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Abstract. User-item interaction data in recommender systems is
a form of dyadic relation, reflecting user preferences for specific
items. To generate accurate recommendations, it is crucial to learn
representations for both users and items. Recent multimodal recom-
mendation models achieve higher accuracy by incorporating mul-
timodal features, such as images and text descriptions. However,
our experimental findings reveal that current multimodality fusion
methods employed in state-of-the-art models may adversely affect
recommendation performance without compromising model archi-
tectures. Moreover, these models seldom investigate internal rela-
tions between item-item and user-user interactions. In light of these
findings, we propose a model that enhances the dyadic relations by
learning Dual RepresentAtions of both users and items via con-
structing homogeneous Graphs for multimOdal recommeNdation.
We name our model as DRAGON. Specifically, DRAGON constructs
user-user graphs based on commonly interacted items and item-item
graphs derived from item multimodal features. Graph learning on
both the user-item heterogeneous and homogeneous graphs is used
to obtain dual representations of users and items. To capture in-
formation from each modality, DRAGON employs an effective fu-
sion method, attentive concatenation. Extensive experiments on three
public datasets and eight baselines show that DRAGON can outper-
form the strongest baseline by 21.41% on average. Our code is avail-
able at https://github.com/hongyurain/DRAGON.

1 Introduction

As society evolves, recommender systems have become indispens-
able tools to assist users in finding products and services tailored to
their preferences. Previous work [1, 17, 7, 26] have examined histori-
cal user-item interactions, which can be regarded as a form of dyadic
relation, to capture user preferences. However, these methods exhibit
suboptimal performance due to the sparse nature of interactions be-
tween users and items in real-world datasets.

To alleviate the data sparsity problem, recent multimodal recom-
mender systems that utilize multimodal information (e.g., item de-
scriptive texts, product images) to enhance recommendation perfor-
mance have gained considerable attention. A line of research [11, 6]
integrates multimodal features as supplementary information to im-
prove latent item representations within the classic collaborative
filtering framework. Inspired by the success of graph neural net-
works (GNNs) in recommendation [20, 7], recent studies have fo-
cused on modeling user-item interactions as a bipartite graph and in-
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tegrating multimodal information with graph structure. For instance,
MMGCN [24] constructs a user-item bipartite graph for each modal-
ity to obtain modal-specific representations for better understanding
user preferences. GRCN [23] introduces a graph refine layer capa-
ble of identifying noisy edges and eliminating false-positive edges
to clarify the structure of the user-item interaction graph. Dual-
GNN [19] and LATTICE [25] incorporate either user-user or item-
item relations into the user-item interactions, achieving state-of-the-
art recommendation performance. Although these models demon-
strate effective recommendation accuracy, we posit that high-order
relations on both sides of dyadic relations can be explored simul-
taneously to fully address the data sparsity issues. Inspired by the
dual representation learning mechanism [27], we enhance the rep-
resentation learning of users and items by incorporating their dual
representations to capture both the inter- and intra-relations between
users and items.

Furthermore, we experimentally reveal that these methods fail to
effectively fuse the modality features. Specifically, we conduct an ab-
lation study of multimodal features on two competitive multimodal
models, DualGNN [19] and LATTICE [25]. The results presented in
Table 1 show that the performance of these models fed with a sin-
gle modality, especially textual features, outperforms that with both
modalities. This finding poses a meaningful question: How can we
effectively fuse the multimodal information for recommendation?

Table 1. Performance of DualGNN [19] and LATTICE [25] utilizing
features in different modalities. R and N denote evaluation metrics Recall

and NDCG. T and V denote textual and visual information.

Dataset Metric DualGNN LATTICE
V&T T V V&T T V

Baby

R@10 0.0448 0.0612 0.0511 0.0547 0.0546 0.0492
R@20 0.0716 0.0943 0.0830 0.0850 0.0874 0.0781
N@10 0.0240 0.0331 0.0278 0.0292 0.0287 0.0265
N@20 0.0309 0.0417 0.0360 0.0370 0.0371 0.0339

Sports

R@10 0.0568 0.0697 0.0615 0.0620 0.0625 0.0572
R@20 0.0859 0.1060 0.0926 0.0953 0.0971 0.0887
N@10 0.0310 0.0379 0.0335 0.0335 0.0336 0.0312
N@20 0.0385 0.0473 0.0415 0.0421 0.0425 0.0393

Clothing

R@10 0.0454 0.0524 0.0420 0.0492 0.0521 0.0408
R@20 0.0683 0.0798 0.0636 0.0733 0.0749 0.0614
N@10 0.0241 0.0281 0.0229 0.0268 0.0290 0.0221
N@20 0.0299 0.0351 0.0283 0.0330 0.0348 0.0273

