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Abstract. Existing weakly-supervised temporal sentence ground-
ing methods typically regard query reconstruction as the pretext
task in place of the absent temporal supervision. However, their ap-
proaches suffer from two flaws, i.e. insignificant reconstruction and
discrepancy in alignment. Insignificant reconstruction indicates the
randomly masked words may not be discriminative enough to dis-
tinguish the target event from unrelated events in the video. Dis-
crepancy in alignment indicates the incorrect partial alignment built
by query reconstruction task. The flaws undermine the reliability
of current reconstruction-based methods. To this end, we propose
a novel Self-improving Query ReconstrucTion (SQRT) framework
for weakly-supervised temporal sentence grounding. To deal with
insignificant reconstruction, we devise a key words mining strategy
to determine the important words for language grounding. To attain
better moment-query alignment, we introduce inter-sample contrast
to tackle the partial alignment built by query reconstruction. The
self-improving framework utilizes query reconstruction for language
grounding and alleviates the discrepancy in alignment, thus turning
on the right track. Experiments on two popular datasets show that
SQRT achieves state-of-the-art performance on Charades-STA and
comparable performance to the state-of-the-art on ActivityNet Cap-
tions.

1 Introduction

Video moment retrieval, also known as temporal sentence ground-
ing, aims to determine the moment that best corresponds to the
given natural language query sentence in an untrimmed video. Many
works [6, 8, 30, 14, 19, 23, 26] solve this task in a fully-supervised
manner, where the temporal boundary annotation for every query
sentence is required. However, the expensive annotation cost hin-
ders their further application to real-world scenarios. Weakly super-
vised temporal sentence grounding (WTSG) alleviates this problem
by requiring only video-level sentence annotations without temporal
boundaries and has gained more attention.

In WTSG, previous reconstruction-based methods [11, 18, 33] re-
gard the query reconstruction task as the pretext task in place of
the absent ground truth supervision during training. Given a masked
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Original Query:  The person opens a cabinet to take detergent.

Random Masked Query: <MASK> person opens a <MASK> to take detergent.

Ground Truth

(a) Insignificant reconstruction

Ground Truth

Query Reconstruction High Response Segment:

Original Query: A man throws a red frisbee at a white and brown dog and the dog catches it and 

brings it back.

Masked Query: A <MASK> throws a red <MASK> at a white and brown <MASK> and the dog   

catches it and brings it back.

"man" "frisbee" "dog"

Ground Truth

(b) Discrepancy in alignment

Figure 1. a) Insignificant reconstruction indicates the masked words may
not be discriminative enough to distinguish the target event from unrelated
events in the video. Key words for language grounding are highlighted in

red. b) Discrepancy in alignment. Three words are masked to perform query
reconstruction. The reconstruction-based model focuses on mining the

elements in visual modality that correspond to the masked words (i.e. the
man, the frisbee, and the dog), leading to inaccurate grounding results.

query sentence and candidate proposals, these methods mine the re-
lation between video and text by reconstructing the original query
sentence. During inference, they regard the reconstruction errors as
the measurement of semantic similarity between the query and pro-
posals and rank proposals according to reconstruction errors for final
predictions.

However, this formula suffers from two flaws: insignificant re-
construction and discrepancy in alignment. Insignificant reconstruc-
tion indicates the randomly masked words may not be discrimina-
tive enough to distinguish the target event from unrelated events in
the video. As illustrated in Figure 1(a), the masked words ‘The’ and
‘cabinet’ are insignificant to determine the target moment compared
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with the key words (highlighted in red). This may lead to misalign-
ment between video and text during training and inference. Discrep-
ancy in alignment indicates the incorrect partial alignment built by
query reconstruction task. The query reconstruction task focuses on
mining the elements in visual modality that correspond to the masked
words, while the grounding task aims to determine the video segment
that best corresponds to the overall semantics of the query sentence.
As illustrated in Figure 1(b), the reconstruction errors respond on
segments related to masked words ‘man’, ‘frisbee’, and ‘dog’, failing
to ground from the global semantics of the query. Therefore, when
performing the query reconstruction task, the moment that yields
the least reconstruction error does not necessarily match the entire
query best. It is inaccurate to perform language grounding purely de-
pending on the query reconstruction error. Thus, it remains an open
problem on how to utilize query reconstruction in temporal sentence
grounding.

