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Abstract. Due to the expensive segmentation annotation cost,
cross-modality medical image segmentation aims to leverage an-
notations from a source modality (e.g. MRI) to learn a model
for target modality (e.g. CT). In this paper, we present a novel
method to tackle cross-modality medical image segmentation as
semi-supervised multi-modal learning with image translation, which
learns better feature representations and is more robust to source an-
notation scarcity. For semi-supervised multi-modal learning, we de-
velop a deep co-training framework. We address the challenges of
co-training on divergent labeled and unlabeled data distributions with
a theoretical analysis on multi-view adaptation and propose decom-
posed multi-view adaptation, which shows better performance than
a naive adaptation method on concatenated multi-view features. We
further formulate inter-view regularization to alleviate overfitting in
deep networks, which regularizes deep co-training networks to be
compatible with the underlying data distribution. We perform exten-
sive experiments to evaluate our framework. Our framework signif-
icantly outperforms state-of-the-art domain adaptation methods on
three segmentation datasets, including two public datasets on cross-
modality cardiac substructure segmentation and abdominal multi-
organ segmentation and one large scale private dataset on cross-
modality brain tissue segmentation. Our code is publicly available

at https://github.com/zlheui/DCT.

1 Introduction

Deep learning has achieved great success in medical image analy-
sis [17], however, it requires huge amount of labeled data to be ef-
fective, which is both expensive and time consuming to obtain. It
is desirable to develop deep learning methods that are annotation-
efficient. To this end, cross-modality medical image segmentation
aims to leverage existing annotations from a source modality (e.g.
MRI) to learn a model for target modality (e.g. CT). However, deep
learning models trained in one modality usually give poor perfor-
mance in another modality due to distribution shift. Unsupervised
domain adaptation (UDA) methods have shown promising perfor-
mance for cross-modality medical image segmentation task. State-
of-the-art UDA methods adopt synergistic image and feature adap-
tation to reduce the distribution shift across domains at both image
and feature level [3, 33, 10, 12]. However, these UDA methods may
be sub-optimal, as they merely align the target data distribution with
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Figure 1. Image translation enables semi-supervised multi-modal

learning. We adopt CycleGAN to translate source MRI image into CT im-
age and target CT image into MRI image. The image translation results are
quite good where the appearance of the original images are translated into
the appearance of the other modality and the contents of the images are well-
preserved. Augmenting the original single-modal datasets with the translated
images creates one labeled multi-modal dataset in source domain and one un-
labeled multi-modal dataset in target domain, which suggests semi-supervised
multi-modal learning.

annotated source data without considering learning target data struc-
ture.

In this paper, we present a novel method to tackle cross-modality
medical image segmentation with semi-supervised multi-modal
learning. From Fig. 1, we can observe that existing image translation
techniques can transform an MRI image into CT appearance and a
CT image into MRI appearance while preserving the image content
with fairly good quality [31]. Similarly, we should be able to augment
the datasets in cross-modality medical image segmentation, namely,
the labeled images in source modality (e.g. MRI) and unlabeled im-
ages in target modality (e.g. CT) with their translated images. In this
way, we can obtain a labeled multi-modal dataset from source do-
main and an unlabeled multi-modal dataset from target domain as
shown in figure.

As opposed to solving the cross-modality medical image segmen-
tation task with domain adaptation, which merely aligns the target
data distribution towards the source data distribution, we propose a
semi-supervised multi-modal learning approach. Consequently, our
goal is to learn a model that can perform well with complementary
multi-modal information in a semi-supervised manner, which can
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1). lead to better feature representations for both domains, as
both labeled and unlabeled data are leveraged for learning discrim-
inative deep feature representations; 2). be more robust to source

annotation scarcity, as a solution to semi-supervised multi-modal
learning naturally handles the case when we have limited annota-
tions in source domain. In essence, we propose to transform the task
of cross-modality medical image segmentation into the task of semi-
supervised multi-modal learning with image translation. Solving the
latter task can potentially provide a better solution to the former task
and is robust to annotation scarcity.

Co-training [1] is a semi-supervised multi-modal learning method,
where two models are first learned on the two different views (modal-
ities) of the labeled data. Subsequently, unlabeled data with model
assigned pseudo-labels are gradually added to the labeled data set
for continual training. We can apply co-training on our augmented
datasets to learn two segmentation networks for the two different
modalities. However, plain co-training with deep networks is un-
likely to work. The challenges originate from both the dataset set-
ting and the engagement of deep networks: 1). The augmented multi-
modal datasets are synthesized from the labeled source dataset and
unlabeled target dataset, which are drawn from different distribu-
tions. As can be observed in Fig. 1, despite the modality difference,
there are still some morphological and scale differences between
source and target data, which may be due to different patient dis-
tributions across domains or different machine scanning parameters;
2). Deep networks are notoriously known to require large scale la-
beled data to be effective and tend to overfit, which will deteriorate
co-training performance.

