
Robustness Testing for Multi-Agent Reinforcement
Learning: State Perturbations on Critical Agents

Ziyuan Zhoua and Guanjun Liua;*

aDepartment of Computer Science, Tongji University, Shanghai, China
ORCiD ID: Ziyuan Zhou https://orcid.org/0000-0002-2649-8666,

Guanjun Liu https://orcid.org/0000-0002-7523-4827

Abstract. Multi-agent reinforcement learning (MARL) has been
widely applied in many fields, such as smart traffic and unmanned
aerial vehicles. However, most MARL algorithms are vulnerable to
adversarial perturbations on agent states. Robustness testing for a
trained model is an essential step for confirming the trustworthiness
of the model against unexpected perturbations. This work proposes
a novel Robustness Testing framework for MARL that attacks states
of Critical Agents (RTCA). The RTCA has two innovations: 1) a
differential evolution (DE) based method to select critical agents as
victims and to advise the worst-case joint actions on them, and 2)
a team cooperation policy evaluation method employed as the ob-
jective function for the optimization of DE. Then, adversarial state
perturbations of the critical agents are generated based on the worst-
case joint actions. This is the first robustness testing framework with
varying victim agents. RTCA demonstrates outstanding performance
in terms of the number of victim agents and destroying cooperation
policies.

1 Introduction

Multi-agent reinforcement learning (MARL) is widely utilized in
multi-agent systems (MAS) such as smart transportation [33, 38]
and unmanned aerial vehicles [3, 25, 31, 34] as a result of its su-
perior performance in team decision-making problems. As the num-
ber of agents increases and the joint-action space of MAS grows
exponentially, MARL faces the issues of high combinatorial com-
plexity and poor scalability. Centralized training and decentralized
execution (CTDE) is currently the more popular framework to ad-
dress these problems, in which all agents share global information
in the training process. In contrast, in the execution phase, each
agent makes independent decisions based on its own perceptions and
policy. Value decomposition networks (VDN) [30] and monotonic
value function factorization (QMIX) [22] are classical CTDE-based
MARL. They introduce a network in the training process to guaran-
tee the Individual-Global-Max (IGM) [26].

However, it is shown that the agents trained by these classical
MARL are sensitive to state perturbation [6, 8, 15, 39]. In reality,
the states of agents are often perturbed due to the presence of sen-
sor noise and malicious attacks. Furthermore, state perturbations to
some of the agents can not only mislead the decision of victims but
also impact the cooperative policy of the team. Robustness testing for

∗ Corresponding Author. Email: liuguanjun@tongji.edu.cn

a model trained by MARL is essential for confirming the trustwor-
thiness of MAS against unexpected perturbations. The perturbation
types are so diverse that it is impossible to cover all possible cases
during testing. Consequently, it is vital to generate perturbation states
via adversarial attacks that significantly impact team collaboration.
Intuitively, the more stealthy and disruptive the attack is, the more
potential it is for robustness testing.

There has been a lot of robustness testing technique on Single-
agent reinforcement learning (SARL), such as using the adversarial
attack based on the gradient of the neural network [9, 37] or con-
structing an adversary as an RL agent [36] to generate the adversar-
ial observation. However, there have been few related research to test
the robustness of MARL against state perturbation of agents. Zhou
et al. [39] demonstrate that the adversary for MARL can be formu-
lated as the stochastic game (SG), and the joint optimal adversarial
state exists. But the influence of individual policy on teams is not
considered during the attack in [6, 39]. They only generate adver-
sarial observation misleading the victim to take actions that are not
within expectations, which may not lead to the failure of team tasks.
The methods in [7, 14, 15] consider the effect of individual actions
on teams by constructing the adversary as SARL or MARL agent.
However, the adversary is trained at the assumption that the victim is
determined. When the victim changes, it needs to be retrained.

Compared with single-agent situations, multi-agent situations face
the following challenges:

1) The victims are uncertain, making the robustness testing process
unable to be formulated as SG. The testing process becomes more
difficult due to this uncertainty.

2) An agent doing a sub-optimal action does not necessarily lead to
team failure.

3) The centralized training process is usually unknown and cannot
be employed during testing. Besides, centralized training is based
on the assumption that all agents make the optimal decision. As
a result, it may not accurately evaluate the team reward when the
agent takes the sub-optimal action. How to estimate the team re-
ward for the adversary is important.

Facing these challenges, this work aims to propose a stealthy and
effective attack method on states of Critical Agents for Robustness
Testing (RTCA), which has the following novel contributions:

1) We propose a novel robust testing framework with two steps. The
first step, based on differential evolution (DE) aims to select crit-
ical agents as victims and determine the worst joint actions they

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230632

3131

should take to decrease the accumulated reward of the team. The
second step is a targeted attack to compute adversarial observation
according to the outcomes of the first step.

2) We introduce a Sarsa-based approach for learning the joint action-
value function in MARL to evaluate the team cooperation policy.
The function clearly represents the relationship between individ-
ual actions and team-accumulated rewards and is used as the ob-
jective function for optimizing DE.

3) The results demonstrate that RTCA performs better when attack-
ing fewer agents. RTCA is more suitable for robustness testing of
models trained by MARL due to its stealthiness and effectiveness.

2 Preliminary

In this section, we introduce decentralized partially observable
Markov processes (Dec-POMDPs) and state-adversarial stochastic
games (SASG). Important concepts are described as follows:

• Adversarial perturbation aims to mislead the actions of agents to
minimize the expected cumulative discount reward of the team.

• Clean observation is generated from the environment state.
• Adversarial observation is an observation after adding an adver-

sarial perturbation to a clean observation.
• The adversary aims to generate the adversarial perturbation.
• Victim is the agent whose observation is perturbed by the adver-

sary, i.e., attacked by the adversary.
• Critical agents are those whose actions impact the team most at a

time step.