To deal with insignificant reconstruction, we evaluate the effec-
tiveness of reconstruction by mining the words that correspond to
the critical visual elements of the event. To this end, we devise a
key words mining strategy to determine the important words to lan-
guage grounding. To attain better moment-query alignment, we in-
troduce inter-sample contrast to tackle the partial alignment built by
query reconstruction. In WTSG, the reconstruction objective forces
the model to focus on mining local visual elements corresponding
to the masked words. The model is insensitive to sentence-level se-
mantics due to the inability to utilize semantic cues between sam-
ples. Hence, we introduce inter-sample contrast and explicitly model
sentence-level features. We mine similarity cues by pairing a video
with a diversity of cross-sample unmatched queries in the corpus
as negative pairs. Paired with the query reconstruction task, intra-
sample and inter-sample contrast are fully utilized to infer the seman-
tics of the entire query. It improves grounding performance without
extra labels, turning the optimization on the right track.

Taking these into account, we propose a simple Self-improving
Query ReconstrucTion (SQRT) framework to better utilize query re-
construction for WTSG. The framework consists of a query recon-
struction branch and a grounding branch. The reconstruction branch
performs query reconstruction and generates pseudo-labels for the
grounding branch. The grounding branch localizes the target mo-
ment and self-improves. During query reconstruction, we choose the
set of words whose reconstruction errors with larger variance across
all moments as key words. With key words masked, the correspond-
ing reconstruction errors are more reliable as semantic measurement.
In the training phase, the key words reconstruction errors are con-
verted to soft pseudo-labels for intra-sample contrast. The ground-
ing branch improves itself through intra-sample contrast and inter-
sample contrast. To model the overall semantics of query text explic-
itly, we devise a query-enhanced proposal interaction module. The
self-improving framework utilizes query reconstruction for language
grounding and alleviates the discrepancy in alignment.

In summary, our contributions are three-fold: (1) We reveal two
major flaws in the query reconstruction task used in WTSG, which
limits its further application in temporal sentence grounding. (2) We
propose a self-improving query reconstruction framework for weakly
supervised temporal sentence grounding as a simple approach to deal
with the flaws. (3) Experiments on two popular datasets Charades-
STA and ActivityNet Captions demonstrate the effectiveness of our
approach. We achieve new state-of-the-art performance on Charades-
STA and comparable performance to the state-of-the-art on Activi-
tyNet Captions for weakly-supervised temporal sentence grounding.

2 Related Work

Fully-supervised temporal sentence grounding. In the fully-
supervised setting, the accurate start and end timestamps paired with
the sentence query are provided for model training. The task is first
proposed in CTRL [6], where visual and textual features are fused to
regress the temporal offset to a certain candidate clip. The 2D Tem-
poral Adjacent Networks (2DTAN) [30] organize the candidate mo-
ments in a 2D temporal map manner and model the relations between
temporally adjacent moments. LGI [14] proposes Sequential Query
Attention Network(SQAN) to extract semantic phrase features and
conduct local-global video-text interactions to directly regress the
target timestamps.

However, annotating temporal boundaries for every query sen-
tence is laborious and expensive. Also, the manual annotations may
be subjective and inconsistency exists between different annotators,
as reported in [15]. These issues hinder the application of fully-
supervised methods to real-world scenarios.
Weakly-supervised temporal sentence grounding. In weakly-
supervised temporal sentence grounding, only video-level query
texts are required during training. Existing works generally tackle
this task in an MIL-based or reconstruction-based paradigm. MIL-
based methods [7, 32, 12] regard matched video-query pairs as pos-
itive bags and unmatched ones as negative bags to learn the la-
tent alignment between video and text. Reconstruction-based meth-
ods [11, 18, 33] assume the proposal with the least reconstruct er-
ror matches the original query best. SCN [11] introduces semantic
completion task which serves as guidance for the scoring process.
CPL [33] develops proposal contrast between positives and intra-
video negatives by reconstruction error.

Recent studies [10, 17, 27] in natural language understanding
show that the random mask strategy is sub-optimal during the pre-
training of language models. However, the effect of query recon-
struction task has never been studied in WTSG. We argue that the
reconstruction-based methods suffer from the aforementioned flaws,
which undermine their reliability in temporal sentence grounding. To
deal with the flaws, we propose a simple Self-improving Query Re-
construcTion (SQRT) framework to better utilize query reconstruc-
tion for WTSG.