To address this question, we investigate the performance of various
modality fusion methods, including Max-pooling, Mean-pooling,
Attentively Sum, and Attentively Concatenation. Our experiments
indicate that the late-fusion approach, Attentively Concatenation,
which directly concatenates the textual and visual features as the
multimodal representation, achieves the best performance.
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In light of these findings, we propose a framework that learns Dual
RepresentAtions of both users and items via constructing homoge-
neous Graphs for multimOdal recommeNdation (DRAGON). Speci-
ficly, DRAGON constructs a heterogeneous user-item bipartite graph
for each modality to learn the modality-specific representations. It
then employs the direct attentive Concatenation fusion method to
better exploit the learned modality-specific information. To learn
dual representations, we construct two homogeneous graphs based
on the user co-occurrence and the item semantic features to capture
the user preference from neighboring users and the latent item con-
tent semantic from neighboring items. Finally, DRAGON leverages
the learned dual representations of users and items to make recom-
mendations. Extensive experiments are conducted on three public
datasets to show the effectiveness of our proposed method.

2 Related Work

2.1 Multimodal Recommendation

Collaborative filtering (CF) based models are widely employed [8,
20, 33, 32] in recommender systems. These CF-based methods lever-
age historical interactions between users and items to predict user
preferences. However, they often suffer from data sparsity issues, as
user-item interactions are typically limited in real-world datasets.

To mitigate this problem, massive multimodal content informa-
tion has been utilized to improve recommendation performance. For
instance, VBPR [6], the first model to consider visual information,
leverages the visual features from a pre-trained Convolutional Neu-
ral Network (CNN) to augment the matrix factorization by incorpo-
rating the visual features with ID embeddings. Inspired by the fact
that humans process the modality information with varying atten-
tion, VECF [4] models user attention on different regions of images
and reviews to better capture user preferences. Recently, Graph Neu-
ral Networks (GNNs) have gained increased attention in the con-
text of multimodal-based recommender systems. MMGCN [24] en-
hances the quality of learned user and item representations by con-
structing a modality-specific user-item bipartite graph and adapting
the message-passing mechanism of GNNs. Building on MMGCN,
GRCN [23] introduces a graph refine layer capable of identifyling
noisy edges and eliminating false-positive edges to refine the struc-
ture of the user-item interaction graph. DualGNN[27] incorporates
an attention mechanism to capture user preferences across differ-
ent modalities, while constructing a user-user graph to learn the
user preference from neighboring users. LATTICE [25] builds an
item-item graph for each modality, combining them to form a la-
tent modality-fused item graph. Through graph convolution opera-
tions, items can share information from highly linked affinities within
the graph to enhance their representations. Authors in [30] demon-
strate that learning the item-item graph in LATTICE yields negligi-
ble improvement in recommendation performance, and freezing the
graph is more beneficial for recommendations. Self-supervised learn-
ing techniques have also proven to be effective in multimodal recom-
mendation systems. SLMRec [18] integrates self-supervised learning
tasks into GNNs to uncover latent patterns from multi-modalities,
thereby learning powerful representations. BM3 [34] bootstraps la-
tent representations of both ID embeddings and multimodal features
using a contrastive view generator and designs three contrastive ob-
jective functions to optimize representations for effective and effi-
cient recommendations. For an in-depth exploration of multimodal
recommender systems, we recommend consulting the comprehen-
sive survey conducted by [29].

2.2 Multimodal Fusion

Identifying a fused multi-modal representation that is complemen-
tary and comprehensible can significantly enhance performance.
Technically speaking, multi-modal fusion integrates information
from different modalities to create a multimodal representation ap-
plicable to various tasks, such as link prediction [13, 12] and node
classification [28], etc. It can be categorized into early fusion, late
fusion and hybrid fusion [2]. Early fusion incorporates extracted fea-
tures at the beginning, while late fusion integrates information after
each modality has completed its decision-making process (e.g., clas-
sification or regression). Hybrid fusion combines the two methods.
For example, ACNet [9] employs an early fusion method based on
the attention mechanism. Regarding late fusion, NMCL [22] utilizes
the cooperative networks for each modality to perform feature aug-
mentation with the attention mechanism, followed by late fusion ap-
plied to predictions from various modalities. CELFT [21] designs a
hybrid fusion method, combining both early and late fusion, to over-
come the limitations of single fusion methods.

Multimodal recommendation models [24, 25, 27] typically apply
mean-pooling, attentive sum or max-pooling. Our experimental re-
sults suggest that those models use a single modality representation
leads to better performance than utilizing the multimodal represen-
tation learned from these fusion methods. It indicates that sum and
max pooling methods may result in information loss when perform-
ing multimodal fusion. To address this issue, we adopt attentive con-
catenation fusion without reducing the embedding dimension, which
has proven more effective in combining information from different
modalities for recommendations.