2.1 Decentralized Partially Observable Markov
Processes

A Dec-POMDP [18] is defined as a tuple〈
S, {Ai}i∈N , {Oi}i∈N ,N , Z, p, r, γ

〉
where N is the set of agents, the number of agents is N

Δ
= |N |, each

agent i ∈ N Δ
={1, · · · , N}, S is the state set of the environment, the

state s ∈ S, ai ∈ Ai is the action of agent i, Ai is the action space
of the agent i, oi ∈ Oi drawn according to observation function
Z (s,a) : S ×A1×· · ·×AN → O1×· · ·×ON is the observation
of agent i, Oi is the observation space of agent i, r is the immediate
reward, for each agent r1 = · · · = rN = r, R (s,a, s′) : S ×
A1 × · · · × AN × S → R is the reward function of all agents,
p : S ×A1 × · · · ×AN → Δ(S) is the transition probability based
on the joint action a and γ ∈ [0, 1] is the discount factor over time.
The environment is the partial observation. Thus, the observation of
the agent is equal to the agent state in this paper.

It is NEXP-complete to solve Dec-POMDPs due to the combina-
torial problem [2]. CTED is a potential learning paradigm to solve
Dec-POMDPs. A centralized controller exists to evaluate the team
cooperation policy based on the environmental state in the training
process. And in the execution process, each agent takes action ac-
cording to its observation. One of the most classical solutions is via
Q-function factorization, including VDN [30] and QMIX [22]. The
factorization needs to satisfy the IGM condition [26], i.e.,

argmax
a

Qjt (τ ,a) =

⎛⎜⎝ argmax
a1

Q1

(
τ1, a1

)
· · ·

argmax
aN

QN

(
τN , aN

)
⎞⎟⎠ , (1)

where τ ∈ T 1 × · · · × T N is the joint action-observation histories,
T i is the set of action-observation histories of agent i, Qjt : T 1 ×
· · · × T N ×A1 × · · · × AN → R is the joint action-value function
to evaluate the team cooperation policy.

VDN and QMIX are methods to provide additivity and monotonic-
ity, two sufficient conditions for IGM, respectively:

Qjt (τ ,a) =
N∑
i=1

Qi
(
τ i, ai

)
, (2)

∂Qjt (τ ,a)

∂Qi (τ i, ai)
≥ 0, 0 ≤ i < N. (3)

2.2 State-Adversiral Stochastic Game

An SASG [39] is defined as a tuple〈
S, {Ai}i∈N , {Bi}i∈M, {ri}i∈N ,M,N , p, γ

〉
where Bi is the set of adversarial states of agent i, M ⊆ N is the

set of victim agents, and the number of victims is M
Δ
= |M|. Assume

that the adversarial perturbation vi(s) of agent i is deterministic vi :
S → Bi. The value and action-value functions of SASG are

V̂ i
π◦v (s) = Eπ◦v,p

(∞∑
k=0

γkrit+k+1|st = s

)
, (4)

Q̂i
π◦v (s,a) = Eπ◦v,p

(∞∑
k=0

γkrit+k+1|st = s,at = a

)
, (5)

where π ∈
∏1×· · ·×

∏N : S → A1×· · ·×AN is the joint policy,
πi ∈

∏i : S → Ai is the policy of agent i,
∏i is the policy space

of agent i, v
Δ
=

(
vi, · · · , vM

)
denotes the joint adversarial perturba-

tion and π ◦ v denotes the joint policy under the joint adversarial
perturbation.

The value function and the action-value function can respectively
be written as follows:

V̂ i
π◦v∗ (s) = min

vi
V̂ i

π◦(vi,v−i∗) (s) , (6)

Q̂i
π◦v∗ (s,a) = min

vi
Q̂i

π◦(vi,v−i∗) (s,a) , (7)

where v∗
Δ
=

(
v1∗, · · · , vM∗

)
is the joint optimal adversarial per-

turbation, vi is an arbitrary valid adversarial perturbation and

v−i
∗

Δ
=

(
v1∗, · · · , vi−1

∗ , vi+1
∗ , · · · , vM∗

)
. The joint optimal adversarial

perturbation aims to minimize every victim agent’s expected cumu-
lative discount reward.

In [39], the properties of SASG are discussed, including the ex-
istence and contraction of the joint optimal adversarial perturbation.
And they point out that solving the joint optimal adversarial pertur-
bation is equal to solving an SG, which MARL can solve. There-
fore, there is some research to solve this one via MARL [7, 14, 15].
However, the victim agents are certain in the training process. If the
victims are changing, MARL models have to retrain. We solve this
problem in the next section.

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents3132

Environment

Agent 1

Differential Evolution

Adversarial Observation

Generator

Agent 2

Agent N

Agent 1

Agent 2

Victim N-1

Victim N

Sarsa-based

� �, i
i

a
�

� �, i
i

a
�

� �1, , , N
jtQ s a a���� 1

jtQ s a� 1, ,jtj

jtQjtQj
1, , , ,Ns a a r���

Figure 1. The illustration of RTCA.

3 Robustness Testing on Critical Agent States

In this section, we define agent State Adversarial Dec-POMDPs (SA-
Dec-POMDPs) and propose a novel framework to solve it.

Definition 1 (SA-Dec-POMDPs) An SA-Dec-POMDP is defined as
a tuple〈

S, {Ai}i∈N , {Oi}i∈N , {Bi}i∈M,N ,M, Z, r, p, γ
〉

where B is the set of the adversarial observation of agent i. Assume
that the adversarial perturbation vi(τ i) of agent i is a deterministic
function vi : T i → Bi.

Similar to SASG, the adversary aims to minimize the expected cumu-
lative discount reward of the team via manipulating the observation
of the victim. The value function and the action-value function of the
adversary can be written as follows:

V̂ i
πi◦vi∗

(
τ i
)
= min

vi
V̂ i
πi◦vi

(
τ i
)
, (8)

Q̂i
πi◦vi∗

(
τ i, ai

)
= min

vi
Q̂i

πi◦vi

(
τ i, ai

)
. (9)

Obviously, solving the optimal joint policy for the adversary in SA-
Dec-POMDPs is equivalent to solving the optimal joint policy for
the agent in Dec-POMDPs. The action space of the agent in Dec-
POMDPs is the adversarial observation space of the adversary in SA-
Dec-POMDPs. Given this, we can leverage CTDE-based MARL to
address this problem. However, it should be noted that victim agents
are known with certainty, including the number of victims M and
their respective indexes. When the value of M changes, the SA-Dec-
POMDP also changes, it is necessary to retrain the adversary agent
via CTDE-based MARL.