3 Method

Given an untrimmed video V and a free-form query sentence Q, tem-
poral sentence grounding aims to determine the video segment with
temporal boundary b = (ts, te) that best matches the semantics of
the query sentence Q.

3.1 Overall Framework

As shown in Figure 2, SQRT consists of a query reconstruction
branch (Rec-branch) and a grounding branch.

The Rec-branch takes video features and masked query features
as input to perform visual-based query reconstruction and generates
pseudo-labels for intra-sample contrast learning of the grounding
branch. It can be implemented as any visual-based query reconstruc-
tion model with reconstruction error as output. We choose CPL [33]
as the implementation of Rec-branch.

The grounding branch aims to localize the target moment and
predicts moment scores. It learns through intra-sample contrast and
inter-sample contrast during training. The grounding branch con-
sists of four key components: multimodal fusion transformer, query-
enhanced proposal interaction, scoring network, and self-improving
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Figure 2. An overview of our Self-improving Query ReconstrucTion (SQRT) framework. SQRT consists of a query reconstruction branch (Rec-branch) and a
grounding branch. The query reconstruction branch performs query reconstruction and outputs reconstruction results for the grounding branch. The grounding
branch fuses video and query features through a query-enhanced proposal interaction module and conducts self-improving through intra-sample contrast from

pseudo-labels and inter-sample contrast.

module. The multimodal fusion transformer performs an initial
multi-modal fusion of video features and query features and predicts
learnable Gaussian masks to generate proposals dynamically. The
proposal features are passed to the query-enhanced proposal inter-
action module to conduct high-level feature interaction. The scoring
network takes the enhanced proposal features as input and predicts
proposal scores. The framework improves itself by performing intra-
sample contrast and inter-sample contrast.

The two branches are parallel and are trained separately. We adopt
a two-phase training strategy. The Rec-branch is trained in the first
stage. In the second phase, the Rec-branch is frozen and the ground-
ing branch is trained.

3.2 Reconstruction branch

The Rec-branch takes video features and masked query features as
input to perform query reconstruction. It mines multimodal similarity
cues by query reconstruction. Key words mining strategy is applied
during reconstruction. The Rec-branch produces predicted masked
words, their corresponding reconstruction errors, and temporal seg-
ments. The implementation of the Rec-branch is not the main con-
cern of this paper, thus we leave it in our supplemental material.
Key Words Mining Strategy. The query reconstruction is a key part
of mining the video-text correlation. However, the random mask ap-
proach in existing works may end up reconstructing the words that
are not helpful in distinguishing the query-related moment from oth-
ers. To this end, we propose a key words mining strategy to find
out the essential words in language modality for temporal sentence
grounding.

Intuitively, the words that are essential for distinguishing the tar-
get moment from others may contribute more to certain moments
during reconstruction while less to others. Based on this, we aim to
find out the group of words which exhibit greater variance on recon-
struction errors along temporal dimension. To mine the words that
are beneficial to language grounding, we generate L groups of can-
didate masked words in a query. In each group, we randomly mask
one-third of the words in a query and ensure groups are different

from each other. The nouns, verbs, and adjectives are masked with
a higher probability. For each word group, we perform query recon-
struction according to the visual features within K candidate propos-
als of different time spans. The reconstruction error is implemented
as the cross entropy loss between the ground truth probability on
vocabulary list pgt and the predicted probability pkl . The reconstruc-
tion errors εkl are normalized with a softmax function along tempo-
ral dimension. For a given group of masked words, we compute the
variance over the candidate proposal dimension. The group of words
{wlkey} with maximal variance are selected as the key words.

εkl = CrossEntropy(pgt, p
k
l ), (1)

ε̂kl = softmax(εkl ), (2)

lkey = argmax
l∈L

(Variance(ε̂kl )), (3)

l = 1, 2, ..., L; k = 1, 2...,K (4)

After the key words are selected, the candidate proposal with the
least reconstruction error on the key words set is regarded as the
high-confidence segment ni. The pseudo-labels for self-improving
are generated based on ni.