3 Methodology

This section provides a detailed explanation of our proposed model
DRAGON. Fig. 1 presents the overall architecture of DRAGON, which
consists of four main components: (1) Graph learning on a modality-
specific heterogeneous graph to obtain uni-modal representations;
(2) A Multimodal representation learning module that captures user
preferences across different modalities and extracts complementary
information from each modality; (3) Graph learning on homoge-
neous graphs to capture the co-occurrence relations between users
and the semantic relations between items; (4) A predictor module
that ranks candidate items based on scores calculated from final user

and item representations.
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Figure 1. An overview of our proposed DRAGON.

3.1 Preliminary

Given a set of N users u ∈ U , a set of M items i ∈ I. We model
the dyadic relations of user interactions as a user-item bipartite graph
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G = {U , I, E}, where we regard the historical interactions as the set
of edges in the graph denoted by E . Besides the user-item interac-
tions, each item is associated with multimodal content information
m ∈ {v, t}, where v and t represent the visual and textual fea-
tures respectively. We denote the modality feature for an item i as
xm

i ∈ R
dm , where dm denotes the feature dimension of modality

m. In this paper, we only consider the visual and textual modalities
denoted by v and t . However, the proposed framework can be easily
extended to scenarios involving more than two modalities.

3.2 Dual Representation Learning

Learning the representations of users and items is critical for the rec-
ommendation system. All representation learning-based techniques
assume the existence of a common representation containing consis-
tent knowledge of different views of items [27]. Distinct item views
contain specific discriminant information in addition to consistent
knowledge about this item. We construct the heterogeneous and ho-
mogeneous graphs together to learn dual representations of both user
and item, capturing both internal associations and relationships be-
tween users and items.

3.2.1 Heterogeneous Graph

To learn modality-specific user and item representations, we con-
struct a user-item graph for each modality, which is denoted as Gm.
Following MMGCN [24], we maintain the same graph structure G for
different Gm, but only retain the node features associated with a spe-
cific modality m. We adopt LightGCN [7] to encode Gm. As shown
in [7], LightGCN simplifies graph convolutional operations by ex-
cluding the feature transformation and nonlinear activation modules
to improve recommendation performance while easing the model op-
timization process. Specifically, the user and item representations at
the (l+ 1)-th graph convolution layer of Gm are derived as follows:

u
(l+1)
m =

∑

i∈Nu

1
√

|Nu|
√

|Ni|
i
(l)
m , i

(l+1)
m =

∑

u∈Ni

1
√

|Nu|
√

|Ni|
u

(l)
m .

(1)

where Nu and Ni are the set of first hop neighbors of u and i in Gm.
u

(0)
m is randomly initialized and i

(0)
m is initialized with xm

i . The sym-
metric normalization 1√

|Nu|
√

|Ni|
is used to normalize the modality

features learned from each layer which avoids the increase of scale
when performing the graph convolutional operations.

After L layers of data propagation, we combine the representations
from every GCN layer using element-wise summation to derive the
modality-specific representations for users and items. Formally,

um =
L∑

l=0

u(l)
m , im =

L∑

l=0

i(l)m . (2)

In such cases, the historical interactions and modality informa-
tion have been encoded into the final single-modal representations
of users and items. These operations are applied to each modality
by propagating on the modality-specific user-item bipartite graphs to
learn the representations for each modality.

3.2.2 Homogeneous Graph

In addition to employing the heterogeneous graph, which encodes
the dyadic relation between users and items, we argue that recom-
mendation performance can be further enhanced by modeling the in-
ternal relations between users or items. For the two homogeneous

graphs, we pre-establish and freeze them to maintain the initial co-
occurrence relation and semantic meaning.

User Co-occurrence Graph. Based on the assumption that users
who have interacted with similar items typically have similar pref-
erences, we argue that the user’s preference pattern is hidden inside
the co-occurrence items and we construct a homogeneous user co-
occurrence graph to learn the internal relations. However, the num-
bers of co-occurrence items between users span a broad range. Gen-
erally, the user will have a high number of commonly interacted
items with a small group of users but few items with other users.
We only consider those with more commonly interacted items with
the user to capture similar preferences. To explicitly model the item
co-occurrence patterns of users, we construct a homogeneous user
co-occurrence graph G̃ = {U ,Pu}, where Pu = {eu,u′ |u, u′ ∈ U}
denotes the edges between user nodes in G̃ and eu,u′ record the num-
ber of items that commonly interacted with u and u’.