Not only in SA-Dec-POMDPs but SG and SASG, the set of agents
N is a certainty. And learning a MARL model to generate adversar-
ial observations is challenging when the space of one BM is large.
In this paper, we propose a novel robustness testing framework, i.e.,
solving of SA-Dec-POMDPs named RTCA as shown in Figure 1
that can choose critical agents from the set of N as the set of victims

M and provide guidance on the worst joint action of victims, fol-
lowed by generating adversarial observations on them. Furthermore,
our RTCA does not require any training, allowing for a variable set
of victims M to be used.

3.1 Selection of critical agents and worst actions

We present a method based on DE for selecting critical agents and
worst joint actions in MARL. The goal of this method is to identify
those agents and their actions that have the greatest influence on the
overall performance of the system.

Motivated by CTDE, if the joint action-value function is known
for the adversary, the objective of the adversary is as follows:

vde (τ) = arg min
M,{ai

i∈M}
Qjt

(
τ ,aM ,a−M

)
(10)

where aM and a−M are the joint action of the victim and the other
agents, respectively, we employ DE to accomplish this objective. The
DE algorithm is a global optimization algorithm [27, 4, 19] that the
concept of population evolution for exploring the global optimal so-
lution and is extensively applied to solve complex optimization prob-
lems. It maintains a population of candidate solutions represented as
vectors in a high-dimensional search space. During each iteration of
the DE algorithm, new candidate solutions are generated by perturb-
ing the vectors in the population and combining them using a simple
arithmetic operator. The fitness of candidate solutions is then eval-
uated using the objective function, and the best ones are selected to
form the next generation of the population.

The main advantage of the DE algorithm is the use of a differ-
ential mutation operator, which perturbs the candidate solutions in a
way that is guided by the difference between two randomly selected
vectors from the population. This operator allows the algorithm to
explore the search space efficiently and converge to a high-quality
solution relatively quickly.

In this paper, we encode the critical agent and the corresponding
worst joint action into a candidate solution. One candidate solution
contains the actions of M victims, and that is a tuple of 2M elements:
the indexes of critical agents and their joint worst actions ai

i∈M. We
use the same setting with [28]. At the start of the algorithm, a pop-
ulation of 400 candidate solutions D is generated. During every it-
eration, an additional 400 candidate solutions are generated utilizing
the following standard DE formula:

Dj (g + 1) = Dd1 (g) + F (Dd2 (g)−Dd3 (g))

d1 �= d2 �= d3,
(11)

where g is the current generation index, and each element Dj of the
candidate solution is combined with three randomly chosen elements
using a scaling parameter F set to 0.5. The indices of the randomly
chosen elements are represented by d1, d2, and d3. The whole pro-
cess is presented in Algorithm 1.

By doing so, we can identify which agents are most critical to the
team performance, and which actions on them are most likely to lead
to failure or sub-optimal outcomes. The advantages of using DE to
compute the index of critical agents and their joint worst actions are
as follows:

• Less information. The joint action-value function is not neces-
sarily differentiability. In fact, the joint action-value network of
QMIX is non-differentiability, making it difficult for the adver-
sary to estimate the team reward. Furthermore, we consider the

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents 3133

Algorithm 1: Selection of critical agents and worst actions
Input: Objective function Qjt, the joint action-observation

histories τ , the joint policy of agents π, the value
Qjt (τ ,a), population size 400, scaling factor
F = 0.5, crossover rate CR, maximum number of
iterations T

Output: Dbest ∈ D
Δ
={M, {âi}i∈M}

1 Initialize population D with 400 random solutions; and
Evaluate the fitness of each solution in the population based
on Qjt; while t = 1, 2, · · · , T do

2 for each solution xj ∈ D do

3 Randomly select three distinct solutions Dd1 , Dd2

and Dd3 from D;
4 Generate a mutant vector Dj according to (11);
5 Generate a trial vector uj by performing a binary

crossover between xj and Dj with crossover rate
CR;

6 Generate joint action of the victim agent aM
u and aM

D

based on uj and Dj , respectively.
7 Evaluate the fitness of uj ;
8 if Qjt(τ ,a

M
u ,a−M) < Qjt(τ ,a

M
D ,a−M) then

9 Replace Dj with uj in the population D;

10 t = t+ 1;

11 Select and return the best solution found, Dbest, from P .

case of a discrete action space and the situation where a subset of
agents becomes the victim. Even if the joint action-value network
is differentiable, such as in VDN, gradient-based attack methods
cannot be used to solve the worst-case joint action. DE is ideal for
addressing this type of problem.

• More flexibility. It is unnecessary to know the structure of the joint
action-value function; only its inputs and outputs are required.
Therefore, networks trained in any way can be attacked. In ad-
dition, the number of victims M only needs to remain constant
during the current time step and can be changed arbitrarily with-
out retraining.

3.2 Sarsa-based joint action-value function

In Section 4.1, we assume that the joint action-value function is
known to the adversary. However, in reality, this component is not
being deployed. We cannot directly compute Qjt, and more impor-
tantly, the training of Qjt in CTDE is based on the assumption that
all agents make the optimal decision. As a result, the joint action-
value function in VDN or QMIX may not evaluate the team reward.
To solve this problem, we train a joint action-value network based on
Sarsa [1] during the execution process.

Since the π is fixed in the execution process, we use ε-greedy to
explore all situations possible, not just the good trajectories. We con-
struct the joint action-value function Q̃jt as a neural network with
parameters θ. Its input is the environment state s and the joint action
of agent a. Learning object of Q̃jt is to minimize:

Ljt (θ) =
BS∑
k=1

[
Rk + γQ̃jt

(
s′k,a

′
k

)
− Q̃jt (sk,ak)

]
, (12)

where BS is the batch size. The training process is shown in Algo-
rithm 2.

