of utmost im-
portance [32]. Some uncertainty measures may make SPROUT de-
tect most of the misclassifications (thus the residual misclassifica-
tion probability εw would be very low) at a cost of many omissions,
i.e., φ >> 0, αw << α. Conversely, other measures may build a
SPROUT wrapper that has optimal accuracy (αw ≈ α, or φc ≈ 0),
but rarely omits outputs (φ ≈ 0) and fails in detecting many mis-
classifications (εw ≈ ε, or φm ≈ 0) making its behavior similar to
the regular clf. We tackle this problem by relying on multiple un-
certainty measures amongst those presented in Section 2. Remember
that several measures are parameter-dependent and as such can be
instantiated multiple times and have a different behavior; this is the
case of UM1, UM5, UM6, UM7, UM8 and UM9. The choice of pa-
rameters depends on the structure of the input data (e.g., tabular or
image data), the type of the classification task (i.e., multi-class or
binary) or other specific user needs.

Then, a binary adjudicator processes the ensemble of floating point
values computed using each uncertainty measure to output a unique
BCS. This binary adjudicator can be implemented with thresholds,
invariants, custom rules [14], or as a binary classifier, providing many
degrees of freedom in finding the ideal function to combine ensem-
bles of uncertainty measures into a unified BCS, even implementing
non-linear decision functions. The resulting misclassification detec-
tor will implement a stacking meta-learner, with uncertainty mea-
sures at the base level, and a binary adjudicator at the meta-level [60].
Obviously, the classifier that implements each binary adjudicator is
decoupled from the classifier clf used for classification.

5 Exercising SPROUT

This section details the experimental campaign to test SPROUT in
detecting misclassifications of supervised classifiers.

a) Correctly predicts class with α accuracy and ε = 1−α misclassi-
fication probability

b) Correctly predicts class with αw accuracy, φ omission probability
and εw residual misclassification probability.

Figure 1: Classifier component (up, Figure 1a) and a classifier inside
a safety wrapper (down, Figure 1b).

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers 3159

UM1 UM2 UM3 UM4 UM5 UM6_ST UM6_NB UM6_TR UM7 UM8 UM9 Misc flag
0.22 1.00 -0.17 0.47 1.00 1.00 0.90 1.00 0.47 1.00 1.00 correct
0.43 0.39 -0.16 0.57 -0.21 0.40 0.90 0.55 0.57 -0.21 0.4 misc
0.32 0.99 -0.15 -0.41 0.99 0.94 0.69 1.00 -0.41 0.99 0.94 correct

Table 3: Example of uncertainty measures and misclassification flag using a supervised classifier on a specific dataset.

5.1 Experimental Methodology and its Inputs

As a data baseline, we gather 33 public datasets: 11 datasets (i.e.,
NSL-KDD [44], ISCX12 [43], UNSW-NB15 [46], UGR16 [50],
NGIDS-DS and ADFANet [48], AndMal17 [49], CIDDS-001 [45],
CICIDS17 and CICIDS18 [47], SDN20 [51]) of network intrusion
detection, datasets of sensor spoofing attacks to 10 different biomet-
ric traits summarized in [22] including Fingerprint [52]), Hand Ges-
ture [56]), Electrodermal Activity [54]), Heart Rate [55]), Human
Gait [57]), Keystroke [53]), Voice [58]), Face [59]), 7 BackBlaze
and BAIDU datasets related to hardware monitoring for failure pre-
diction [24], [25], 3 datasets related to IoT systems (ScaniaTrucks,
MechFailure, Iot-IDS) [27], [26], [28], MNIST and Fashion-MNIST
image datasets [6], [7].

We exercise the following 8 supervised classifiers that apply to
both tabular and image data, and fit binary and multi-class classifica-
tion: Decision Tree (DT), Random Forests (RF), eXtreme Gradient
Boosting (XGB), Logistic Regression (LR), Naïve Bayes (NB), Lin-
ear Discriminant Analysis (LDA), TabNet [8] and FastAI [9] neural
networks. The neural networks [8], [9] are explicitly optimized for
processing tabular data, which are the majority of our datasets, but
pair well also with image datasets. Testing SPROUT with DNNs
that are specifically tailored for image classification is something
that we will discuss as future work. Regarding the choice of the
hyper-parameters for those classifiers, we proceed as follows: we use
the HyperOpt [42] library whenever possible (i.e., for all classifiers
but FastAI and TabNet). We then let the hyperparameter optimizer
that is embedded in FastAI to automatically tune its parameters. For
TabNet we ran grid searches with 108 combinations of the follow-
ing parameters and values: Learning rate ∈ [e−5, e−3, e−1], Batch
size ∈ [512, 1024, 2048], Max Epochs ∈ [20, 50, 100], patience (for
early stopping) ∈ [5, 8], target metric ∈ [mcc, accuracy].