To facilitate effective deep co-training, we address the two chal-
lenges in our framework as follows: First, to reduce the distribu-
tion shift between the source and target data, we conduct theoreti-
cal analysis on multi-view adaptation and develop a theorem to en-
able decomposition of adaptation with multi-view data into adapta-
tion on each single view. Based on which, we propose decomposed
multi-view adaptation which yields better performance than a naive
adaptation method on concatenated multi-view features that does not
consider the view-wise features. Second, co-training assumes target
concepts to be compatible with the underlying data distribution to be
effective. This can however be violated when deep networks over-
fit the labeled data and cannot generalize to unlabeled data. To this
end, we introduce inter-view regularization to enforce consistency of
predictions on different views of the same data point.

In summary, we have made following contributions in this paper:

• We develop a deep co-training framework for cross-modality med-
ical image segmentation. Compared to existing UDA methods, our
method learns better feature representations and is more robust to
source annotation scarcity.

• We prove a theorem for multi-view adaptation and propose a gen-
eral decomposed multi-view adaptation method, which shows bet-
ter performance compared to adaptation with concatenated multi-
view features.

• We propose inter-view regularization to regularize deep co-
training networks to be compatible with synthesized multi-modal
data, which is generally applicable for deep co-training.

• We conduct extensive experiments to evaluate our framework,
where we have collected and processed a large scale private brain
tissue segmentation dataset to verify that our framework can be
effectively applied in real clinical settings. Our framework outper-
forms state-of-the-art cross-modality medical image segmentation
methods significantly in all the three datasets we evaluate.

2 Related Works

Unsupervised Domain Adaptation has shown promising perfor-
mance in cross-modality medical image segmentation task. Exist-
ing UDA methods can be mostly categorized into feature adapta-
tion methods, image adaptation methods, and hybrid methods which
combine feature and image adaptation. Feature adaptation methods
reduce feature distribution shift by either minimizing certain distri-
bution metric like maximum mean discrepancy (MMD) [30, 18], or
through adversarial training with a domain discriminator [8, 29, 7].
Image adaptation methods [2, 13] translate image appearance across
domains and learn a target model on translated source images. Hoff-
man et al. [11] are among the first to combine feature adaptation with
image adaptation while enforcing semantic consistency with a static
source trained model. Chen et al. [3] proposes synergistic feature and
image adaptation which fuses part of image translation pipeline with
feature representation learning. Zou et al. [33] introduces a target-
to-source adaptation branch with a dual-scheme fusion network for
more effective adaptation. Han et al. [10] proposes deep symmetric
adaptation network with a bidirectional adaptation structure. Most re-
cently, Hu et al. [12] introduce a semantic similarity constraint with
contrastive learning [6] to further boost the cross-modality medi-
cal image segmentation performance. Unlike previous methods, self-
training based UDA method CBST [34] use source trained network
to assign pseudo-labels to unlabeled target data and then use pseudo-
labeled target data to update the network for target data structure
learning. Co-training for Domain Adaptation (CODA) [4] solves an
optimization problem which simultaneously learns a target classifier,
a split of the feature space into two different views, and a subset of
source and target features. Their method is however limited to simple
linear models and text-based classification tasks. Asymmetric Tri-
training for Domain Adaptation (ATDA) [24] uses two source classi-
fiers to assign pseudo labels to unlabeled target data and then uses the
pseudo-labeled target data to train a target classifier with shared en-
coder network, but their method is limited to simple digit and review
classification tasks. Most existing UDA methods focus on reducing
the distribution shift across domains for knowledge transfer, thus,
they are well-suited for cross-modality medical image segmentation
task. However, unlike existing UDA methods, our deep co-training
framework tackle cross-modality medical image segmentation as a
semi-supervised multi-modal learning task via image translation.
Image Translation aims to translate images from one style into an-
other style while preserving the image content. Most image transla-
tion methods are based on generative adversarial networks (GAN)
framework [9]. DCGAN [23] proposes deep convolutional GAN
architecture to learn better feature representations and improve
the image translation quality. CycleGAN [31] introduces a cycle-
consistency loss, which demonstrates great image translation results
while preserving the image content. Image translation has already
demonstrated good performance in UDA [2, 13] to translate source
image into target style for learning. As far as we are concerned, we
are the first to explore usage of image translation to synthesize multi-
modal data for semi-supervised multi-modal learning.
Co-Training [1] is a method for semi-supervised multi-modal learn-
ing, where two models are trained on two modalities for learning
complementary information. Co-training has been applied in various
machine learning tasks like text classification [21], object recogni-
tion [5], domain adaptation [4], and deep semi-supervised classifica-
tion [22]. As far as we are concerned, we are the first to investigate
a deep co-training framework on synthesized multi-modal data for
semi-supervised multi-modal segmentation.
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Figure 2. Overview of our proposed deep co-training framework. (a). Plain
deep co-training on synthesized multi-modal data with image translation.
There are two segmentation networks to perform segmentation in each modal-
ity. Labeled source data and unlabeled target data are utilized to perform co-
training on the two networks. The plain deep co-training framework is un-
likely to work due to distribution discrepancy and potential overfit of deep
networks on limited annotations. Thus, we introduce the following two com-
ponents into our framework: (b). Decomposed multi-view adaptation. Two
domain discriminators are introduced into the framework to perform decom-
posed adaptation on each view separately based on our theorem; (c). Inter-
view regularization is introduced to regularize the deep co-training networks
to be compatible with the synthesized multi-modal target data to alleviate
overfitting. Our whole framework is composed of the components in (a), (b),
and (c).