Algorithm 2: Sarsa-based joint action-value function

1 Initialize Q̃θ
jt and replay buffer R;

2 for t = 1, 2, . . . , T do

3 Get the current state of the environment s and the
observation of each agent

[
o1, · · · , oN

]
;

4 Take the ε-greedy joint action a according to[
Q1

(
τ1, a1

)
, · · · , QN

(
τN , aN

)]
and get the next

state s′ and observation
[
o′1, · · · , o′N

]
;

5 Put 〈s,a, r, s′〉 in R;
6 if |R| ≥ BS then

7 Sample BS transitions from replay buffer R
{〈sk,ak, rk, s

′
k〉}k=1,2,··· ,BS ;

8 Update the parameters θ via minimizing (12).

Algorithm 3: RTCA

1 Initialize the environment.
2 for t = 1, 2, . . . , T do

3 Get the current state of the environment s and the
observation of each agent

[
o1, · · · , oN

]
;

4 Generate the victim index and the worst action according
to Algorithms 1 and 2;

5 Generate the adversarial state according to (14);
6 Take action based on the clean observation for the normal

agent and based on the adversarial observation for the
victim agent.

3.3 Generation of adversarial observations

After obtaining the index of the critical agent and the worst joint
action, we aim to generate adversarial perturbation using these to
induce the victim to take the worst actions.

In the classification tasks, there are many methods of targeted
attacks[5, 12, 13, 17], which add the perturbation to the sample to
make the neural network output the targeted label. In our setting,
this type of method can be used to generate adversarial perturbations
based on the policy of the victim agents, misleading them to output
the targeted action. This process can be achieved by optimizing the
following objective function,

Lsa

(
θi, ôi

)
= min

ôi∈Bi

{
−

∑
aj∈Ai

[
âi = aj

]
log

(
πθi

(
aj |ôi

))
+

∑
aj∈Ai

[
zi = aj

]
log

(
πθi

(
aj |ôi

))}
,

(13)
where zi is the action of victim agent i based on the clean observa-
tion, θi is the parameter of the policy network of victim agent i, âi

is the target action of victim agent i and ôi is the perturbation obser-
vation of agent i. This optimization makes the victim take the action
which is closer to the target action and farther to the true one. We use
Fast Gradient Sign Method (FGSM) [5] to address this optimization
problem. FGSM uses the one-step calculation of gradient descent as
follows:

ôi = clip
(
ôi + αsgn

(
∇ôiLsa

(
θi, ôi, âi

)))
, (14)

where α is the step size. Our RTCA is presented in Algorithm 3.

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents3134

0 1 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8m

RN

FGSM

PGD

ATLA

PAAD

RTCA

0 1 2

0.2

0.4

0.6

0.8

1.0

2s3z

0 1 2

0.0

0.2

0.4

0.6

0.8

3s5z

0 1 2

0.2

0.4

0.6

0.8

3s6z

Figure 2. The illustration of robustness test for QMIX. The horizontal coordinate indicates the number of victims, and the vertical coordinate indicates the
winning rate.

0 1 2

0.2

0.4

0.6

0.8

1.0

8m

RN

FGSM

PGD

ATLA

PAAD

0 1 2

0.0

0.2

0.4

0.6

0.8

2s3z

0 1 2

0.0

0.2

0.4

0.6

0.8

3s5z

RTCA

Figure 3. The illustration of robustness test for VDN. The horizontal coordinate indicates the number of victims, and the vertical coordinate indicates the
winning rate.

4 Experiment Results and Analysis

In this section, we demonstrate the outstanding performance of
RTCA in generating adversarial observation from the perspective of
the number of victims and decreasing the team reward. The code is
available at: https://github.com/zhou-ziyuan/RTCA.

4.1 Experiment settings

4.1.1 Environment settings

We evaluate our robustness testing framework on the StarCraft multi-
agent challenge (SMAC) [23]. SMAC is a distributed real-time strat-
egy game widely used to evaluate the performance of RL. The main
task is to defeat the opponent through cooperation among agents.
We conduct experiments on four maps containing 8 Marines (8m),
2 Stalkers & 3 Zealots (2s3z), 3 Stalkers & 5 Zealots (3s5z), and 3
Stalkers & 6 Zealots (3s6z).

• Observation space: At each time step, the agents obtain informa-
tion about their field of view, including the following informa-
tion about their opponent and teammates: distance, relative x, y,
health, shield, and unit type. The state of the environment contains
information about all units on the map. Specifically, the coordi-
nates of all agents relative to the center of the map, as well as the
elements present in their observations are contained. The global
state is only used in the centralized training process. During the
testing process, we only attack the observations of the agents.

• Action space: In the SMAC environment, each agent has access to
four possible actions: move, attacking opponent, stop, and no-op.
Movement is restricted to four cardinal directions: north, south,
east, or west. The attack can only be performed if the enemy unit
is within the shooting range. The stop is to do nothing and the
no-op can take when the agent is dead.

• Reward: The overall goal is to increase the win rate of the agents
as much as possible. SMAC uses shaped reward by default, and
at each time step, the agents receive a reward based on the hit
point damage. In addition, the agent receives an additional reward
for each opponent it defeats and for winning by defeating all op-
ponents. All of these rewards are normalized to ensure that the
maximum cumulative reward earned in an episode is 20.

4.1.2 Benchmark methods

The victim agent is trained via VDN and QMIX with two million
steps. We compare RTCA with the following state-of-art robustness
testing method.

• Random noise (RN). The adversary adds some random perturba-
tions to the observation of the victim agent. We use uniform dis-
tribution noise as a way to interfere with the decision-making of
the victim.

• FGSM and PGD [5, 17]. The adversary generates the adversar-
ial perturbation according to the gradient on the decision-making
network of the victim. It does not consider the effect of the per-
turbation on team cumulative reward, but only the disruption of
individual policy, i.e., making the victim do actions that are in-
consistent with those in the clean observation. We set the step of
PGD as 20.

• ATLA [36]. In the single-agent scenario, the adversary is trained
via PPO [24]. We use MAPPO [35] as adversaries in the multi-
agent scenario. For MAPPO agents, the input is the clean obser-
vation, the action is the adversarial observation, and the reward is
the negative of victimization teams. In the training process, we set
all agents in the environment are victims.