We instantiate the following uncertainty measures:

• UM1 with w = 0.9.
• UM2, UM3, and UM4, which do not have parameters.
• UM5 with chk_c = XGB, which is a notoriously good classifier

[29].
• UM6 with three different groups of checking classifiers. We in-

dicate the three UM6 configuration as UM6_ST) {NB, LDA,
LR}, UM6_TR) {DT, RF, XGB}, and UM6_NB) {GaussianNB,
BernoulliNB, MultinomialNB, ComplementNB}. UM6_NB uses
variants of the Naïve Bayes (NB) classifier.

Figure 2: SPROUT wrapper defined and exercised in this paper.

• UM7 with bagC = DT, which has low computational complex-
ity and has overall good classification performance. UM7 creates
multiple instances of bagC: therefore, a slow bagC would make
UM7 take too much time.

• UM8 with k = 19: a prime k avoids ties in kNN searches [15].
• UM9 using 5 layers of the following size: f, f/2, f/4, f/2, f ,

being f the number of features in a dataset, which ranges from 4
(ADFANet dataset) to a maximum of 156 (ScaniaTrucks dataset).

Exercising each of the 8 classifiers on each of the 33 datasets and
computing uncertainty measures provides a total of 264 csv files that
are structured as shown in Table 3.

The reader would notice that we still did not discuss the imple-
mentation of the binary adjudicator, which is a classifier and as such
needs to be trained itself. Therefore, we split the 264 csv files above
into two groups: uncertainty measures (plus the misc flag label) com-
puted for the 8 classifiers on 29 datasets will build the training set of
the binary adjudicator, for a total of more than 13 million of labelled
data points. The remaining 1.8 million of data points, each contain-
ing the uncertainty measures and misc_flag computed for SDN20,
UNSW, MNIST, and Fingerprint datasets, will be used as test set for
the binary adjudicator and to quantify performance of SPROUT in
detecting misclassifications.

We independently exercise Random Forest and XGB classifiers as
binary adjudicators, which are known to have excellent classification
performance for tabular data [29]: since Random Forests showed bet-
ter detection accuracy of misclassifications than XGB, we implement
the binary adjudicator of SPROUT as a Random Forest composed of
30 trees. This completes the definition and instantiation of SPROUT
in Figure 2.

Experiments have been executed on a Dell Precision 5820 Tower
with an Intel Xeon Gold 6250, GPU NVIDIA Quadro RTX6000
with 24GB VRAM, 192GB RAM and Ubuntu 18.04, NVIDIA driver
450.119.03 with CUDA 11.0, and required approximately three
weeks of 24H execution with GPU support.

5.2 A Library for Exercising SPROUT

SPROUT is available at [5] and as PIP Python package. The pack-
age implements all uncertainty measures discussed in this paper and
makes SPROUT ready for deployment in any case study. Many al-
ready trained models for binary adjudication are already available in
the library, and are accompanied by details about the uncertainty cal-
culators they need, statistics on its binary classification performance
and on the importance each uncertainty calculator had in learning
that model. Those information are not needed to run SPROUT but
provide interesting details for explaining why SPROUT works as in-
tended.