3 Methods

In cross-modality medical image segmentation task, we are given
Ns labeled data D

s = {(xs
i , y

s
i )}N

s

i=1 in source domain and N t un-
labeled data D

t = {xt
i}N

t

i=1 in target domain. The source and target
data share the same set of C labels and are sampled from probability
distributions P s and P t respectively with P s �= P t. The goal is to
learn a model with labeled source data and unlabeled target data that
can perform well in target domain. In Fig. 2, we present an overview
of our proposed deep co-training framework which tackles the task
as semi-supervised multi-modal learning.

3.1 Image Translation and Deep Co-Training

We adopt CycleGAN [31] for image translation in our framework
due to its good performance, while better image translation tech-
niques will further boost the performance of our framework. With
image translation, we augment the original dataset with their trans-
lated images. Denote D̃

s = {((xs
i ,x

s→t
i ), ys

i )}N
s

i=1 and D̃
t =

{(xt→s
i ,xt

i)}N
t

i=1 as the augmented source and target dataset respec-
tively, where xs→t

i is the translated image of xs
i in target modality

and xt→s
i is the translated image of xt

i in source modality.
In our deep co-training framework, we first learn two segmentation

networks on the two different modalities with the following hybrid
loss:

Ls
seg =E[H(ys, F s(xs)) +Dice(ys, F s(xs))], (1)

Ls→t
seg =E[H(ys, F t(xs→t)) +Dice(ys, F t(xs→t))], (2)

where F s and F t are two segmentation networks for source and
target modality respectively, H(·) is the pixel-wise cross-entropy

loss, which we assign class weights to balance different classes and
Dice(·) is the widely adopted dice loss [19] . The hybrid loss is
designed to sufficiently learn the two segmentation networks with
complementary supervision signals.

Next, we perform co-training on the unlabeled target data. We ex-
tend class-balanced self-training [34] for deep co-training where the
selected target pixels to label is the union of the selected target pix-
els from the two segmentation networks. The selection function S is
defined as follows:

S(pt) = �
[c=argmaxcp

(c)
t ∧p

(c)
t >exp(−kc)]

(p
(c)
t ), (3)

where pt is the prediction mask, � is the indicator function which
returns 1 if the condition is true and 0 otherwise and kc is the class-
balanced weights [34]. The final labeled target pixel is S(xt) =
S(F s(xt→s)) ∪ S(F t(xt)). The co-training loss is defined as fol-
lows:

Lt
cot =E[H(S(xt), F t(xt))], (4)

Lt→s
cot =E[H(S(xt), F s(xt→s))]. (5)

Discussion. Will the above plain deep co-training framework

work? As we mentioned before, it is challenging to use synthesized
multi-modal dataset for deep co-training. Thus, the above framework
is unlikely to work as effective. To this end, we introduce two extra
components into our framework to ensure deep co-training works
effectively. Will back-propagating the supervision signal to train

the image translation model help improve the performance? Cur-
rently, the image translation model and the segmentation networks
are trained in isolation. However, as the segmentation networks re-
ceive the translated images as input and possess semantic knowledge
on each class, we think back-propagating the supervision signal from
the segmentation networks to train image translation model from
end-to-end would help boost the performance of our framework. We
provide empirical results in Sec. 4.3.

3.2 Decomposed Multi-View Adaptation

In our problem, source and target data are drawn from different data
distributions. As observed in Fig. 1, there is difference between the
source image pair and target image pair despite the modality differ-
ence. Thus, it is necessary to reduce the distribution shift between
the labeled source data and unlabeled target data. One naive solution
is to concatenate multi-view features and use a domain discrimina-
tor to discriminate the concatenated features from source and target
data for distribution alignment without considering the view-wise
features. However, using a single domain discriminator may fail to
capture the minor differences for features within a single view. We
develop a theorem which states that we can decompose multi-view
adaptation into adaptation in each single view:

Theorem 1 Let H be a hypothesis space of VC dimension d and
let P s and P t be the data distribution for source data and tar-
get data respectively. Suppose data instances in both source distri-
bution and target distribution have k different views, where xs =
(vs

1,v
s
2, ...,v

s
k) for each (xs, ys) ∈ P s. Similarly for (xt, yt) ∈ P t.

If Us, U t are unlabeled data of size m
′

each drawn from P s and P t

respectively, then for any δ ∈ (0, 1), with probability at least 1-δ, for
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every h1, h2, ..., hk ∈ H, we have:

εt(h) ≤ 1

k

k∑
i=1

(
εs(hi) +

1

2
dHΔH(Us

i , U
t
i ) + Ci

)

+ 4

√
2dlog(2m′) + log( 2

δ
)

m′ ,

(6)

where εs(·) (resp. εt(·)) measures the expectation error of a hypoth-

esis on source (resp. target) data distribution, h =
∑k

i=1 hi

k
is the

composite hypothesis, dHΔH(Us
i , U

t
i ) is the empirical estimation of

the HΔH-distance on the i-th view of unlabeled data Us and U t,
Ci = minhi∈H εt(hi) + εs(hi).