3.3 Multimodal Fusion Transformer

We use transformer [22] to perform the initial multi-modal fusion of
the video feature and query feature in the grounding branch.
Feature Extraction. For visual modality, we use pre-trained
3D CNN (eg. C3D [21]) to extract video features V =
{v1, v2, ..., vi}Ti=1 ∈ R

T×Dv , where T is the number of frames
and Dv is the dimension of video features. For language modal-
ity, we use GloVe [16] to embed word sequence into query features
Q = {w1, w2, ..., wi}Ni=1 ∈ R

N×Dw for fair comparisons, where N
is the number of words and Dw is the dimension of query features.
A [CLS] token is inserted at the beginning of the query features to
aggregate sentence-level features. The video features and query fea-
tures are projected to the same dimension D.
Multimodal Fusion. We fuse the extracted video features and query
features using a transformer. Specifically, it consists of a textual en-
coder and a visual decoder. We append a [CLS] token vcls to the
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video features to obtain the fused global video feature. The textual
encoder Enct(·) extracts contextual information in language modal-
ity. Then the visual decoder Decv(·) takes the encoded query fea-
tures along with the video features V as input to get the fused feature
H = {h1, h2, ..., hcls} ∈ R

(T+1)×D:

H = Decv(V,Enct(Q)). (5)

Proposal Generation. Following CPL [33], we use learnable Gaus-
sian masks to generate proposals dynamically according to visual
content from video and semantic information from text for both
branches. As the [CLS] token hcls gathers global context information
from both modalities, we apply a fully-connected layer to predict the
center and width of candidate proposals. Then, a Gaussian function
is applied to generate masks for proposals:

c, w = Sigmoid(FC(hcls)), (6)

mk = 1√
2π(wk/σ)

exp(− (i/T−ck)
2

2(wk/σ)2
), (7)

k = 1, ...,K; i = 1, 2, ..., T (8)

where σ is the hyperparameter of the Gaussian function and K is the
number of candidate proposals.

For every video-query pair, we predict K candidate proposals. To
reduce highly overlapped redundant proposals, a regularization term
Ldiv is applied to encourage temporal diversity between candidate
proposals thus increasing the recall rate:

Ldiv = ‖mm� − λI‖2F , (9)

where λ is the hyperparameter controlling the extent of overlap be-
tween proposals, I is the identity matrix, and ‖ · ‖F is the Frobenius
norm.

The proposal feature p is obtained by mean-pooling on the fused
video feature within the proposal.

3.4 Query-enhanced Proposal Interaction

For the grounding branch, we need to measure similarities based on
the overall semantics of the query to achieve more accurate ground-
ing. To this end, we propose a query-enhanced proposal interaction
module.

To encourage interaction between high-level features from both
modalities, we perform proposal-sentence fusion. We use the fea-
ture of [CLS] token after text encoding as the sentence-level query
feature Qs. Every proposal feature is fused with query feature Qs

using Hadamard product to get the enhanced proposal feature gi. To
make the proposal features more discriminative, we inject temporal
information into proposal features by concatenating every proposal
feature with its normalized center and width along the channel di-
mension. The query-enhanced proposal feature ĝi is obtained by:

gi = W3(W1pi �W2Qs), (10)

ĝi = concat(gi, c, w) (11)

where W1,W2,W3 are learnable parameters.
Scoring Network. After sufficient multi-modal fusion, we aim to
produce a reliable proposal score for every candidate proposal. We
adopt a two-branch network consisting of a classification network
and a ranking network to predict scores. The classification network
evaluates the semantic similarity between the proposal and query
text. It consists of an MLP followed by a softmax function applied
along the channel dimension, resulting in the classification score

scls ∈ R
K×2. The ranking network ranks the candidate propos-

als and gives their relative matching scores. It has the same struc-
ture as the classification network except that the softmax function
is applied along the proposal dimension to obtain the ranking score
srank ∈ R

K×1. The final score s for candidate proposals is com-
puted by the Hadamard product of the two scores:

scls = Softmaxc(MLP (ĝi)). (12)

srank = Softmaxp(MLP (ĝi)). (13)

s = scls � srank. (14)

3.5 Self-improving

To deal with the discrepancy in the alignment of reconstruction-based
methods, we propose a self-improving scheme based on reconstruc-
tion results. The grounding branch conducts self-improving by learn-
ing from pseudo labels generated through reconstruction results and
performs inter-sample contrast simultaneously.
Pseudo Label Generation. To utilize the correlation cues from re-
construction results, we propose to learn from soft labels generated
from reconstruction results.