Applying SPROUT to a brand new case study is very easy. Be-
low we report a code snippet that shows a simple usage of SPROUT
to wrap a supervised classifier from scikit-learn using a pre-defined
(ecaisup) binary adjudicator which uses the architecture in Figure 2.
We assume to have a labeled dataset that we split in two parts. The

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers3160

Figure 3: Misclassification probability ε of the classifier (striped bars), and residual misclassification probability εw (orange bars) of SPROUT
for different 8 supervised classifiers exercised on SDN20, UNSW, MNIST and Fingerprint datasets.

first part will be provided as input to the load_wrapper method that
prepares a SPROUT wrapper according to the chosen model. Data is
used to train the uncertainty measures, while the binary adjudicator is
simply loaded from the repository. Then, we initialize and train a RF
classifier, which we provide as input, alongside with unlabeled test
data, to the predict_misclassifications function, which outputs
i) a pandas DataFrame containing the values of uncertainty measures
computed for all the test data points and the associated binary confi-
dence score, and ii) the model of the classifier used for binary adju-
dication. Binary confidence scores are extracted as numpy array and
used to compute φ. If the test set is labeled, we can take advantage of
labels to compute αw and εw as shown in the last rows of Listing 1.
Obviously, y_te labels will not available when deploying SPROUT
in a real scenario.

import sklearn as sk, numpy
from sprout.SPROUTObject import SPROUTObject
We suppose having a dataset loaded as follows
x: a numpy matrix containing feature values
y: a numpy array containing dataset labels
label_tags: unique labels in y
x_tr, x_te, y_tr, y_te =

sk.model_selection.train_test_split(
x, y, test_size=0.5)

Initializes an empty SPROUT wrapper.
so = SPROUTObject()
Loads a specific model for binary adjudication
so.load_wrapper(model_tag=’ecai_sup’, x_train=x_tr,

y_train=y_tr, la-bel_names=label_tags)
Crafting classifier (can be any)
classifier = sk.ensemble.RandomForestClassifier()
classifier.fit(x_tr, y_tr)
Suspects misclassifications of clf on test set
sp_df, bin_adj =

so.predict_misclassifications(data_set=x_te,
classifier=classifier)

A numpy array of binary confidence scores
sprout_pred = sprout_df[’pred’].to_numpy()
phi = 100*numpy.count_nonzero(sprout_pred == 0)

/ len(sprout_pred)
Computes alpha_w and eps_w
(only if y_test is available)
aw = sum((1-sprout_pred)*(1-y_test)) /

numpy.count_nonzero(sprout_pred == 0)
ew = 1 - phi - aw

6 Results and Discussion

6.1 Detecting Misclassifications with SPROUT
Wrappers

Figure 3 reports a chart that compares the execution of each su-
pervised classifier with respect to its execution inside the SPROUT
wrapper: blue striped bars show the misclassification probability ε of
clf, while orange solid bars plot the residual misclassification prob-
ability εw of SPROUT. It turns out evident that εw is always far
lower than ε (i.e., orange bars hover on the bottom of the plot and
are always lower than 0.1, whereas the blue bars may even reach
0.4), being extremely close to the optimum εw ≈ 0 on SDN20 and
MNIST datasets. There are cases in which wrapping a clf that has
a high misclassification probability ε may yield to the total absence
of residual misclassifications εw = 0, which is an excellent result.
For instance, LR on SDN20 has ε = 0.2263, meaning that more
than 1 out of 5 predictions of clf are misclassifications. Applying the
SPROUT wrapper leads to the total absence of residual misclassifi-
cations (εw = 0), which is an excellent result safety-wise: the output
of SPROUT is either a correct misclassification or an omission. As
a drawback, SPROUT omits more than 1 out of 5 predictions of the
classifier (φ = 0.2264), which is not desirable. This high omission
probability is a direct consequence of the high ε of LR classifier on
SDN20. When the clf to be wrapped has high ε (as it happens in the
UNSW dataset), an high omission probability φ is unavoidable, even
when omitting all (εw = 0) and only (φc = 0) misclassifications.

On the downside, SPROUT may omit some outputs that were in
fact going to be correct classifications. We elaborate more on this
aspect with the aid of Figure 4, which plots the ratio of omissions
of misclassifications over all omissions i.e., φm/φ. The higher the

Figure 4: Rate φc/φ of omissions of misclassifications over omis-
sions of SPROUT for different 8 supervised classifiers exercised on
SDN20, UNSW, MNIST and Fingerprint datasets.