The above theorem states that for the composite multi-view model,
its performance on target distribution is upper bounded by the perfor-
mance of each constituent model on source distribution and the distri-
bution shift between source and target distribution in each view plus
some constant terms. In deep co-training, the model performance on
target distribution affects the accuracy of the assigned labels for un-
labeled target data. Thus, the theorem confirms the necessity in min-
imizing the distribution shift across source and target data. In addi-
tion, the theorem states that it suffices to reduce the distribution shift
for each view separately. Based on our theorem, we proposed decom-
posed multi-view adaptation. Specifically, we introduce two domain
discriminators into our framework, namely Ds and Dt to separately
reduce the distribution shift in the two different modalities and we
control the strength of adaptation with a balancing weight. We use
Ds to discriminate prediction masks from source data and translated
target data, and Dt to discriminate prediction masks from translated
source data and target data. We train the two segmentation networks
F s and F t adversarially so that the learned features become domain
invariant to produce similar prediction masks across domains. The
adversarial training losses are defined as follows:

Ls
adv = E[logDs(F s(xs))] + E[log(1−Ds(F s(xt→s)))], (7)

Lt
adv =E[logDt(F t(xs→t))] + E[log(1−Dt(F t(xt)))]. (8)

3.3 Inter-View Regularization

The success of co-training relies on the “compatibility" assumption
among the target concepts in each view and the underlying data dis-
tribution [1], namely if F ∗ denotes the combined target concept and
F ∗
1 and F ∗

2 denote the target concept in each view, then for any exam-
ple x = (v1,v2), we have F ∗(x) = F ∗

1 (v1) = F ∗
2 (v2). Intuitively,

the “compatibility" assumption enables us to use model from one
view to assign labels to unlabeled data and then use the other view of
unlabeled data with assigned labels to train the other model, which is
at the core of co-training.

In the original algorithm [1], models are trained on labeled data
and perform co-training on unlabeled data without regularization.
This is because the original models are simple linear models and
regularization is not needed. However, deep learning models are rep-
resentation learning, have high capacities, and are easy to overfit.
Moreover, the labeled source data can be scarce. Consequently, the
“compatibility" assumption can be violated when models overfit the
labeled data and cannot generalize to unlabeled data. Thus, it is nec-
essary to regularize the two segmentation networks in our deep co-
training framework to conform to the “compatibility" assumption.
To this end, we propose inter-view regularization with synthesized

multi-modal data to ensure the predictions on the original and trans-
lated data to be compatible. Specifically, we input the target data and
the translated target data into the corresponding segmentation net-
work to obtain their prediction masks. Then, we minimize the dis-
crepancy for the predicted probability vectors at each pixel to ensure
the two segmentation network have similar predictions. We choose
symmetric Kullback-Leibler (KL)-divergence which measures how
one probability distribution is different from another as follows:

Lreg =E[
1

2
(KL(F t(xt), F s(xt→s))

+KL(F s(xt→s), F t(xt)))],
(9)

where KL(·, ·) measures the average pixel-wise KL-divergence be-
tween two prediction masks.
Discussion. Consistency regularization is widely adopted in semi-
supervised learning to regularize the learning of deep networks to
avoid overfitting. They usually input two perturbed data points into
the same network and ensure the network to make similar predic-
tions [25, 27]. Some use mean teacher [28], some use virtual adver-
sarial training [20], and some use the same input into two different
networks [22] for regularization. Different from them, we are the first
to use synthesized multi-modal data for regularization; the regular-
ization method is proposed to enable co-training with deep networks;
and we focus on segmentation task as opposed to classification.

Training objective: The overall objective function of our deep co-
training framework is as follows:

Lall =Ls
seg + Ls→t

seg + Lt
cot + Lt→s

cot

+ λadv(Ls
adv + Lt

adv) + λregLreg,
(10)

where λadv and λreg are the balancing weights, which are both set
to 1 empirically.

4 Experiments

4.1 Datasets and Evaluation Metrics

We validate the effectiveness of our framework with three datasets:
cardiac substructure segmentation [32]; abdominal multi-organ seg-
mentation [15, 16]; and a large-scale private brain tissue segmen-

tation dataset. More details about the large scale private brain tissue
segmentation dataset can be found in our supplementary material.

The cardiac dataset consists of 20 unpaired MRI and CT volumes
with ground truth masks on four heart substructures: ascending aorta
(AA), left atrium blood cavity (LAC), left ventricle blood cavity
(LVC), and myocardium of the left ventricle (MYO). The abdominal
dataset consists of 20 unpaired T2-SPIR MRI and 30 CT volumes
collected from two public datasets with ground truth masks on four
organs: spleen, right kidney, left kidney, and liver. The private brain
tissue segmentation dataset consists of 968 paired MRI and CT vol-
umes with ground truth masks on three types of tissues: cerebrospinal
fluid (CSF), grey matter (GM), and white matter (WM). All the data
are cropped, normalized with zero mean and unit variance, and re-
sampled into the size of 256×256. Coronal view of cardiac volumes
and axial view of abdominal volumes and brain volumes are used to
train the 2D network. Both MRI to CT and CT to MRI transfer are
considered for the two public datasets. MRI to CT transfer is con-
sidered for the private dataset. Each modality is randomly split with
80% scans for training and 20% for testing following existing stud-
ies [3, 33, 12].