For every user u ∈ U , we retain its top-k users with the highest
number of commonly interacted items. Specifically, we keep the edge
weight eu,u′ if u′ belongs to the top-k users. Otherwise, the edge
weight is 0.

eu,u′ =

{
eu,u′ if eu,u′ ∈ top-k(eu),
0 otherwise.

(3)

Upon establishing the user co-occurrence graph, we incorporate
the attention mechanism during graph propagation. The weight used
for aggregating neighboring nodes for a user is computed using the
softmax function to maximize the effect of neighboring users with a
higher number of commonly interacted items. The representation of
u learned from G̃ at layer l+1 is denoted as h(l+1)

u , which is derived
as follows:

h(l+1)
u =

∑

u′∈Nu

exp(eu,u′)∑
û∈Nu

exp(eu,û)
h

(l)

u′ . (4)

where eu,u′ indicates the number of common interacted items be-
tween u and u′ and Nu denotes the neighbors of user u in G̃. In
this case, the representation of each user can be enhanced based on
neighbors in the co-occurrence graph.

We experimented with alternative methods to construct the user
graph, such as averaging the features of neighbor items to represent
the user or using contrastive loss to minimize the difference between
neighboring users. However, these methods did not yield satisfactory
performance. Ultimately, we found that the simple but efficient co-
occurrence method worked best. In the future, there may be potential
to develop more effective approaches for constructing the user graph.

Item Semantic Graph. Multimodal features offer rich and valu-
able content information about items, but previous studies [23, 19]
neglect the significant underlying semantic relations of item fea-
tures. Inspired by [25], we argue that item features are objective and
we could establish the modality-specific homogeneous item graphs
based on raw features to learn the internal relations between items.
Specifically, we construct the modality-aware item semantic graph
Ĝm = {I,Pi

m} for each modality m, where Pi
m = {emi,i′ |i, i′ ∈ I}

denotes the edges between item nodes in Ĝm. For an edge ei,i′ , its
weight is calculated by the cosine similarity between original modal-
ity features of xm

i and xm
i′ :

emi,i′ =
(xm

i )�xm
i′

‖xm
i ‖‖xm

i′ ‖
. (5)

The derived Ĝm is a fully connected graph where edge weights
are calculated based on the similarity scores of modality features of
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connected nodes. Next, we make the graph sparse by retaining the
top-k similar items of every item. As the Ĝm is a weighted graph, we
convert it into an unweighted graph that captures the fundamental
relation structure of the most related items [3]. Formally,

emi,i′ =

{
1 if emi,i′ ∈ top-k(emi ),

0 otherwise.
(6)

Since we get one item semantic graph for each modality, we com-
bine them by performing weighted summation based on the im-
portance score αm that indicates the contribution of each modal-
ity and the summation is 1. Formally, Ĝ = {I,Pi}, where Pi =
{ei,i′ |i, i′ ∈ I} and ei,i′ =

∑
m∈M αmemi,i′ .

LATTICE [25] designs an item-item graph structure similar to ours
but the item-item structure learning of LATTICE is proven to be dis-
pensable as disclosed by [30]. We decide to freeze it during training
so that it could reach a better performance.

After establishing the item semantic graph, we apply the graph
convolution operation on it to capture the item-item relationship:

h
(l+1)
i =

∑

i′∈Ni

ei,i′h
(l)

i′ . (7)

where Ni denotes the neighbors of item i in Gi. Both h
(0)
u and h

(0)
i

are initialized with their fused representations uf and if , which are
introduced in the following section.

3.3 Multimodal Fusion

A crucial factor influencing multimodal recommendation accuracy
is multimodal fusion. As mentioned in Section 1, some previous
multimodal recommendation models utilizing single-modal informa-
tion outperform those using multimodal information without chang-
ing the model structure. We hypothesize their fusion methods may
fail to capture modality-specific characteristics and even corrupt the
learned single-modality representation. Our aim is to learn multi-
modal representations that can capture complementary information
not contained within a single modality. To fuse the single modal fea-
tures derived from modality-specific user-item graphs, we apply the
Attentive Concatenation for user multimodal embeddings, which
capture user preferences across different modalities, and direct Con-

catenation for item multimodal embeddings. The attention weight α
for users is initialized to 0.5 learned during the training to capture
important scores of different modalities. Formally,

uf = αuv ‖ (1− α)ut, if = iv ‖ it. (8)

where ‖ denotes the concatenation operation. By performing atten-
tive concatenation, we assume the single modality representations
carry the richest information for each modality and this operation
can capture the intact complementary information from each modal-
ity. The attention weight α will help measure the importance of each
modality influencing user preferences. Our approach involves utiliz-
ing attentive concatenation for user representations while employing
concatenation for items. This is because the importance of the differ-
ent modalities in the item representation has already been captured
through the combination of item semantic graphs mentioned earlier.
To validate the effectiveness of our approach, we conducted an ab-
lation study comparing different modality fusion methods, and the
results demonstrate the superiority of our method in terms of perfor-
mance.