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers 3161

bars in the figure, the higher the φm/φ ratio and the fewer omis-
sions of correct classifications (i.e., φc is low). We elaborate more on
the case of DT on the UNSW dataset in Figure 4. In this case, only
60% of omissions correspond to misclassifications, which is not de-
sirable: nevertheless, applying SPROUT has still a beneficial impact
on residual misclassifications (εw = ε/2), but makes the accuracy
αw lower than the baseline (α = 0.852 > αw = 0.802). A similar
trend can be observed for RF on UNSW and for FastAI on MNIST.

6.2 Importance of Uncertainty Measures

Ultimately, we explore the impact each uncertainty measure has in
learning the model for binary adjudication and to detect misclassifi-
cations with the aid of Table 4. The first row of the table reports the
importance each uncertainty measure (on the columns) has in build-
ing the misclassification detector of SPROUT. Those scores are com-
puted through the feature_importances_ of sklearn Python package,
and sum up to 1. It turns out evident that some uncertainty measure
has marginal contribution for binary adjudication and for detecting
misclassifications. Particularly, UM8 has the lowest feature impor-
tance and is almost entirely not relevant for detecting misclassifica-
tions. Conversely, measures as UM7 and UM5 have the highest im-
portance in building the models for binary adjudication as they carry
more information for detecting misclassifications.

We also comment on the time needed to compute each uncertainty
measure. Table 4 reports a qualitative estimation for the time needed
to compute all uncertainty measures used by SPROUT. Some mea-
sures as UM2 and UM3 can be computed in negligible time and do
not add any overhead to the classification task. Measures as UM8 and
UM6_TR require heavy computations which may significantly slow-
down the execution of the classification task. We are aware that the
overhead generated by the application of SPROUT may constitute
an obstacle in systems which are resource-limited or that have tight
real-time deadlines. However, this study primarily aims at building
safety wrappers that can detect misclassifications rather than opti-
mizing speed. The reduction of the timing overhead without affecting
the other characteristics of SPROUT is discussed as a future work.

7 Threats to Validity and Reproducibility

Internal validity is concerned with factors that may have influenced
the results, but they have not been thoroughly considered in the study.
First, public datasets are often collected from heterogeneous sys-
tems, may have been documented poorly, and are not under our con-
trol, but are of utmost importance for enabling reproducibility of this
study. Second, classifiers have hyperparameters whose tuning criti-
cally affects results: therefore, we exercised sensitivity analyses for
the main parameters of all classifiers considered in this study. Third,

Uncertainty
Measure U

M
7

U
M

5

U
M

6_
N

B

U
M

6_
ST

U
M

6_
T

R

U
M

3

U
M

1

U
M

2

U
M

9

U
M

4

U
M

8

Importance .289 .189 .138 .128 .128 .036 .032 .027 .017 .010 .004
Time required M M M M H N L N L L H

Table 4: Importance of uncertainty measures for binary adjudication
(ranked by decreasing importance) and qualitative estimation on time
required to compute each measure (H – high, M – medium, L – low,
N – no impact, negligible time).

each classifier may encounter a wide variety of problems when learn-
ing a model for each dataset during training (e.g., under/overfitting,
poor quality of features, feature selection to leave out noisy features).
These events are mostly situational but may have a noticeable impact
on the classification performance of a classifier. However, the reader
should consider that this paper presents a safety wrapper that detects
misclassifications of a black-box classifier, and therefore is not di-
rectly impacted by these problems that happened when training the
main classifier.

External validity: we cannot claim the validity of this study for
classifiers other than those that we used in this study i.e., DNNs for
image classification, or unsupervised classifiers. In fact, this analysis
is something the we will discuss shortly after as future works. Re-
garding the application domain of SPROUT, it fits any classification
problem, but cannot be generalized easily to regression problems.

The usage of public data and public tools to run algorithms was a
prerequisite of our analysis to allow reproducibility and to rely on
proven-in-use data. We publicly shared scripts, methodologies and
all metric scores, allowing any researcher or practitioner to repeat
the experiments. We do not use any custom or private dataset: all
dataset are referenced in the papers, and all code is available at [5].