• PAAD [29]. The adversary is trained in two steps: the director
gives advice for the worst joint action, and the actor generates the
adversarial observation based on this action. The director is a PPO

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents 3135

Table 1. The performance of QMIX and VDN in the number of victims is 0, 1, and 2 under RN. WR is the winning rate.

Envs
Number of victims 0 1 2

Victim WR Reward WR Reward WR Reward

8m
QMIX 0.97 19.74±1.45 1.00 20.00 0.90 19.31±2.10
VDN 1.00 20.00 1.00 20.00 0.94 19.48±1.99

2s3z
QMIX 0.97 19.73±1.47 1.00 20.00 0.94 19.72±1.08
VDN 0.90 19.58±1.41 0.94 19.64±1.43 0.90 19.55±1.43

3s5z
QMIX 0.90 19.52±1.52 0.94 19.73±1.09 0.94 19.69±1.28
VDN 0.84 19.22±1.94 0.74 18.90±2.09 0.87 19.44±1.61

3s6z QMIX 0.90 19.48±1.64 0.90 19.45±1.70 0.90 19.37±1.94

Table 2. The results of robustness testing for QMIX and VDN. WR is the winning rate. M is the number of victims. The smaller the WR and reward, the
better. Bold scores represent the best performance.

Envs
Adversary FGSM PGD ATLA PAAD RTCA

M
Victim WR Reward WR Reward WR Reward WR Reward WR Reward

8m

QMIX 0.90 19.25±2.30 0.87 18.98±2.65 0.97 19.79±1.18 0.77 18.18±3.45 0.84 18.86±2.61
1

VDN 0.68 17.24±4.04 0.74 17.78±3.81 0.97 19.75±1.34 0.87 19.04±2.49 0.68 17.36±3.87
QMIX 0.42 15.57±3.82 0.52 16.22±3.94 1.00 20.00 0.52 16.05±4.15 0.29 14.20±3.83

2
VDN 0.16 12.30±3.62 0.19 12.38±4.05 0.90 19.31±2.12 0.23 13.15±3.86 0.06 10.78±2.79

2s3z

QMIX 0.65 17.87±3.13 0.65 17.97±2.82 0.97 19.87±0.79 0.87 19.08±2.41 0.52 16.93±3.43
1

VDN 0.45 16.64±3.34 0.45 16.21±3.67 0.94 19.67±1.44 0.48 16.89±3.29 0.52 16.97±3.37
QMIX 0.13 13.29±2.96 0.13 13.76±2.95 0.93 19.52±1.85 0.10 14.27±2.32 0.10 13.75±2.73

2
VDN 0.03 11.81±1.98 0.06 12.22±2.47 0.87 19.25±2.02 0.03 12.33±2.29 0.06 12.49±2.48

3s5z

QMIX 0.65 17.92±3.03 0.61 18.01±2.68 0.84 19.26±1.79 0.65 18.19±2.63 0.32 16.35±2.91
1

VDN 0.42 16.48±3.39 0.23 15.84±3.01 0.77 19.21±1.76 0.52 17.49±3.12 0.06 14.25±2.69
QMIX 0.13 13.83±2.83 0.19 15.02±2.68 0.81 19.13±1.85 0.10 13.23±2.72 0.00 12.70±1.50

2
VDN 0.03 10.64±2.69 0.00 11.61±2.02 0.81 19.49±1.32 0.03 11.95±3.01 0.00 9.71±1.51

3s6z QMIX
0.61 18.11±2.66 0.55 17.32±3.29 0.94 19.71±1.12 0.48 17.15±3.10 0.35 16.48±3.02 1
0.06 13.15±2.56 0.10 13.78±2.68 0.74 18.97±2.02 0.16 14.08±3.05 0.06 13.40±2.58 2

Table 3. The impact of changing the size of the population in the 3s5z
scenario.

Size M WR Reward Times(s)

1 0.39 16.15±3.23 3110 2 0.03 12.49±2.33 32
1 0.32 16.35±2.91 78400 2 0.00 12.70±1.50 87
1 0.29 15.62±3.24 1701000 2 0.03 12.94±2.11 172

agent in the single-agent scenario. We use the same method (i.e.,
VDN or QMIX) with victims to train MARL directors and set all
agents in the environment are victims.

4.1.3 Perturbation settings and Population Size

The perturbation is set as a 	∞ with a range of 0.1. In our RTCA, the
victim set is changed at each time step. For fairness, it is randomly
changed in the benchmark methods. We conduct 32 episodes and use
winning rates and average team cumulative rewards to evaluate the
performance of those attack methods.

The population size is a hyper-parameter that affects the search
process. As shown in Table 3, a larger population offers broader
search coverage, enabling a more comprehensive exploration of the
solution space, albeit at higher computational costs. Conversely, a
smaller population narrows the search range and may be suitable for

resource-constrained scenarios. However, a smaller population may
not guarantee to find the optimal solution. Therefore, we set the pop-
ulation size as 400.

4.2 Results and discussions

The experiment results are shown in Tables 1 and 2. Figures 2 and
3 provide a more intuitive presentation of the experimental results.
The robustness of VDN is not evaluated in the 3s6z scenario as its
performance is lacking.

In the 8m scenario, the agents are homogeneous and play the same
role in the team. The purpose of IGM in MARL is to solve the prob-
lem of lazy agents and make the contribution of each agent to the
team as equal as possible. However, our experimental results show
that the overall effect of selecting critical agents as victims is bet-
ter than random selection. There might exist more than one critical
agent because each on the team in the 8m scenario performs the same
job, and there is an opportunity that the crucial agent can be chosen
at random. As a result, when attacking just one agent, the PAAD
outperforms the RTCA regarding QMIX. However, the average team
cumulative reward based on PAAD has a high variance, indicating
that there is some randomness in which the agent is chosen as a criti-
cal one. Our strategy demonstrates superior performance in attacking
QMIX in scenarios with heterogeneous agents. For the robustness
testing of VDN, RTCA only performs poorly in the 2s3z scenario
but is similar to PAAD and FGSM. The performance of the model

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents3136

trained by VDN in the 2s3z scenario is poor, which causes the Q̃jt

learned to be worse, making it difficult for the adversary to compute
the worst joint action accurately.