The reconstruction results contain several temporal segments ni

with corresponding reconstruction errors ei. We select the segment
with the least reconstruction error as the reconstruction highest re-
sponse segment nmin. To generate soft labels, we compute the IoU
score om between nmin and all candidate proposals, then scale the
IoU scores to obtain the final pseudo labels ym:

ym =

⎧
⎪⎨

⎪⎩

0, om ≤ tmin

om−tmin
tmax−tmin

, tmin < om < tmax

1, om ≥ tmax

, (15)

where tmin and tmax are IoU threshold.
Inter-sample Contrast. To enhance the ability to measure the simi-
larities between video and overall semantics of query text, we intro-
duce inter-sample contrast loss to contrast between matched video-
query pairs and unmatched pairs. For a given video, we randomly
select a query sentence within the batch to form the unmatched neg-
ative pair. The inter-sample contrast loss is defined as:

Linter = −
∑

(log(Sp(V,Qp) + log(Sn(V,Qn))), (16)

where the S(V,Q) =
∑K

i=1 si(pi, Q) is the score aggregation func-
tion, and Sp, Sn indicates the aggregated scores on the matched and
unmatched channels, respectively.

3.6 Training and Inference

Training. The Rec-branch and grounding branch are optimized in-
dependently. There are two phases in training. The Rec-branch is
trained in the first stage. In the second phase, the Rec-branch is frozen
and the grounding branch is trained. The objective of the Rec-branch
is the reconstruction error with respect to the original query. More
details are shown in our supplemental material. For the grounding
branch, the final loss consists of three parts: the inter-sample con-
trast loss Linter for video-level contrast, intra-sample contrast loss
Lintra for leveraging reconstruction results, and diversity loss Ldiv

for diversifying learnable proposals. The intra-sample contrast loss
is implemented as the cross entropy loss between the proposal score
si(pi, Q) and the pseudo labels generated from the self-improving
module:
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Lintra =
K∑

i=1

CrossEntropy(yi, si). (17)

The overall loss for the grounding branch is formulated as the
weighted sum of the three loss term:

L = α1Linter + α2Lintra + α3Ldiv. (18)

Inference. When training is finished, the Rec-branch is discarded
and the grounding branch is used for inference.

4 Experiment

4.1 Datasets

To evaluate the effectiveness of our proposed method, we conduct ex-
periments on two popular benchmarks for temporal sentence ground-
ing: Charades-STA [6] and ActivityNet Captions [9]. Both datasets
are publicly available. For Charades-STA, the numbers of video-
query pairs of training/validation/testing set are 12408/-/3720. For
ActivityNet Captions, the numbers of video-query pairs of train-
ing/validation/testing set are 37417/17505/17031.

4.2 Evaluation Metrics

Following previous work [6, 13, 11], we adopt the ‘R@n, IoU=m’
metric to evaluate the performance of SQRT, where n means the top-
n retrieval results and m is the pre-defined threshold. The metric rep-
resents the percentage of moments whose Intersection over Union
(IoU) with the ground truth segment is greater than threshold m in
top-n prediction.

4.3 Implementation Details

Data Preprocessing. We downsample the video at 8 frames per sec-
ond and extract the video features using a pre-trained video back-
bone. For visual features, we use the pre-trained I3D [1] model to
extract frame features for Charades-STA and C3D [21] model for
ActivityNet Captions. For language features, we set the dimension of
word features as 300 and initialize them with GloVe [16] word2vec,
following previous works for fair comparisons. The maximum num-
ber of words in a query sentence is set to 20.
Model Settings. The dimension of hidden states in transformer D is
set to 256 and there are 3 layers and 4 attention heads. The number
of learnable candidate proposals K is set to 8 for both datasets. For
hyperparameters, we set α1 = α2 = α3 = 1, σ = 9, tmax = 0.7,
tmin = 0.3 for both datasets. The parameter λ in Ldiv is set to 0.146
for Charades-STA and 0.06 for ActivityNet Captions. The number
of groups of candidate masked words in key words mining L is set
to 3 for Charades-STA and 5 for ActivityNet Captions. The seed for
generating random numbers is set to 8. During training, we use Adam
optimizer and initial learning rate 1e-4. We train the reconstruction
branch for 30 epochs and the grounding branch for 50 epochs on both
datasets using NVIDIA RTX 3090 GPU.