8 Conclusions and Future Works

This paper presented a safety wrapper to detect misclassifications of
a black-box classifier. SPROUT, our Safety wraPper thROugh en-
sembles of UncertainTy measures, creates a wrapper around a clas-
sifier, either binary or multi-class, and processes tabular or image
input data. SPROUT computes multiple uncertainty measures, pro-
viding quantitative data to detect misclassifications of a classifier.
Whenever a misclassification is detected, SPROUT blocks the prop-
agation of the output of the classifier to the encompassing system:
this way, a content failure of the classifier is transformed into an
omission failure, which can be easily handled by the encompassing
system. SPROUT wrappers for supervised classifiers are available in
the library available at [5]. Results in this paper show that SPROUT
correctly detects the large majority of misclassifications of all the
classifiers we used, and can even detect all misclassifications of some
classifiers (e.g., Logistic Regression on the SDN20 dataset).

We are aware that we may have left out other uncertainty mea-
sures and other groups of classifiers (i.e., unsupervised, neural net-
works for image classification) from this study. Whereas the design
and purpose of SPROUT will not be affected by those additional
measures and classifiers, they may contribute to a more solid experi-
mental analysis which we plan as future work. In particular, we will
craft SPROUT wrappers for unsupervised classifiers and conduct ad-
ditional experiments that emphasize more on image classification,
applying SPROUT to pre-trained deep neural network models from
the ImageNet model zoos [39] of pytorch and tensorflow, and pro-
cessing well-known datasets other than those already considered in
this study, e.g., CIFAR-10 and ImageNet. As an additional but not
least important future work, we will focus on lowering the timing
overhead introduced by SPROUT wrappers with respect to a tradi-
tional classification process. Uncertainty measures that individually
introduce major overhead will be evaluated to understand if i) they
could be dropped without affecting the behavior of wrappers, ii) their
implementation could be optimized, or iii) they could be replaced
with faster alternatives.

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers3162

Acknowledgements

This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU and by the NextGenerationEU
program, Italian DM737 – CUP B15F21005410003."

References

[1] Meeker, W. Q., Hahn, G. J., & Escobar, L. A. (2017). Statistical
intervals: a guide for practitioners and researchers (Vol. 541). John
Wiley & Sons.

[2] Krzanowski, W. J., et. Al. (2006). Confidence in classification: a
bayesian approach. Journal of Classification, 23(2), 199-220.

[3] Bilgin, Z., & Gunestas, M. (2021). Explaining Inaccurate Predic-
tions of Models through k-Nearest Neighbors. In ICAART (2) (pp.
228-236).

[4] Bishop, C. M. (2006). Pattern recognition. Machine learning,
128(9).

[5] SPROUT Repository on GitHub (online),
https://github.com/tommyippoz/SPROUT

[6] LeCun, Y. (1998). The MNIST database of handwritten digits.
(online) http://yann.lecun.com/exdb/mnist/.

[7] Fashion-MNIST: a Novel Image Dataset for Benchmarking Ma-
chine Learning Algorithms. Han Xiao, Kashif Rasul, Roland Voll-
graf. arXiv:1708.07747

[8] Arik, S. Ö., & Pfister, T. (2021, May). Tabnet: Attentive inter-
pretable tabular learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35 (8), pp. 6679-6687.

[9] Howard, J. et. Al. (2020). Fastai: a layered API for deep learning.
Information, 11(2), 108.

[10] Dan Hendrycks and Kevin Gimpel. A baseline for detecting mis-
classified and out-of-distribution examples in neural networks.
arXiv preprint arXiv:1610.02136, 2016.

[11] Lakshminarayanan, et. Al. Safety and scalable predictive uncer-
tainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems, pp 6405–6416, 2017.

[12] Jiang, H., Kim, B., Guan, M., & Gupta, M. (2018). To trust or
not to trust a classifier. Advances in neural information processing
systems, 31.

[13] Pham, C., Estrada, Z., Cao, P., Kalbarczyk, Z., & Iyer, R. K. (2014,
June). Reliability and security monitoring of virtual machines us-
ing hardware architectural invariants. In 2014 44th IEEE/IFIP Int.
Conference on Dependable Systems and Networks (pp. 13-24).
IEEE.

[14] Di Giandomenico, F., & Strigini, L. (1990, October). Adjudica-
tors for diverse-redundant components. Proc. 9th Symposium on
Reliable Distributed Systems (pp. 114-123). IEEE.

[15] Cheung, K. L., & Fu, A. W. C. (1998). Enhanced nearest neighbor
search on the R-tree. AUM SIGMOD Record, 27(3), 16-21.