The attack results of random noise are very poor and even enhance
the winning rate of the victim, which indicates that some noise has
a positive effect on the decision-making of MARL agents. This is
not appropriate for finding the robustness fault of MARL. Likewise,
the ATLA method has poor results, similar to those of random noise.
We analyze the reason for this and believe that it is because the joint
observation space of agents grows exponentially with the number of
agents in a multi-agent task. This is very difficult for MAPPO agents
to learn the relationship between clean observations and their joint
actions (i.e., joint adversarial observations). Thus, its effectiveness is
poor. Overall, we can conclude that:

• Random noise does not consider the policy of the victim. There-
fore it is a weak attack method.

• FGSM and PGD only consider the policy of the victim, not the
team cooperation. Bad actions by the victim do not necessarily
lead to the worst for the team.

• ATLA has a large action space, making generating the adversarial
observation difficult.

• PAAD considers the effect of victims on the team, but the victim
must be certain.

• RTCA is the most suitable for robustness testing of MARL due to
its flexibility and strong attack. Furthermore, this kind of attack is
more stealthy because the victim agent changes at every time step.

Table 4. Ablation study. The robustness of QMIX and VDN is evaluated
based on their action-value functions. M is the number of victims

Envs Qjt VDN/QMIX Q̃jt MVictim WR Reward WR Reward

8m

QMIX 0.74 18.15±3.14 0.84 18.86±2.61 1VDN 0.84 18.60±3.19 0.68 17.36±3.87
QMIX 0.35 14.49±4.21 0.29 14.20±3.83 2VDN 0.16 12.23±3.65 0.06 10.78±2.79

2s3z

QMIX 0.52 17.02±3.26 0.52 16.93±3.43 1VDN 0.87 19.41±1.54 0.52 16.97±3.37
QMIX 0.10 13.44±2.53 0.10 13.75±2.73 2VDN 0.39 15.90±3.73 0.06 12.49±2.48

3s5z

QMIX 0.48 17.08±3.11 0.32 16.35±2.91 1VDN 0.42 16.69±3.27 0.06 14.25±2.69
QMIX 0.03 13.14±2.08 0.00 12.70±1.50 2VDN 0.00 11.70±2.17 0.00 9.71±1.51

3s6z QMIX 0.39 17.06±2.75 0.35 16.48±3.02 1
0.00 13.45±1.97 0.06 13.40±2.58 2

4.3 Ablation study

We use the value decomposition network and mixing network in
VDN and QMIX, respectively, to indicate the impact of the action-
value function Q̃jt. The results are demonstrated in Table 4. The
joint action-value function of QMIX more accurately represents the
quality of the joint policy than VDN. Therefore, critical agents can
be chosen as victims and their worst joint actions can be calculated
using Qjt of QMIX. According to the experimental results, it can be
seen that using Q̃jt achieves results comparable to QMIX, and even
better in complex scenarios (3s5z and 3s6z). On the other hand, be-
cause Qjt of VDN cannot accurately evaluate the quality of the joint
action well, it is not advisable to employ it as the objective function
of DE.

Table 5. Transferability of Q̃jt. M is the number of victims.

Envs Q̃jt QMIX VDN
MVictim WR Reward WR Reward

8m

QMIX 0.84 18.86±2.61 0.81 18.56±2.96 1VDN 0.29 13.83±4.11 0.68 17.36±3.87
QMIX 0.29 14.20±3.83 0.48 15.96±3.98 2VDN 0.10 11.63±2.95 0.06 10.78±2.79

2s3z

QMIX 0.52 16.93±3.43 0.55 17.11±3.29 1VDN 0.48 16.25±3.81 0.52 16.97±3.37
QMIX 0.10 13.75±2.73 0.03 13.37±1.98 2VDN 0.00 12.06±1.64 0.06 12.49±2.48

3s5z

QMIX 0.32 16.35±2.91 0.48 16.95±3.23 1VDN 0.13 14.05±3.02 0.06 14.25±2.69
QMIX 0.00 12.70±1.50 0.03 13.52±1.91 2VDN 0.00 10.00±1.65 0.00 9.71±1.51

Table 6. The scalability of RTCA. M is the number of victims.

Adversary PAAD RTCA

Victim WR Reward WR Reward M

QMIX 0.00 10.58±1.97 0.00 10.26±0.98
VDN 0.00 8.29±1.51 0.00 7.57±1.06 4

QMIX 0.00 8.37±1.96 0.00 9.14±1.05
VDN 0.00 6.00±1.11 0.00 6.76±1.27 6

QMIX 0.00 8.26±1.18 0.00 9.13±1.07
VDN 0.00 4.86±1.06 0.00 6.02±0.89 8

4.4 Transferability of Q̃jt

The purpose of this section is to evaluate the transferability of the
Q̃jt. In this context, transferability is defined as the ability of the
Q̃jt trained using the data sampled by one MARL to transfer the
experience to another and successfully attack it. The results present
in Table 5 indicate that the Q̃jt learned via QMIX policy sampling
can be successfully attacked against VDN agents in a majority of
the cases considered. Correspondingly, the Q̃jt trained with VDN
policy sampling demonstrated high success rates in successfully at-
tacking QMIX agents in most of the cases. Such observations hold
significant implications for improving the applicability of adversarial
attacks.In a word, the Sarsa-based Q̃jt exhibits advantageous trans-
ferability qualities and possesses considerable prospects for usage as
a black-box attack.

4.5 Scalability of RTCA

To ensure attack stealthiness, adversaries aim to target a minimal
number of critical agents, leading to poorer overall performance. Si-
multaneously, attacking fewer victim agents makes it more challeng-
ing to detect the attack. In our experiments, we specifically select
only 1 or 2 critical agents as victims. For instance, in the 3s5z sce-
nario with 8 agents, the distinction between critical and non-critical
agents becomes irrelevant when all agents become victims (e.g.,
with 8 victim agents). We conduct experiments in the 3s5z scenario
to demonstrate the scalability of RTCA, as shown in Table 6. As
the number of victims increases, the advantage of selecting critical
agents diminishes, and RTCA still achieves good results.