Regularization is employed to prevent overfitting when the model
is too complex and starts fitting the noise in the data rather than the

underlying patterns. Modality weight α has been added as the regu-
larization penalty term to the loss function, which helps reduce model
complexity by encouraging smaller values for the model parameters
and preventing them from taking on large values that may cause over-
fitting. By adding a penalty term to the loss function, regularization
encourages the model to learn simpler representations of the data that
are more likely to generalize to new, unseen data.

3.4 Integration with Dual Representations
We integrate representations of users and items learned from het-
erogeneous (i.e., Modality-specific User-Item Graphs) and homo-
geneous (i.e., User Co-occurrence Graph & Item Semantic Graph)
graphs to form their dual representations, ensuring that interactions
between users and items, as well as their internal relations, are effec-
tively captured. We perform element-wise summation on the outputs
learned from the three graphs to generate the dual representations for
u and i:

zu = uf + hLu
u , zi = if + hLi

i . (9)

where zu and zi denote the final representations of user u and item
i. Lu and Li denote the number of GCN layers for the user co-
occurrence graph and item semantic graph respectively.

3.5 Optimization
To optimize the parameters of DRAGON for the recommendation task,
we leverage the Bayesian Personalized Ranking (BPR) loss [17],
which aims to score higher for the positive item than the negative
one. We construct a triplet set R that includes the triplet (u, i, j) for
each user u with the positive item i and a randomly sampled nega-
tive item j that has no interactions with u. The loss function Lrec is
defined as follows,

R = {(u, i, j)|(u, i) ∈ E , (u, j) /∈ E},
Lrec =

∑

(u,i,j)∈R
−lnσ(yui − yuj) + λ‖Θ‖2. (10)

yui = z�
u zi calculates the inner product of zu and zi, λ is the L2

regularization weight, and Θ denotes model parameters.

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets

We conduct experiments on three categories Baby, Sports and Cloth-
ing from the Amazon dataset [14], which contains product descrip-
tions and images as textual and visual features. We follow previous
work [6, 7, 25] to use implicit feedback that tracks users’ preferences
by monitoring performed actions like review here but not considers
the exact ratings. Moreover, We retain the 5-core setting for users
and items, ensuring that each user or item is associated with at least
5 interactions. We use the pre-trained sentence-transformers [16] to
extract text features with a dimension equal to 384 and follow [25]
to use the published 4096-dimensional visual features. The dataset
statistics are summarised in Table 2. Sparse data is a common issue
in recommendation systems that arises from the fact that the majority
of users typically only interact with a small subset of items, resulting
in a sparse user-item interaction matrix. Data sparsity is calculated
by dividing the number of interactions by the product of the number
of items and users.

H. Zhou et al. / Enhancing Dyadic Relations with Homogeneous Graphs for Multimodal Recommendation3126



Table 2. Statistics of the datasets.

Dataset # Users # Items # Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 278,677 99.97%

4.1.2 Baselines

To evaluate the performance of our proposed model DRAGON, we
compare it with traditional recommendation models that only uti-
lize u-i interaction and multimodal models that reach the current best
performance. We conform to the settings and hyperparameter search
methods of the baseline papers, ensuring fair comparison.
1) General recommendation models:

• BPR [17] optimizes the user and item representations utilizing the
matrix factorization method.

• LightGCN [7] simplifies the Graph Convolution Network by dis-
carding the feature transformation and nonlinear activation mod-
ules.

2) Multimodal recommendation models:

• VBPR [6] integrates visual features into item representations. For
a fair comparison, we combine text and vision features to learn
item representations.

• DualGNN [19] proposes using representations learned from
modality-specific graphs and fusing the representations of neigh-
bors in the user correlation graph.

• GRCN [23] locates and removes the false-positive edges in the
graph. It then learns representations of items and users by conduct-
ing information propagation and aggregation in the refined graph.

• LATTICE [25] introduces an item-item graph on each modality
and obtains the latent item semantic graph by aggregating infor-
mation from all modalities.

• SLMRec [18] uses self-supervised learning techniques that sup-
plement the supervised tasks to uncover the hidden signals from
the data itself with contrastive loss.

• BM3 [34] uses self-supervised learning techniques that bootstrap
latent representations of both ID embeddings and multimodal fea-
tures. It designs a multi-modal contrastive loss to optimize the ob-
jective functions without negative samples.

4.1.3 Evaluation Metrics

We follow the settings as previous models [25, 30] to randomly split
the historical interactions with the ratio of 8:1:1 as train, valid and
test sets. Moreover, we adopt the widely used metrics Recall@K
and NDCG@K (denoted by R@K and N@K) to evaluate the top-
K recommendation performance. We empirically set K = 10 and
20. For each metric, we compute the performance of each user in the
testing data and report the average performance over all users.