We employ three commonly-used metrics, namely the Dice sim-
ilarity coefficient (Dice), continuous Dice similarity coefficient
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Table 1. Ablation study of our deep co-training framework on Abdomi-
nal Multi-Organ MRI→CT transfer task. DCT = Deep Co-Training, DMA =
Decomposed Multi-view Adaptation, IVR = Inter-View Regularization, DCT-
SEP = Deep Co-Training without back-propagating gradients to image trans-
lation model, DCT-CA = Deep Co-Training with adaptation on concatenated
multi-view features, DCT-CA↑ = DCT-CA with increased domain discrimi-
nator size.

Abdominal Multi-Organ Segmentation Performance MRI→CT

Method Lseg Lcot Ladv Lreg Dice ASD
F s F t Ensemble Ensemble

Source only � NA NA 62.0 4.3
Plain DCT � � 32.3 41.8 35.3 15.4

Plain DCT + DMA � � � 58.4 67.4 74.4 7.1
Plain DCT + IVR � � � 85.3 85.7 86.4 2.1

DCT (Our Proposed) � � � � 87.1 87.8 88.0 1.6

DCT-SEP � � � � 81.8 84.9 85.0 2.2
DCT-CA � � � � 85.0 85.1 85.7 2.3

DCT-CA↑ � � � � 84.0 87.0 87.2 2.3

(cDice), and the average symmetric surface distance (ASD) to quan-
titatively evaluate the segmentation performance. Dice measures the
voxel-wise segmentation accuracy between the predicted and refer-
ence volumes. cDice [26] is a variant of the Dice coefficient that eval-
uate spatial similarity between binary images and real-valued prob-
ability maps. ASD calculates the average distances between the sur-
face of the prediction mask and the ground truth in 3D. A higher Dice
and cDice value or a lower ASD value indicates better segmentation
results. The evaluation is performed on the subject-level segmenta-
tion volume.

4.2 Implementation Details

For the implementation of our deep co-training framework, the im-
age translation network is implemented and trained according to the
original CycleGAN paper [31]. We implement the segmentation net-
works in our framework follow the same architecture as [3, 33] for
fair comparison, which consists of twelve convolutional operation
groups, two dilated convolutional groups and one softmax layer. The
domain discriminator networks in our framework is implemented fol-
lowing the architecture of PatchGAN [14], which have five convolu-
tional layers with channels size of 64, 128, 256, 512, and 1, respec-
tively. We use Adam optimizer with learning rate of 2 × 10−4. We
split the training of our framework into two phases. In the first phase,
we train our framework without co-training loss Lcot for 10k iter-
ations to warm up the segmentation networks. In the second phase,
we include the co-training loss and train the framework for another
10k iterations. The batch size is set to 6 on a NVIDIA GeForce GTX
1080p GPU. For final prediction, we ensemble the predictions from
both segmentation networks by averaging their prediction probabili-
ties. We run all experiments three times and report the mean.

4.3 Ablation Study

We perform extensive ablation studies to investigate how our de-
signs contribute to a deep co-training framework for cross-modality
medical image segmentation. Table 1 shows the experiment results.
First, the plain deep co-training framework fails to work due to the
source and target data distribution discrepancy and the violation of
co-training “compatibility" assumption when deep networks over-
fit. Second, the addition of either our proposed decomposed multi-
view adaptation or inter-view regularization technique tackles one
of the above two challenges and helps to boost the performance of
our framework to be better than the source only baseline. Third, the

combination of both components into our framework achieves the
best performance, which is due to the complementary roles of them
played in enabling deep co-training.

Next, we present ablation studies on some other aspects of our
framework. First, our ablation studies show that our framework can
gain about 3 points boost in dice score when we back-propagate the
supervision signal from the segmentation networks to train the im-
age translation model compared to when we do not as shown in Ta-
ble 1. Second, for the final prediction, we ensemble the predictions
from the two segmentation networks. Our ablation studies show that
ensemble generally helps to improve the results when compared to
using either single segmentation network for final prediction.

Finally, we have proposed decomposed multi-view adaptation,
which is a general methodology for multi-view adaptation. We com-
pare it with a naive adaptation method on concatenated multi-view
features. The results show that decomposed multi-view adaptation
leads to better results compared to adaptation on concatenated multi-
view features. To ensure the difference is not due to the larger ca-
pacity of our method as our method have two domain discrimina-
tors, we double the size of the domain discriminator in the compari-
son method. We find that increasing the size of domain discriminator
helps to improve the performance in the comparison method, how-
ever, our method still outperforms it. The experiment results indicate
that dedicated adaptation for each single view is better than adapta-
tion on the concatenated multi-view features without considering the
view-wise features, where adaptation on the concatenated multi-view
features may fail to differentiate the minor differences in each single
view.

4.4 Comparison with State-of-The-Art

We compare our deep co-training framework with state-of-the-art
UDA methods for cross-modality medical image segmentation in-
cluding CBST [34], ATDA [24], SynSeg-Net [13], CycleGAN [31],
PnP-AdaNet [7], AdaOutput [29], CyCADA [11], DSFN [33], SIFA-
v2 [3], DSAN [10], and SSC [12]. CBST is self-training based
UDA method. ATDA is tri-training based UDA method. SynSeg-
Net and CycleGAN are image adaptation based UDA methods. PnP-
AdaNet and AdaOutput are feature adaptation based UDA meth-
ods. CyCADA, DSFN, SIFA-v2, DSAN, and SSC are joint image
and feature adaptation UDA methods. In particular, SIFA-v2, DSFN,
DSAN, and SSC all perform synergistic image and feature adaptation
and are designed for medical image analysis. To demonstrate the do-
main shift across domains, we present the performance lower bound
“Source only" by directly applying the model trained in source do-
main to target data. We also provide the performance upper bound
“Supervised training" by training the model on target labels.