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents 3137

5 Related Work

5.1 Adversarial attacks on SARL

An extensive body of research has been conducted on methods re-
lated to generating adversarial examples in classification tasks. Fur-
thermore, recent studies have emerged that explore adversarial at-
tacks in the context of SARL. Based on a survey [10], adversarial
attacks on SARL can be classified into four distinct categories, in-
cluding perturbations to the state space, the reward function, the ac-
tion space, and the model space. Huang et al. [9] utilize FGSM for
creating adversarial examples of agent input states. Their findings il-
lustrate the efficacy of adversarial attacks for the model trained by
RL. Pattanaik et al. [20] propose three types of methods contain-
ing random noise, gradient-based, and stochastic gradient decrease.
The sample efficient model-based adversarial attack is introduced
by Weng et al. [32]. To achieve this, they propose a two-step at-
tack framework, including the learning for the dynamic environment
model and the generation of the adversarial state based on the en-
vironment model. Huang et al [37] propose the State-Adversarial
Markov Decision Process (SA-MDP) which indicates the optimal
adversary exists. Besides, they improve the gradient-based attack in
[20] and propose a robust Sarsa attack. They use Sarsa to learn the
critic network in continuous action space, while we use Sarsa to train
the joint action-value network in a discrete one. [36] and [29] are
introduced in Section 4.

5.2 Adversarial attacks on MARL

There are few studies on adversarial attacks in MARL. Lin et al. [15]
propose the method of generating adversarial states for MARL; they
use a two-step attack similar to [29], which reduces the team reward
by perturbing the state of only a fixed agent. Pham et al. [21] extend
[32] to multi-agent setting. Guo et al. [6] propose a comprehensive
robustness testing framework named MARLSafe from three aspects:
state, action, and reward. In these methods, the set of victim agents
is fixed, while in RTCA, the set of victim agents is variable.

6 Conclusion

In this paper, we present a robust testing framework for a model
trained by the state-of-the-art MARL. In our framework, based on
DE, the critical agents are selected as victims, and their worst joint
actions are advised. Moreover, in order to evaluate the team coopera-
tion policy, we present a Sarsa-based method to learn the joint action-
value function in MARL. When the indexes of victims and their joint
worst actions are known, we use the target attack method to generate
the adversarial observation on them. The results clearly indicate the
superiority of our RTCA over the existing ones. Our next work tends
to apply RTCA to continuous action spaces such as MADDPG [16]
and MAAC [11] to test their robustness against observation pertur-
bations of critical agents.

Acknowledgements

This research was supported by the Shanghai Science and Technol-
ogy Committee (No. 22511105500), the National Nature Science
Foundation of China (Nos. 62172299,62032019), and the Funda-
mental Research Funds for the Central Universities (No. 2023-4-YB-
05). We thank Ms. Weiran Guo for providing the code for ATLA.

References

[1] On-line Q-learning using connectionist systems, volume 37, 1994.
[2] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-

stein, ‘The complexity of decentralized control of markov decision pro-
cesses’, Mathematics of operations research, 27(4), 819–840, (2002).

[3] Zhiliang Bi, Xiwang Guo, Jiacun Wang, Shujin Qin, and Guanjun
Liu, ‘Deep reinforcement learning for truck-drone delivery problem’,
Drones, 7(7), (2023).

[4] Bilal, Millie Pant, Hira Zaheer, Laura Garcia-Hernandez, and Ajith
Abraham, ‘Differential evolution: A review of more than two decades
of research’, Engineering Applications of Artificial Intelligence, 90,
103479, (2020).

[5] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explaining
and harnessing adversarial examples’, arXiv preprint arXiv:1412.6572,
(2014).

[6] Jun Guo, Yonghong Chen, Yihang Hao, Zixin Yin, Yin Yu, and Simin
Li, ‘Towards comprehensive testing on the robustness of cooperative
multi-agent reinforcement learning’, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pp. 115–122, (June 2022).

[7] Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, and
Fei Miao, ‘What is the solution for state adversarial multi-agent rein-
forcement learning?’, arXiv preprint arXiv:2212.02705, (2022).

[8] Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and
Fei Miao. Robust multi-agent reinforcement learning with state uncer-
tainties, 2023.

[9] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel, ‘Adversarial attacks on neural network policies’, arXiv preprint
arXiv:1702.02284, (2017).

[10] Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Jan-
jua, Ala Al-Fuqaha, Dinh Thai Hoang, and Dusit Niyato, ‘Challenges
and countermeasures for adversarial attacks on deep reinforcement
learning’, IEEE Transactions on Artificial Intelligence, 3(2), 90–109,
(2022).

[11] Shariq Iqbal and Fei Sha, ‘Actor-attention-critic for multi-agent re-
inforcement learning’, in Proceedings of the 36th International Con-
ference on Machine Learning, eds., Kamalika Chaudhuri and Ruslan
Salakhutdinov, volume 97 of Proceedings of Machine Learning Re-
search, pp. 2961–2970. PMLR, (09–15 Jun 2019).

[12] Yang Jiao, Kai Yang, and Dongjin Song, ‘Distributed distributionally
robust optimization with non-convex objectives’, in Advances in Neu-
ral Information Processing Systems, eds., S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, volume 35, pp. 7987–
7999. Curran Associates, Inc., (2022).

[13] Maosen Li, Cheng Deng, Tengjiao Li, Junchi Yan, Xinbo Gao, and
Heng Huang, ‘Towards transferable targeted attack’, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), (June 2020).

[14] Simin Li, Jun Guo, Jingqiao Xiu, Pu Feng, Xin Yu, Jiakai Wang, Ais-
han Liu, Wenjun Wu, and Xianglong Liu, ‘Attacking cooperative multi-
agent reinforcement learning by adversarial minority influence’, arXiv
preprint arXiv:2302.03322, (2023).