4.1.4 Implementation Details

We implement our proposed model by PyTorch [15] and embed the
users and items with a dimensional size of 64 for all models. We use
the Xavier method [5] to initialize the embedding parameters, utilize
Adam [10] as the optimizer, and fix the mini-batch size to 2048. All
models are evaluated on a Tesla V100 32GB GPU card. The optimal
hyper-parameters are determined via grid searches on the validation

set: we do a grid search on the learning rate in {1e-1, 1e-2, 1e-3, 1e-
4, 1e-5,1e-6}, regularization weight in {1e-1, 1e-2, 1e-3, 1e-4, 1e-
5} and importance score αm for image weight in the item semantic
graph in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. We fix the number of
GCN layers in the heterogeneous graph and homogeneous graph with
L = 2 and Lu = Li = 1, respectively. we consider k of top-k in the
user co-occurrence graph as empirical value setting to 40 and setting
to 10 in the item semantic graph for baby, 5 for sports and clothing.
We set the maximum number of epochs to 1000 and adopt the early
stopping strategy. That is, the model terminates when R@20 on the
validation set does not increase for 20 successive epochs. To ensure
a fair comparison, all baseline models as well as our proposed model
have been integrated into the unified multimodal recommendation
framework, MMRec [31].

4.2 Performance Comparison

As depicted in Table 3, we compare the recommendation perfor-
mance of the state-of-the-art methods with our proposed model, lead-
ing to the following observations:

• All GCN-based methods outperform traditional MF-based recom-
mendation models (i.e., BPR and VBPR), demonstrating the ef-
fectiveness of modeling the historical interactions using a graph
with graph convolutional operations.

• Across all evaluation metrics, including Recall and NDCG,
DRAGON surpasses all baseline models on every dataset. For ex-
ample, in terms of R@20, DRAGON improves upon the strongest
baseline on the datasets Baby, Sports, and Clothing by 15.63%,
15.05%, and 33.56% respectively. This improvement is attributed
to the dual representations and the multimodal fusion method.
Learning dual representations from the heterogeneous and homo-
geneous graphs captures both the historical interactions and the
internal relations among each set of dyadic objects (i.e., users or
items). A homogeneous graph aids in learning relevant character-
istics from the neighbors, while the fusion method enhances the
multimodal representation by acquiring complementary informa-
tion from each single modality.

• Multimodal recommendation models outperform general recom-
mendation models. GRCN, LATTICE, SLMRec, and BM3 are
multimodal models that outperform all general methods. VBPR,
which builds upon the BPR framework by introducing modality
information, outperforms BPR on all datasets.
However, some multimodal models rely heavily on the representa-
tiveness of multimodal characteristics of items, resulting in incon-
sistent performance across various datasets. For example, Dual-
GNN is built upon LightGCN and outperforms it on the Clothing
dataset but is less effective on Baby and Sports. It is possible that
multimodal features are more critical for revealing item character-
istics in the clothing dataset but are less informative in the other
two datasets, in which DualGNN underperforms LightGCN.

Additionally, we evaluate the scalability of DRAGON on a larger
dataset Electronic of Amazon dataset with around 1.7M interactions,
200K users and 63K items. LATTICE [25] consumes more memory
than the other baselines which could not be handled by the 32GB
GPU card. SLMRec [18] needs to find the optimal parameter by grid
search on more than 200 parameter sets which takes a long train-
ing time. DRAGON outperforms these baselines on the large graph.
Although SLMRec is the strongest baseline on Electronic, DRAGON
achieves an improvement of 4.76% in terms of R@20 compared to
SLMRec.
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Table 3. Performance of baselines in terms of Recall and NDCG. Best results are in boldface and the second best is underlined. “%Imp” denotes the relative
improvement of DRAGON over the best baseline.

Dataset Metric General Model Multimodal Model
BPR LightGCN VBPR DualGNN GRCN SLMRec LATTICE BM3 DRAGON %Imp

Baby

R@10 0.0357 0.0479 0.0423 0.0448 0.0539 0.0529 0.0547 0.0564 0.0662 17.38%
R@20 0.0575 0.0754 0.0663 0.0716 0.0833 0.0775 0.0850 0.0883 0.1021 15.63%
N@10 0.0192 0.0257 0.0223 0.0240 0.0288 0.0290 0.0292 0.0301 0.0345 14.62%
N@20 0.0249 0.0328 0.0284 0.0309 0.0363 0.0353 0.0370 0.0383 0.0435 13.58%