Table 2 presents both the experiment results for cardiac substruc-
ture segmentation and abdominal multi-organ segmentation. As can
be observed, our deep co-training framework significantly outper-
form state-of-the-art UDA methods for cross-modality medical im-
age segmentation. Specifically, for the Cardiac MRI→CT transfer
task, our deep co-training framework has improved the average result
by 1.0 point in Dice score compared to the previously best method.
And for the more challenging Cardiac CT→MRI transfer task, our
framework has improved the average result by 8.2 points in Dice
score and reduced the ASD score by 1.6 points compared to the pre-
viously best method. For abdominal multi-organ segmentation, the
improvement of our deep co-training framework upon SIFA-v2 out-
performs state-of-the-art UDA method SSC by 2.0 points in dice
score and 0.2 points in ASD score for MRI→CT transfer task. For
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Table 2. Performance comparison with state-of-the-art domain adaptation methods on cardiac substructure segmentation and abdominal multi-organ segmen-
tation. Numbers before the slash ‘/’ are for MRI to CT transfer, after the slash ‘/’ are for CT to MRI transfer. Results for method with ∗ are cited from their
paper. ‘+’ and ‘-’ denotes the increment or decrement upon SIFA-v2. Bold number highlights the best performance or best improvement upon SIFA-v2. Note
that we compare our method with SSC and DSAN by improvement upon SIFA-v2 as both codes for SSC and DSAN are not publicly available and we preprocess
the multi-organ dataset differently compared to them.

Cardiac Substructure Segmentation Performance (MRI→CT / CT→MRI)

Method
Dice ASD

AA LAC LVC MYO Avg AA LAC LVC MYO Avg
Supervised training 83.2/82.8 90.5/86.5 92.0/92.4 88.3/79.1 88.5/85.2 2.3/3.8 2.3/2.1 1.7/2.0 1.5/1.6 1.9/2.3

Source only 11.4/0.8 40.3/21.3 8.7/30.4 0.4/10.9 15.2/15.8 33.9/24.7 29.3/19.6 34.3/10.9 34.8/7.6 33.1/15.7
CBST [34] 16.6/15.7 27.8/34.5 12.5/46.4 3.5/32.5 15.1/32.3 36.8/25.3 34.1/19.5 34.7/12.5 31.7/14.0 34.3/17.8
ATDA [24] 46.4/28.5 28.4/37.7 2.7/54.5 2.2/13.6 19.9/33.6 30.1/17.8 41.1/12.6 18.0/14.4 45.6/7.7 33.7/13.1

SynSeg-Net [13] 71.6/41.3 69.0/57.5 51.6/63.6 40.8/36.5 58.2/49.7 11.7/8.6 7.8/10.7 7.0/5.4 9.2/5.9 8.9/7.6
CycleGAN [31] 73.8/64.3 75.7/30.7 52.3/65.0 28.7/43.0 57.6/50.7 11.5/5.8 13.6/9.8 9.2/6.0 8.8/5.0 10.8/6.6
PnP-AdaNet [7] 74.0/43.7 68.9/47.0 61.9/77.7 50.8/48.6 63.9/54.3 12.8/11.4 6.3/14.5 17.4/4.5 14.7/5.3 12.8/8.9
AdaOutput [29] 65.2/60.8 76.6/39.8 54.4/71.5 43.6/35.5 59.9/51.9 17.9/5.7 5.5/8.0 5.9/4.6 8.9/4.6 9.6/5.7
CyCADA [11] 72.9/60.5 77.0/44.0 62.4/77.6 45.3/47.9 64.4/57.5 9.6/7.7 8.0/13.9 9.6/4.8 10.5/5.2 9.4/7.9

DSFN[33] 81.5/53.0 82.7/62.3 76.9/69.0 60.0/36.7 75.3/55.2 11.4/7.5 5.2/8.1 4.6/5.4 4.2/4.9 6.4/6.4
SIFA-v2 [3] 81.3/67.0 79.5/60.7 73.8/75.1 61.6/45.8 74.1/62.1 7.9/6.2 6.2/9.8 5.5/4.4 8.5/4.4 7.0/6.2
DSAN∗ [10] 79.9/71.3 84.8/66.2 82.8/76.2 66.5/52.1 78.5/66.5 7.7/4.4 6.7/7.3 3.8/5.5 5.6/4.3 5.9/5.4
SSC∗ [12] 82.0/NA 85.3/NA 88.4/NA 67.6/NA 80.8/NA 6.2/NA 4.1/NA 3.0/NA 3.4/NA 4.2/NA

Deep Co-Training (Our Proposed) 86.7/72.6 85.5/75.7 84.8/87.2 70.5/63.4 81.8/74.7 7.5/5.2 3.2/4.2 3.0/2.6 3.7/3.4 4.2/3.8