[16] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2),
123-140.

[17] Tiwari, A., Dutertre, B., Jovanović, D., de Candia, T., Lincoln,
P. D., Rushby, J., . . . & Seshia, S. (2014, April). Safety wrapper
for security. In Proceedings of the 3rd international conference on
High confidence networked systems (pp. 85-94).

[18] Fonseca, J. R., et. al. (2005). Uncertainty identification by the
maximum likelihood method. Journal of Sound and Vibration,
288(3), 587-599.

[19] Xiao, Z., Yan, Q., & Amit, Y. (2020). Likelihood regret: An
out-of-distribution detection score for variational auto-encoder.

Advances in neural information processing systems, 33, 20685-
20696.

[20] Kramer, M. A. (1991). Nonlinear principal component analysis
using autoassociative neural networks. AIChE journal, 37(2), 233-
243.

[21] Nour Moustafa, Jill Slay. 2015. “UNSW-NB15: a comprehen-
sive data set for network intrusion detection systems”. In Military
Communications and Information Systems Conference (MilCIS),
2015. IEEE, 1–6.

[22] Zoppi, T., Gharib, M., Atif, M., & Bondavalli, A. (2021). Meta-
Learning to Improve Unsupervised Intrusion Detection in Cyber-
Physical Systems. ACM Transactions on Cyber-Physical Systems
(TCPS), 5(4), 1-27.

[23] Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A.
(2019). A survey of network-based intrusion detection data sets.
Computers & Security.

[24] BackBlaze: BackBlaze Hard Drive Data (online) https://
www.backblaze.com/b2/hard-drive-test-data.html

[25] BAIDU: Baidu Smart HDD Competition (online) https://
www.kaggle.com/drtycoon/baidu-hdds-dataset-2017/version/1

[26] MechFailure: Machine Failure Prediction Competition (online),
https://www.kaggle.com/c/machine-failure-prediction

[27] Gondek C., e. al. (2016) Prediction of Failures in the Air Pres-
sure System of Scania Trucks Using a Random Forest and Feature
Engineering. In Advances in Intelligent Data Analysis XV. IDA
2016. Lecture Notes in Computer Science, vol 9897. Springer,
Cham

[28] IoT-IDS: IoT Intrusion (online) https://ieee-dataport.org/open-
access/iot-network-intrusion-dataset#files

[29] Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning
is not all you need. Information Fusion, 81, 84-90.

[30] Guérin, J., Ferreira, R. S., Delmas, K., & Guiochet, J. (2022, Octo-
ber). Unifying evaluation of machine learning safety monitors. In
2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE) (pp. 414-422). IEEE.

[31] Lever, J. (2016). Classification evaluation: It is important to un-
derstand both what a classification metric expresses and what it
hides. Nature methods, 13(8), 603-605.

[32] Hein, M., Andriushchenko, M., & Bitterwolf, J. (2019). Why relu
networks yield high-confidence predictions far away from the
training data and how to mitigate the problem. In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (pp. 41-50).

[33] Aslansefat, K., et. al. (2020, September). SafeML: safety monitor-
ing of machine learning classifiers through statistical difference
measures. In International Symposium on Model-Based Safety
and Assessment (pp. 197-211). Springer, Cham.

[34] Wang, M., Shao, Y., Lin, H., Hu, W., & Liu, B. (2022). Cmg: A
class-mixed generation approach to out-of-distribution detection.
Proceedings of ECML/PKDD-2022.

[35] Shafaei, S., Kugele, S., Osman, M. H., & Knoll, A. (2018, Septem-
ber). Uncertainty in machine learning: A safety perspective on
autonomous driving. In International Conference on Computer
Safety, Reliability, and Security (pp. 458-464). Springer, Cham.

[36] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple
and scalable predictive uncertainty estimation using deep ensem-
bles. Advances in neural information processing systems, 30.

[37] Rossolini, G., Biondi, A., & Buttazzo, G. (2022). Increasing the
Confidence of Deep Neural Networks by Coverage Analysis.
IEEE Transactions on Software Engineering.

[38] Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers 3163

uncertainty in machine learning: An introduction to concepts and
methods. Machine Learning, 110(3), 457-506.