[15] Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia,
and Nicolas Papernot, ‘On the robustness of cooperative multi-agent
reinforcement learning’, in 2020 IEEE Security and Privacy Workshops
(SPW), pp. 62–68, (2020).

[16] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch, ‘Multi-agent actor-critic for mixed cooperative-
competitive environments’, in Advances in Neural Information Pro-
cessing Systems, eds., I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, volume 30. Curran
Associates, Inc., (2017).

[17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, ‘Towards deep learning models resistant to
adversarial attacks’, in 6th International Conference on Learning Rep-
resentations, ICLR 2018, Conference Track Proceedings, Vancouver,
BC, Canada, (30 Apr – 3 May 2018). OpenReview.net.

[18] Frans A Oliehoek and Christopher Amato, A concise introduction to
decentralized POMDPs, Springer, 2016.

[19] Karol R. Opara and Jarosław Arabas, ‘Differential evolution: A sur-
vey of theoretical analyses’, Swarm and Evolutionary Computation, 44,
546–558, (2019).

[20] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan,

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents3138

and Girish Chowdhary, ‘Robust deep reinforcement learning with ad-
versarial attacks’, in Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS ’18,
p. 2040–2042, Richland, SC, (2018). International Foundation for Au-
tonomous Agents and Multiagent Systems.

[21] Nhan H Pham, Lam M Nguyen, Jie Chen, Hoang Thanh Lam, Subhro
Das, and Tsui-Wei Weng, ‘Evaluating robustness of cooperative marl:
A model-based approach’, arXiv preprint arXiv:2202.03558, (2022).

[22] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gre-
gory Farquhar, Jakob Foerster, and Shimon Whiteson, ‘Monotonic
value function factorisation for deep multi-agent reinforcement learn-
ing’, J. Mach. Learn. Res., 21(1), (jan 2020).

[23] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gre-
gory Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung,
Philip H. S. Torr, Jakob Foerster, and Shimon Whiteson, ‘The starcraft
multi-agent challenge’, in Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
p. 2186–2188, Richland, SC, (2019). International Foundation for Au-
tonomous Agents and Multiagent Systems.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov, ‘Proximal policy optimization algorithms’, arXiv
preprint arXiv:1707.06347, (2017).

[25] Haoran Shi, Guanjun Liu, Kaiwen Zhang, Ziyuan Zhou, and Jiacun
Wang, ‘Marl sim2real transfer: Merging physical reality with digital
virtuality in metaverse’, IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 53(4), 2107–2117, (2023).

[26] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero,
and Yung Yi, ‘QTRAN: Learning to factorize with transformation for
cooperative multi-agent reinforcement learning’, in Proceedings of the
36th International Conference on Machine Learning, eds., Kamalika
Chaudhuri and Ruslan Salakhutdinov, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 5887–5896. PMLR, (09–15 Jun 2019).

[27] Rainer Storn and Kenneth Price, ‘Differential evolution – a simple and
efficient heuristic for global optimization over continuous spaces’, J. of
Global Optimization, 11(4), 341–359, (dec 1997).

[28] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai, ‘One
pixel attack for fooling deep neural networks’, IEEE Transactions on
Evolutionary Computation, 23(5), 828–841, (2019).

[29] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang,
‘Who is the strongest enemy? towards optimal and efficient evasion
attacks in deep RL’, in International Conference on Learning Repre-
sentations, (2022).

[30] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czar-
necki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas
Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel, ‘Value-
decomposition networks for cooperative multi-agent learning based
on team reward’, in Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS ’18,
p. 2085–2087, Richland, SC, (2018). International Foundation for Au-
tonomous Agents and Multiagent Systems.

[31] Liang Wang, Kezhi Wang, Cunhua Pan, Wei Xu, Nauman Aslam, and
Lajos Hanzo, ‘Multi-agent deep reinforcement learning-based trajec-
tory planning for multi-uav assisted mobile edge computing’, IEEE
Transactions on Cognitive Communications and Networking, 7(1), 73–
84, (2021).

[32] Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham*, Jonathan Uesato*,
Kai Xiao*, Sven Gowal*, Robert Stanforth*, and Pushmeet Kohli, ‘To-
ward evaluating robustness of deep reinforcement learning with con-
tinuous control’, in International Conference on Learning Representa-
tions, (2020).

[33] Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang,
and Dapeng Oliver Wu, ‘Multi-agent deep reinforcement learning for
urban traffic light control in vehicular networks’, IEEE Transactions on
Vehicular Technology, 69(8), 8243–8256, (2020).

[34] Min Yang, Guanjun Liu, Ziyuan Zhou, and Jiacun Wang, ‘Partially ob-
servable mean field multi-agent reinforcement learning based on graph
attention network for uav swarms’, Drones, 7(7), (2023).

[35] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang,
Alexandre Bayen, and YI WU, ‘The surprising effectiveness of ppo
in cooperative multi-agent games’, in Advances in Neural Information
Processing Systems, eds., S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, volume 35, pp. 24611–24624. Curran Asso-
ciates, Inc., (2022).

[36] Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh, ‘Ro-

bust reinforcement learning on state observations with learned optimal
adversary’, in International Conference on Learning Representations,
(2021).

[37] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Du-
ane Boning, and Cho-Jui Hsieh, ‘Robust deep reinforcement learning
against adversarial perturbations on state observations’, in Advances in
Neural Information Processing Systems, eds., H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, volume 33, pp. 21024–
21037. Curran Associates, Inc., (2020).

[38] Ziyuan Zhou, Guanjun Liu, and Ying Tang, ‘Multi-agent reinforcement
learning: Methods, applications, visionary prospects, and challenges’,
arXiv preprint arXiv:2305.10091, (2023).

[39] Ziyuan Zhou, Guanjun Liu, and Mengchu Zhou, ‘A robust mean-field
actor-critic reinforcement learning against adversarial perturbations on
agent states’, IEEE Transactions on Neural Networks and Learning
Systems, 1–12, (2023).

Z. Zhou and G. Liu / Robustness Testing for Multi-Agent Reinforcement Learning: State Perturbations on Critical Agents 3139