Abdominal Multi-Organ Segmentation Performance (MRI→CT / CT→MRI)

Method
Dice ASD

Spleen R. kidney L. kidney Liver Avg Spleen R. kidney L. kidney Liver Avg
Supervised training 93.8/91.0 89.9/94.4 94.1/92.6 93.8/94.6 92.9/93.1 0.6/1.2 3.4/0.3 0.8/1.1 1.3/0.6 1.5/0.8

Source only 66.2/28.4 66.3/11.7 61.9/46.7 52.5/73.1 61.7/40.0 5.4/11.4 4.8/25.7 3.0/2.3 4.2/2.1 4.4/10.4
CBST [34] 81.8/81.5 77.3/81.8 85.0/86.5 83.4/77.9 81.9/81.9 6.0/2.9 4.4/1.1 2.8/1.9 3.8/2.9 4.3/2.2
ATDA [24] 85.5/43.0 67.7/3.7 62.2/48.6 77.7/30.8 73.3/31.5 3.8/7.8 7.7/24.0 15.9/7.4 7.9/10.7 8.8/12.5

SynSeg-Net [13] 81.1/85.3 82.6/83.9 82.8/87.0 83.8/83.5 82.6/84.9 1.9/1.5 2.4/0.9 2.5/0.9 4.5/2.5 2.8/1.5
CycleGAN [31] 83.3/79.4 80.7/84.4 82.9/89.1 87.4/87.4 83.6/85.1 2.2/2.3 2.8/1.0 1.7/0.7 2.4/2.2 2.3/1.5
AdaOutput [29] 87.2/80.0 81.7/87.1 86.0/85.2 84.0/85.5 84.7/84.5 1.6/0.8 3.2/0.6 1.6/0.8 2.3/1.5 2.2/0.9
CyCADA [11] 86.2/76.2 84.8/86.3 82.6/88.0 85.8/90.3 84.9/85.2 1.9/1.3 2.0/0.6 1.9/0.6 2.3/1.0 2.0/0.9

DSFN [33] 82.4/78.3 83.2/89.1 84.4/90.7 83.3/87.2 83.3/86.3 2.1/4.1 2.6/1.2 1.8/0.6 4.3/1.6 2.7/1.9
SIFA-v2 [3] 83.4/86.9 80.1/89.2 86.6/80.4 87.7/88.6 84.5/86.3 1.5/1.7 2.3/0.6 1.5/0.8 1.9/1.3 1.8/1.1

Deep Co-Training (Our Proposed) 89.2/89.3 81.7/89.8 87.2/87.3 89.9/86.2 87.0/88.1 1.2/0.5 2.4/0.7 1.4/0.6 1.5/1.4 1.6/0.8

DSAN∗ [10] NA/-0.6 NA/+2.3 NA/+3.5 NA/+2.3 NA/+1.8 NA/+0.3 NA/-0.1 NA/-0.4 NA/-0.5 NA/-0.2
SSC∗ [12] +0.5/NA +0/NA +1.1/NA +0.5/NA +0.5/NA +0.1/NA +0/NA -0.3/NA +0/NA +0/NA

Deep Co-Training (Our Proposed) +5.8/+2.4 +1.6/+0.6 +0.6/+6.9 +2.2/-2.4 +2.5/+1.8 -0.3/-1.2 +0.1/+0.1 -0.1/-0.2 -0.4/+0.1 -0.2/-0.3

Table 3. Performance comparison with state-of-the-art domain adaptation
methods on brain tissue segmentation. Bold number highlights the best per-
formance.

Brain Tissue Segmentation Performance MRI→CT

Method cDice ASD
CSF GM WM Avg CSF GM WM Avg

Supervised training 79.6 74.2 84.8 79.6 0.7 0.7 0.8 0.7
Source only 12.7 34.3 9.7 18.9 16.7 5.6 11.1 11.1
CBST [34] 33.4 50.5 37.0 40.3 13.0 6.4 17.4 12.3

SynSeg-Net [13] 66.0 57.7 15.9 46.5 1.3 0.8 2.7 1.6
AdaOutput [29] 60.0 60.6 23.9 48.2 1.5 0.9 5.0 2.5

SIFA-v2 [3] 67.1 60.7 53.9 60.6 1.2 0.9 1.7 1.2
Deep Co-Training (Our Proposed) 75.8 66.1 75.9 72.6 1.1 0.8 1.4 1.1

CT→MRI transfer task, the improvement of our framework upon
SIFA-v2 is the same as DSAN in dice score and 0.1 points better in
ASD score. Note that we compare our method with SSC and DSAN
by improvement upon SIFA-v2 as both codes for SSC and DSAN
are not publicly available and we preprocess the multi-organ dataset
differently compared to them. Finally, the performance of our frame-
work also approaches the supervised training upper bound.

Table 3 presents the experiment results on our large scale pri-
vate brain tissue segmentation dataset. As can be observed, our
framework outperforms state-of-the-art UDA methods significantly.
Specifically, our framework has improved cDice score by 12.0 points
and reduced ASD by 0.1 points compared to state-of-the-art UDA
method SIFA-v2. Note that we do not compare with more advanced
DSAN and SSC methods as their codes are not publicly available.
But our experiment results on the two public datasets already demon-
strate the effectiveness of our framework when compared to theirs.