4.4 Comparisons with State-of-the-Art Methods

We compare the performance of our SQRT with existing works in
WTSG, as shown in Table 1 and Table 2. The best performance is
highlighted in bold, and the second best is underlined. On Charades-
STA, our model achieves superior performance on all metrics of
R@1 and two of the three metrics of R@5. For the top-1 metric
‘R@1, IoU={0.3, 0.5, 0.7}’, our SQRT achieves performance gain

by 4.91%, 3.1% and 2.53% compared with the state-of-the-art, re-
spectively. It indicates that our model performs better in fine-grained
grounding on the top-1 result. On ActivityNet Captions, our SQRT
outperforms existing methods on the important metric of ‘R@1,
IoU={0.5, 0.7}’ by 2.05% and 3.3%, respectively. This means our
SQRT achieves more accurate grounding on the top-1 result on this
challenging dataset. By setting λ=0.1 to encourage diversity, our per-
formance on ‘R@5, IoU={0.5, 0.7}’ surpasses that of the state-of-
the-art methods, which achieve similar results at the expense of many
redundant proposals.

Table 1. Performance comparison on Charades-STA.

Method R@1 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

TGA [13] 32.14 19.94 8.84 86.58 65.52 33.51
SCN [11] 42.96 23.58 9.97 95.56 71.80 33.87
CTF [3] 39.80 27.30 12.90 - - -

WSRA [5] 50.13 31.20 11.01 86.75 70.50 39.02
CCL [32] - 33.21 15.68 - 73.50 41.87

VLANet [12] 45.24 31.83 14.17 95.72 82.82 33.33
BAR [28] 44.97 27.04 12.23 - - -

MARN [18] 48.55 31.94 14.81 90.70 70.00 37.40
RTBPN [31] 60.04 32.26 13.24 97.48 71.85 41.18
WSTAN [24] 43.39 29.35 12.28 93.04 76.13 41.53
LoGAN [20] 51.67 34.68 14.54 92.74 74.30 39.11

VCA [25] 58.58 38.13 19.57 98.08 78.75 37.75
LCNet [29] 59.60 39.19 18.87 94.78 80.56 45.24
CPL [33] 66.4 49.24 22.39 96.99 84.71 52.37

SQRT 71.31 52.34 25.14 96.2 85.56 53.93

Table 2. Performance comparison on ActivityNet Captions.

Method R@1 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7

WS-DEC [4] 41.98 23.34 - - - -
SCN [11] 47.23 29.22 14.88 71.45 55.69 31.81
EC-SL [2] 44.29 24.16 - - - -
CTF [3] 44.30 23.60 - - - -

CCL [32] 50.12 31.07 - 77.36 61.29 -
BAR [28] 49.03 30.73 - - - -

MARN [18] 47.01 29.95 - 72.02 57.49 -
RTBPN [31] 49.77 29.63 - 79.89 60.56 -
WSTAN [24] 52.45 30.01 11.77 79.38 63.42 39.29

VCA [25] 50.45 31.00 - 71.79 53.83 -
LCNet [29] 48.49 26.33 - 82.51 62.66 -
CPL [33] 55.73 31.37 13.57 63.05 41.13 22.13

SQRT(λ=0.06) 53.15 33.42 18.18 70.68 54.53 33.95
SQRT(λ=0.1) 50.43 27.55 15.90 78.42 63.45 43.05

Table 3. Performance on the new testing split.

Method R1@
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Rec-only 57.80 28.88 11.03 36.45
Rec-grounding 53.91 33.98 17.49 36.22

SQRT 54.29 35.79 22.12 38.90

4.5 Ablation Study

We conduct ablation study on the key components of SQRT.
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Query pair: < !
  ">

 ! : A dog groomer pets the dog’s fur with her hands.      

Ground Truth #!: [10.22 s, 24.21 s]                       Prediction for Query i $#!: [52.46 s, 107.58 s] 

 " : The groomer uses a glove with brushing surface to groom the dog. 