Sports

R@10 0.0432 0.0569 0.0558 0.0568 0.0598 0.0663 0.0620 0.0656 0.0752 13.42%
R@20 0.0653 0.0864 0.0856 0.0859 0.0915 0.0990 0.0953 0.0980 0.1139 15.05%
N@10 0.0241 0.0311 0.0307 0.0310 0.0332 0.0365 0.0335 0.0355 0.0413 13.15%
N@20 0.0298 0.0387 0.0384 0.0385 0.0414 0.0450 0.0421 0.0438 0.0512 13.78%

Clothing

R@10 0.0206 0.0361 0.0281 0.0454 0.0424 0.0442 0.0492 0.0422 0.0671 36.38%
R@20 0.0303 0.0544 0.0415 0.0683 0.0662 0.0659 0.0733 0.0621 0.0979 33.56%
N@10 0.0114 0.0197 0.0158 0.0241 0.0223 0.0241 0.0268 0.0231 0.0365 36.19%
N@20 0.0138 0.0243 0.0192 0.0299 0.0283 0.0296 0.0330 0.0281 0.0443 34.24%

4.3 Ablation Study

In this section, we conduct exhaustive experiments to examine the
behaviors of our proposed model under various settings.

4.3.1 Effect of different components of DRAGON

We devise the following variants of DRAGON based on the homo-
geneous graphs employed and compare with the strongest baselines
(LATTICE, SLMRec and BM3) to investigate the contribution of dif-
ferent components of DRAGON:

• DRAGONUI omits the homogeneous graphs and relies solely on
the heterogeneous graph.

• DRAGONUU incrementally incorporates the user co-occurrence
graph into DRAGONUI . This variant captures the relations between
users, signifying that only users have dual representations.

• DRAGONII incrementally integrates the item semantic graph into
DRAGONUI . This variant captures the relations between items, in-
dicating that only items have dual representations.

Figure 2. Effect of different components of DRAGON.

Fig. 2 presents our comparison results in terms of Recall@20.
The following observations demonstrate that all components of

DRAGON contribute to its performance: (1) DRAGONUI , which exclu-
sively employs our multimodal fusion, achieves comparable or even
higher accuracy than the strong baselines. This finding highlights the
efficiency of the attentive concatenation method. (2) DRAGONUI <
DRAGONUU < DRAGONII illustrates the benefits of incorporating
homogeneous graphs. However, we observe that utilizing the user
co-occurrence graph does not significantly improve the results for
the Baby dataset. As Table 2 indicates, the Baby dataset is less
sparse than the other two datasets, suggesting that user relation co-
occurrence patterns in denser datasets are primarily captured by the
user-item interaction graph. Consequently, the user co-occurrence
graph contributes less in this case. (3) DRAGONUU < DRAGONII

shows that the primary performance improvement results from the

addition of an item semantic graph. The discrepancy in perfor-
mance can be attributed to our approach of constructing a user co-
occurrence graph based on user-item interactions, which emphasizes
user relations already contained in interactions. In contrast, the item
semantic graph is constructed using raw features, enabling the cap-
ture of additional modality similarity relations beyond those relations
present in the user-item interactions. (4) DRAGON achieves the best
performance, demonstrating the effectiveness of integrating the mul-
timodal fusion method and dual representation learning.

4.3.2 Effect of different modality fusion method

We identify modality fusion issue and utilize the direct concatena-
tion with attention in our proposed model. We compare its perfor-
mance with the fusion methods mentioned in [19][25]. We replace
the fusion of DRAGONwith weighted sum (denoted as DRAGONsum),
mean (denoted as DRAGONmean) and weighted max (denoted as
DRAGONmax) to demonstrate the superiority of concatenation fu-
sion used in DRAGON. Fig. 3(a) shows comparison results in terms of
Recall@20. Clearly, our fusion method outperforms others as it can
more effectively capture complementary information of each modal-
ity and attend information from all modalities for recommendation.

(a) Comparison of different fusion
methods

(b) Comparison of different
modality

Figure 3. Ablation study on fusion methods and feature modalities.

4.3.3 Effect of single modality vs. multi-modalities

In the Introduction, we reveal performance of previous multimodal
models might degrade under multimodal settings. Hence, we com-
pare performance of DRAGON under uni-modal and multimodal set-
tings. DRAGONV , DRAGONT , and DRAGON denote the models that
utilize visual, textual, and both modalities respectively. Fig. 3(b)
shows our comparison results in terms of Recall@20. We observe
that: (1) Models with different single modality information have dif-
ferent performances. Textual modality performs better than visual
modality. (2) DRAGON with multimodal information outperforms
those utilizing single modality, demonstrating that fusing different
modalities of information can improve performance of DRAGON.
Thus, fusion method in our proposed model is indispensable.
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4.4 Hyper-parameter Sensitivity Study