Fig. 3 shows the visual comparison results for cardiac substructure
segmentation. Due to space limit, we put more visual comparison re-

Table 4. Evaluation on the feature representations learned by the two con-
stituent segmentation networks of our deep co-training framework and that
of SIFA-v2 on cardiac substructure segmentation dataset. DCT-F s = The F s

network in our deep co-training framework, DCT-F t = The F t network in
our deep co-training framework.

Cardiac Substructure Segmentation Performance

Method (Dice) Source Representation Target Representation
MRI→CT CT→MRI MRI→CT CT→MRI

SIFA-v2 [3] 88.9 83.2 78.6 70.7
DCT-F s 91.0 84.5 87.0 79.0
DCT-F t 90.9 84.1 87.2 80.2

sults on abdominal multi-organ segmentation in the supplementary
material. We do not present the visualization results on brain tissue
segmentation as the dataset is private. As can be seen in the figure,
the segmentation masks produced by our deep co-training framework
are closer to the ground truth and contain fewer wrong semantic pre-
diction results. However, as shown in the forth row in Fig. 3, all UDA
methods fail to segment a small portion of ascending aorta, which is
disconnected from the main part due to slice cut. But the supervised
learning method can accurately segment that portion out, which in-
dicates there is still a gap between existing UDA methods and super-
vised learning method that needs to be filled in future works.

4.5 Discussion

Deep Co-Training Learns Better Feature Representations for

Both Domains. One of our arguments to tackle the cross-modality
medical image segmentation task as semi-supervised multi-modal
learning is that semi-supervised multi-modal learning can leverage
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Figure 3. Visual comparison of segmentation results with different unsupervised domain adaptation methods for cardiac CT images and MRI images. The
cardiac substructure of AA, LAC, LVC and MYO are indicated in green, orange, purple, blue colors respectively.

Figure 4. Evaluation on the performance of our framework with reduced
source data annotations on cardiac substructure segmentation (a) MRI→CT
transfer task and (b) CT→MRI transfer task.

the complementary multi-modal information to learn better feature
representations for both domains. To validate it, we evaluate the fea-
ture representations learned by the two constituent segmentation net-
works of our framework and that of state-of-the-art UDA method
SIFA-v2 on cardiac substructure segmentation dataset. For source
representation, we fix the feature learned by our framework and
SIFA-v2, and fine tune the last layer of segmentation network on
labeled source data and report performance on source test data. Sim-
ilarly we do that for target representation. The experiment results are
shown in Table 4. As can be seen, both the two constituent segmen-
tation networks in our framework learns much better feature repre-
sentations compared to that of SIFA-v2 in both domains due to the
leverage of complementary multi-modal information in co-training.
Deep Co-Training is More Robust to Source Annotation Scarcity.

As our framework tackles the cross modality medical image seg-
mentation task as semi-supervised multi-modal learning, our frame-
work naturally handles the case when we have limited annotations
in source domain. To verify it, we compare our framework with the
state-of-the-art UDA method SIFA-v2 [3] when we decrease the an-
notated data size in source domain. Fig. 4 shows the experiment re-
sults. As we can observe, for all source annotation sizes, our frame-
work significantly outperforms SIFA-v2; with the decrease of the an-
notation size, the drop of performance in our framework is much
smaller than SIFA-v2; more importantly, our framework with only
2 annotated source data volume outperforms SIFA-v2 with 16 an-
notated source data volume. The experiment results highlight the
wide applicability of our framework even under extreme annotation
scarcity scenarios.
Sensitivity Analysis. We perform post-experiment sensitivity analy-
sis with the two balancing weights of our framework, namely λadv

Figure 5. Sensitivity analysis of our framework on cardiac substructure seg-
mentation CT→ MRI transfer task with (a) λadv and (b) λreg .

and λreg . As can be seen in Fig. 5, our framework is generally robust
to the change of λadv in a wide range. For λreg , too large or too small
regularization either hinders co-training or fails to effectively regu-
larize the deep networks, which leads to poor performance. Yet even
with the worst value of λreg in Fig. 5(b), our framework still per-
forms better than SIFA-v2 and close to the previously best method
DSAN. The empirical value of λreg = 1 gives the best performance.

5 Conclusions

In this paper, we propose a novel method to tackle cross-modality
medical image segmentation via converting the task into semi-
supervised multi-modal learning with image translation. To this end,
we propose a deep co-training framework, where we address the
challenges of co-training on divergent labeled and unlabeled data dis-
tributions with theoretical analysis on multi-view adaptation and pro-
pose decomposed multi-view adaptation, which is a general multi-
view adaptation methodology and shows better performance than
adaptation with concatenated multi-view features. We further formu-
late inter-view regularization to tackle the challenge of co-training
with deep networks. Our inter-view regularization is a general regu-
larization method to make deep co-training networks to be compat-
ible with the underlying data distribution. We perform extensive ex-
periments to evaluate our framework. We further evaluate our frame-
work with a large scale private dataset to test its applicability in real
clinical settings. Our framework significantly outperforms state-of-
the-art UDA methods on all three segmentation tasks, learns better
feature representations, and is more robust to source data scarcity.
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