Ground Truth #" : [85.53 s, 99.51 s]                      Prediction for Query j%#": [32.43 s, 107.58 s] 

GT of Query jGT of Query i

Prediction for Query j
Prediction for Query i

Figure 3. Illustration of validation of discrepancy in alignment. Given a
video, a query pair consists of two queries with different semantics and share
some common words. Models are validated on all such query pairs. For the

reconstruction-based model, the common words are masked during
reconstruction. The masked words are in red.

Figure 4. Validation of discrepancy in alignment on two datasets.

Table 4. Ablation study of key words mining strategy.

Method R1@
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Random mask 69.98 51.23 24.48 45.63
Mask nouns 68.43 49.81 24.57 44.84

Key words mining 71.31 52.34 25.14 46.39

Table 5. Ablation study of self-improving strategy.

Method R1@
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

w/o pseudo labels 37.43 26.60 11.43 25.62
w/o inter-sample contrast 66.78 48.01 23.53 43.73

Full 71.31 52.34 25.14 46.39

Table 6. Ablation study of query-enhanced proposal interaction.

Method R1@
IoU=0.3 IoU=0.5 IoU=0.7 mIoU

w/o enhanced 69.54 49.78 22.42 45.28
Hadamard product 69.60 50.41 22.55 45.04

NLB 68.97 49.49 23.72 45.24
product+concat 71.31 52.34 25.14 46.39

Figure 5. Ablation study of number of groups of candidate masked words.

4.5.1 Validation of discrepancy in alignment.

We experimentally show how the masked words affect temporal sen-
tence grounding in the reconstruction-based model. We choose the
pre-trained CPL [33] as the reconstruction-based model used in this
experiment and validate on two popular datasets Charades-STA and
ActivityNet Captions.

As illustrated in Figure 3, for every video V in the test set, we
select query pairs < qi, qj > from its query set Q satisfying: (1) the
semantics of qi and qj are different, that is bi �= bj , where bi repre-
sents the ground truth temporal boundary of qi. (2) qi and qj share
some common words, i.e. Cij = {Wi} ∩ {Wj} �= ∅, where {Wi}
represents the word set of query qi. The reconstruction-based model
predicts moments and ranks them according to the reconstruction er-
rors. During query reconstruction, same words Cij are masked for
every query pair < qi, qj > to observe the effect of masked words.
For every query pairs < qi, qj > and corresponding predicted mo-
ments < b̂i, b̂j >, the IoU of ground truths IoU(bi, bj) and predicted
moments IoU(b̂i, b̂j) are collected and the mean IoU are calculated,
as shown in Figure 4.

In Figure 4, we can observe that the mIoU of ground truth mo-
ments corresponding to the query pairs are relatively low on the two
datasets, which means the semantics of the two queries are different.
However, when the masked words are the same between two queries
during query reconstruction, the reconstruction-based model tends
to give highly overlapped predictions (higher mIoU), compared with
the random mask. This phenomenon shows that the query reconstruc-
tion task focuses on mining the elements in visual modality that cor-
respond to the masked words, failing to perform language grounding
from the global semantics of the query. There is a discrepancy in
alignment built by query reconstruction errors and the alignment ex-
pected by temporal sentence grounding. The mIoU of SQRT’s pre-
dictions is closer to the mIoU of ground truths. This indicates that
SQRT is better at grounding according to the overall semantics of
the query. But the mIoU is still larger than the ground truth’s, es-
pecially on ActivityNet Captions. We infer that this may be due to
the tendency of Gaussian masks to predict long moments on Activi-
tyNet Captions and the greater complexity of queries in ActivityNet
Captions.

4.5.2 Effectiveness of key words mining strategy.

We evaluate the effectiveness of our proposed key words mining
strategy by adopting a different masking approach in the reconstruc-
tion model of SQRT on the Charades-STA dataset.

As shown in Table 4, we adopt a different masking approach in re-
construction model in SQRT. Random mask means randomly masked
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Query: On the other end is a female who is also attempting to cross the line and they 

are about to meet each other on the rope.

Query: A man is seen swinging around a balloon while holding a child.

39.47s 51.60sGT

CPL0.0s 26.71s

Ours23.43s 51.60s

Ours0.0s 7.32s

CPL0.0s 17.12s

0.0s 6.77sGT

Query: A person is throwing a blanket down the stairs.

0.0s 6.5sGT

CPL2.62s 9.78s

Ours0.03s 7.24s

Query: Person putting the shoes down on the floor.