[39] Model Zoo - Discover open source deep learning code and pre-
trained models (online), https://modelzoo.co/ accessed: 2023-01-
20

[40] Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004).
Basic concepts and taxonomy of dependable and secure comput-
ing. IEEE transactions on dependable and secure computing, 1(1),
11-33.

[41] Hazra, A. (2017). Using the confidence interval confidently. Jour-
nal of thoracic disease, 9(10), 4125.

[42] Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., & Cox, D. D.
(2015). Hyperopt: a python library for model selection and hy-
perparameter optimization. Computational Science & Discovery,
8(1), 014008.

[43] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghor-
bani. 2012. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Computers & Security
31, 3 (2012), 357–374.

[44] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghor-
bani. 2009. A detailed analysis of the KDD CUP 99 data set.
In Computational Intelligence for Security and Defense Applica-
tions, 2009. CISDA 2009. IEEE Symposium on. IEEE, 1–6.

[45] Ring, M., et. Al. (2017, June). Flow-based benchmark data sets
for intrusion detection. In Proceedings of the 16th European Con-
ference on Cyber Warfare and Security. ACPI (pp. 361-369).

[46] Nour Moustafa, Jill Slay. 2015. “UNSW-NB15: a comprehen-
sive data set for network intrusion detection systems”. In Military
Communications and Information Systems Conference (MilCIS),
2015. IEEE, 1–6.

[47] Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018, Jan-
uary). Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. In ICISSP (pp. 108-116).

[48] Haider, W., Hu, J., Slay, J., Turnbull, B. P., & Xie, Y. (2017). Gen-
erating realistic intrusion detection system dataset based on fuzzy
qualitative modeling. Journal of Network and Computer Applica-
tions, 87, 185-192.

[49] Lashkari, A. H., et. Al. (2018, October). Toward Developing a
Systematic Approach to Generate Benchmark Android Malware
Datasets and Classification. In International Carnahan Conference
on Security Technology (ICCST) (pp. 1-7). IEEE.

[50] Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., García-
Teodoro, P., & Theron, R. (2018). UGR ’16: A new dataset for the
evaluation of cyclostationarity-based network IDSs. Computers &
Security, 73, 411-424.

[51] Elsayed, M. S., Le-Khac, N. A., & Jurcut, A. D. (2020). InSDN: A
Novel SDN Intrusion Dataset. IEEE Access, 8, 165263-165284.

[52] BIT – Biometrics Ideal Test, CASIA-FingerprintV5,
http://biometrics.idealtest.org/

[53] Adams, Warwick R. “High-accuracy detection of early Parkin-
son’s Disease using multiple characteristics of finger movement
while typing.” PloS one 12.11 (2017): e0188226.

[54] Koldijk, S., Sappelli, M., Verberne, S., Neerincx, M. A., & Kraaij,
W. (2014, November). The swell knowledge work dataset for
stress and user modeling research. In Proceedings of the 16th in-
ternational conference on multimodal interaction (pp. 291-298).

[55] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger,
Kristof Van Laerhoven, “Introducing WESAD, a multimodal
dataset for Wearable Stress and Affect Detection”, ICMI 2018,
Boulder, USA, 2018

[56] A. Memo, L. Minto, P. Zanuttigh, “Exploiting Silhouette Descrip-

tors and Synthetic Data for Hand Gesture Recognition”, STAG:
Smart Tools & Apps for Graphics, 2015

[57] Vajdi, A., Zaghian, M. R., Farahmand, S., Rastegar, E., Maroofi,
K., Jia, S., ... & Bayat, A. (2019). Human Gait Database for
Normal Walk Collected by Smart Phone Accelerometer. arXiv
preprint arXiv:1905.03109.

[58] Kaggle – Voice Recognition, Jeganathan Kolappan.
https://www.kaggle.com/jeganathan/voice-recognition (online),
accessed: 2022-11-20

[59] Kaggle – Face Images with Marked Landmark Points, Omri
Goldstein. https://www.kaggle.com/drgilermo/face-images-with-
marked-landmark-points (online), accessed: 2022-11-20

[60] Wolpert, D. H. (1992). Stacked generalization. Neural networks,
5(2), 241-259.

T. Zoppi et al. / Ensembling Uncertainty Measures to Improve Safety of Black-Box Classifiers3164