4.4.1 Effect of top-k in homogeneous graph

We conduct an ablation study to investigate the influence of the top-
k values on the user co-occurrence graph. The user co-occurrence
graph is established based on the shared items between users, and we
only retain the top-k users with the highest number of commonly in-
teracted items. We search for the top-k from a set of {20, 30, 40, 50}.
Fig. 4(a) displays the comparison results in terms of Recall@20. We
find that the performance is not highly sensitive to the choice of the
top-k value. This may be because the performance is not heavily in-
fluenced by the user co-occurrence graph as shown in Fig. 2. Another
reason is that closely linked users predominantly share similar user
behavior information, thus increasing the top-k value has a limited
impact on overall performance.

Similarly, we investigate the influence of the top-k values on
the item semantic graph. The edge weights are the cosine similar-
ity scores of modality features of connected nodes. We retain the
top-k similar items for each item. The top-k value is searched in
{5,10,20,30}. The comparison result, shown in Fig. 4(b) in terms
of Recall@20, reveals that DRAGON achieves the best performance
with small k values. Baby dataset reaches the best performance with
k = 10 and the other two datasets reach the best with k = 5. Large
k values lead to performance drop in all the datasets.

(a) Top-k value of user graph (b) Top-k value of item graph

Figure 4. Effects of top-k in constructing homogeneous graphs.

4.4.2 Effect of latent dimensionality

The embedding dimensionality d of our model is searched from {24,
25, 26, 27,28}. Fig. 5(a) indicates that our model’s performance con-
sistently improves with larger latent dimension sizes. However, in-
creasing the dimension size also requires increased computational
resources. Therefore, we use a moderate size for the latent dimen-
sion to balance performance and resource consumption. In our ex-
periments, we set the embedding size at a fixed value of 64, which
not only attains a performance comparable to larger sizes but also
necessitates fewer computational resources.

4.4.3 Effect of importance score αm

As presented in section 3.2.2, the importance score αm is used
to indicate the contribution of each modality when integrating the
modality-specific item semantic graphs. We examine αm from 0.1
to 0.9 with an increment of 0.1 to control the visual modality im-
portance of items, with text modality importance equal to 1 − αm.
Fig. 5(b) shows the comparison result in terms of Recall@20. We
observe that increasing αm results in a performance drop across all
datasets, indicating that the textual modality is more informative than
the visual modality in constructing the item semantic graph. More-
over, The three datasets achieve the highest performance with the αm

among {0.1,0.2,0.3}, indicating that the importance of visual modal-
ity varies across different datasets.

Figure 5. Performance changing of DRAGON w.r.t embedding size and the
ratio of modality.

4.4.4 Effect of learning rate and regularization weight

To determine the optimal learning rate and regularization weight for
DRAGON, we conduct a sensitivity analysis using Recall@20 as per-
formance metrics. We explore learning rates within the range {1e-6,
1e-5, 1e-4, 1e-3, 1e-2, 1e-1} and regularization weights λ in the set
{1e-5, 1e-4, 1e-3, 1e-2, 1e-1}. Fig. 6(a) and Fig. 6(b) display the per-
formance of DRAGON under various combinations of learning rates
and regularization weights on the Baby and Clothing datasets. Based
on these results, we make the following observations: (1) A learn-
ing rate of 1e-4 achieves the best performance across all regulariza-
tion weights. Excluding the extremely large and small learning rates,
our model demonstrates strong performance when changing learning
rates among the set {1e-3, 1e-4, 1e-5}. This further highlights the ef-
ficiency and stability of our model. (2) Performance is less sensitive
to the regularization weight compared to the learning rate. Neverthe-
less, optimizing the regularization weight parameter set in DRAGON
also makes little contributes to improved performance.

(a) Baby (b) Clothing

Figure 6. Sensitivity analyses on the DRAGON hyper-parameters.

5 Conclusion

In this paper, we aim to solve the modality fusion issue and learn bet-
ter representations for dyadic-related users and items. Therefore, we
develop a novel model, named DRAGON, to learn the dual represen-
tations of users and items by constructing homogeneous and hetero-
geneous graphs. In particular, we first construct the modality-specific
user-item bipartite graph to learn the modality features. After getting
the representations of each modality, we utilize the late concatenation
fusion method to learn the multimodal features. Then, we construct
the user co-occurrence graph to capture the co-occurrence relations
between users and the item semantic graph to capture the semantic
relations between items. Therefore, we learn both inter- and intra-
relations of the dyadic-related users and items. Finally, we conduct
extensive experiments on three datasets to demonstrate the effective-
ness of our proposed model. Our experimental finding on multimodal
fusion could shed light on the design of future multimodal recom-
mender systems.
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