CPL12.5s 23.27s

Ours16.44s 27.13s

16.6s 27.2sGT

Figure 6. Qualitative examples of our method. Examples on the left are from Charades-STA. Examples on the right are from the ActivityNet Captions
dataset. The masked words in CPL are underlined.

one-third of the words in query sentences, nouns, and verbs are
masked with a higher probability. Mask nouns means randomly mask
nouns of the query sentence. We observe that Random mask achieves
higher mIoU than Mask nouns, which indicates that not all nouns
are helpful to grounding. Our key words mining strategy achieves
the best among the three. This indicates some key words contribute
more to distinguish the target moment from others. It is beneficial to
build correct video-language correlation during model training.

We also evaluate the effect of the number of groups of candidate
masked words in key words mining on Charades-STA. As shown in
Figure 5, there is performance gain when the number of groups of
key words increases from 1 to 3. The computation cost grows higher
as the number rises to 4 and the gain starts to shrink. Note that when
the number equals 1 it equals the random mask approach.

4.5.3 Effectiveness of self-improving.

We evaluate the effect of our proposed self-improving scheme by ab-
lating the grounding branch and grounding-oriented self-improving
objective.

We build a new testing split based on the testing set of Activi-
tyNet Captions, which requires a good comprehension of the over-
all semantics of the query for better grounding. Specifically, we se-
lect queries with complex semantics according to pre-defined rules to
form the new split. More details about the split are shown in our sup-
plemental material. We evaluate the performance of reconstruction-
based models and our SQRT on this split, as seen in Table 3. Rec-
only is the baseline of our Rec-branch. Rec-grounding is the ground-
ing model trained with the video features produced by Rec-branch.
We can see that SQRT performs worst in terms of mIoU while our
model performs best on the challenging split. This demonstrates that
the video features captured by the reconstruction-based model are
more suitable for text generation rather than accurate grounding, and
the pure reconstruction-based model performs worse when ground-
ing from the overall semantics of the complex query.

We ablate the grounding-oriented self-improving objective on
Charades-STA in several settings, as Table 5 shows. We can see
that the performance drops significantly without learning from re-
construction results. w/o inter means training the grounding branch
without inter-sample contrast loss. This setting means the ground-
ing branch purely learns from the pseudo labels generated from re-
construction results, leading to inferior performance. The full model

performs best compared with these settings, which indicates the im-
portance of self-improving on self-generated pseudo labels and lever-
aging video-level labels from inter-sample contrast.

4.5.4 Effectiveness of query-enhanced proposal interaction.

We evaluate the effectiveness of the proposed query-enhanced pro-
posal interaction module on Charades-STA by replacing it with sev-
eral proposal-query fusion modules, as shown in Table 6. w/o en-
hanced means predicting proposal scores without proposal-query in-
teraction. We offer several proposal-query interaction variations in-
cluding Hadamard product, Non-Local-Block, and the proposed in-
teraction in our SQRT. We can see that performing high-level multi-
modal interaction and injecting temporal information are beneficial
for acquiring query semantics and context modeling thus achieving
better grounding, and the product+concatenation in our SQRT per-
forms best among several interaction variations.

4.6 Qualitative Results

We present some qualitative examples in Figure 6. The masked words
in the query reconstruction-based model (CPL) are underlined. As
shown in Figure 6, our method achieves more accurate grounding
results, whereas CPL focuses on retrieving the segment containing
missing elements corresponding to the masked words. This demon-
strates the effectiveness of our self-improving scheme. In the second
example of Figure 6, our method performs better in the face of a
complex query, which means our method performs grounding from
the overall semantics of the query. It indicates the effectiveness of the
self-improving scheme and query-enhanced proposal interaction.

5 Conclusion

We reveal the flaws that undermine the reliability of reconstruction-
based methods in WTSG and propose a novel Self-improving Query
ReconstrucTion (SQRT) framework for WTSG. To deal with in-
significant reconstruction, we propose a key words mining strat-
egy. To attain better moment-query alignment, SQRT conducts self-
improving by intra-sample contrast from pseudo labels generated
from reconstruction results and inter-sample contrast among differ-
ent video-text pairs. In the future, we will seek to extend the idea to
other challenging weakly supervised tasks such as spatial-temporal
grounding.
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