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Abstract. Adversarial transferability presents an intriguing phe-
nomenon, where adversarial examples designed for one model can
effectively deceive other models. By exploiting this property, vari-
ous transfer-based methods are proposed to conduct adversarial at-
tacks without knowledge of target models, posing significant threats
to practical black-box applications. However, these methods either
have limited transferability or require high resource consumption.
To bridge the gap, we investigate adversarial transferability from the
optimization perspective and propose the ghost sample attack (GSA).
GSA improves adversarial transferability by alleviating the overfit-
ting issue of adversarial examples on the surrogate model. Based on
the insight that a slight shift of the adversarial example is similar
to a minor change in the decision boundary, we aggregate gradients
of perturbed adversarial copies (named ghost samples) to efficiently
achieve a similar effect to calculating gradients of multiple ensem-
ble surrogate models. Extensive experiments demonstrate that GSA
achieves state-of-the-art adversarial transferability with restricted re-
sources. On average, GSA improves the attack success rate by 4.8%
on normally trained models compared to state-of-the-art attacks. Ad-
ditionally, GSA reduces the computational cost by 62% compared
with TAIG-R. When combined with other methods, GSA further
improves transferability to 96.9% on normally trained models and
82.7% on robust models.

1 Introduction

Adversarial examples [32], referring to malicious inputs with inten-
tionally crafted imperceptible perturbations, have emerged as a sig-
nificant security concern for deep neural networks (DNNs) in prac-
tical applications, such as autonomous driving [6] and face recog-
nition [27]. Existing adversarial attacks perform exceptionally well
in white-box scenarios where adversaries have full knowledge of the
target model [19, 2]. However, most attacks are often less effective
in black-box settings where adversaries have no knowledge of the
target model, particularly when the target model has defense mech-
anisms [35, 40, 10]. In black-box settings, the most prevalent ap-
proaches are query-based and transfer-based. Query-based methods
usually require a large number of queries on the target model to ap-
proximate its gradients [8, 15], making them hard to implement when
the target model has query restrictions. While transfer-based methods
provide a more practical way to conduct black-box attacks by using a
surrogate model to generate highly transferable adversarial examples
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Figure 1: Comparison of the top-5 confidence distribution for GSA
and two representative transfer-based attacks. All adversarial exam-
ples are crafted on ResNet50 with the maximum perturbation of
€ = 16 and the iteration of 10. GSA generates more transferable
adversaries that successfully attack various black-box models. Best
viewed in color and magnified.

that can fool black-box models [4, 42]. Therefore, we focus on the
transfer-based approach in this work.

Transfer-based adversarial attacks are designed by leveraging the
capacity of adversarial examples crafted for one model to effec-
tively deceive other models with different architectures and param-
eters. This property of adversarial transferability was first identi-
fied in traditional white-box attacks, but the limited transferability
of these attacks makes them hard to implement in practice [19]. Re-
cently, various methods have been proposed to improve adversarial
transferability, such as advanced gradient calculation [4, 37], feature
disruption[39, 14], input transformation [42, 5, 21, 38], etc. Despite
the great efficiency of advanced gradient-based methods, their at-
tack success rates are limited in black-box scenarios. Feature dis-
ruption methods can achieve superior transferability at the cost of
more computational overhead. Input transformation methods may
have achieved a relative balance between transferability and over-
head. But this kind of method is less transferable to target models that
are significantly different from the surrogate models or have defense
mechanisms. We can see that existing methods often come with the
trade-off of either having limited transferability in black-box scenar-
ios or requiring excessive computational resources. There remains a
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gap in performance between white-box attacks and efficient transfer-
based black-box attacks.

To bridge this gap, we propose an effective and efficient transfer-
based attack named ghost sample attack (GSA). It mitigates the
model-dependence issue of adversarial examples, i.e., overfitting the
surrogate model, which may hinder the adversarial transferability.
Heuristically, adversarial transferability occurs because neural net-
works tend to have similar decision boundaries in high-dimensional
input spaces [36]. When the decision boundary of the target model
is less similar to that of the surrogate model, most existing adver-
sarial attacks, which are highly dependent on the decision surface of
the surrogate model, fail to achieve high transferability. Therefore,
we attempt to further improve adversarial transferability on diverse
models by alleviating the dependency of adversarial examples on the
surrogate decision boundary. A simple and intuitive way to achieve
this goal is generating adversarial examples on several ensemble sur-
rogate models. However, this method is hard to conduct in practice
because of its high resource consumption. In GSA, we find an effi-
cient alternative to mitigate the model-dependence issue of adversar-
ial examples. Specifically, GSA generates perturbed copies of adver-
sarial examples, referred to as ghost samples, in each iteration of the
optimization. Based on the insight that a slight shift of the adversar-
ial example is similar to a minor change in the decision boundary,
we aggregate gradients of these ghost samples to efficiently achieve
a similar effect to calculating gradients of multiple ensemble sur-
rogate models, which leads to better transferability against diverse
target models. To highlight the superior transferability of GSA, we
illustrate the top-5 confidence distribution of an adversarial example
generated by GSA and other attack methods in Figure 1.

Experimental results on the ImageNet dataset demonstrate that
GSA can achieve state-of-the-art adversarial transferability with lim-
ited resources. It improves the average attack success rate on six nor-
mally trained models by 4.8% compared to state-of-the-art transfer-
based attacks with similar resource consumption. GSA also reduces
the computational cost by 62% compared with the state-of-the-art
feature disruption methods (TAIG-R). Additionally, GSA can be eas-
ily integrated as a plug-and-play component and used in combina-
tion with other methods to further enhance adversarial transferability
(96.9% on normally trained models and 82.7% on robust models).
Our code is available at https://github.com/SincereJoy/GSA.git.

Our main contributions are summarized as follows:

o We propose the ghost sample attack (GSA) that leverages per-
turbed copies of adversarial examples, named ghost samples, to
effectively alleviate the overfitting issue of adversarial examples
on the surrogate model, thus improving the adversarial transfer-
ability.

e We employ the aggregated gradient of ghost samples as an effi-
cient alternative to the gradient of a single adversarial example on
multiple ensemble surrogate models, guiding optimization of the
adversarial sample toward a more transferable direction.

e Extensive experiments demonstrate that GSA exceeds the perfor-
mance of state-of-the-art transfer-based attacks by 4.8% on aver-
age, achieving a superior attack success rate with less resource
consumption. When combined with other methods, GSA further
improves the average attack success rate to 96.9% and 82.7% on
normally trained models and robust models, respectively.

2 Related Work

Adversarial examples have drawn tremendous attention since re-
search [32] revealed their severe hazards and transferability between

different DNNs. To craft an adversarial example, the typical ap-
proach is to use the gradients of the model directly to optimize
a standard objective function, such as the Basic Iterative Method
(BIM) [19]. These white-box attack methods can serve as backends
in transfer-based black-box attacks. Recently various kinds of meth-
ods are proposed to improve adversarial transferability. In this sec-
tion, we discuss three categories of widely-used methods.

Advanced gradient calculation. Inspired by the optimization algo-
rithms in the training process [24, 23], some works proposed ad-
vanced gradient-based methods, such as Momentum Iterative FGSM
(MIFGSM) [4], Nesterov Iterative FGSM (NIFGSM) [21], and Vari-
ance tuning MIFGSM (VMIFGSM) [37]. These methods were dedi-
cated to finding a better local optimum for the adversarial optimiza-
tion problem. They generate adversarial examples totally based on
the decision surface of the surrogate model. When the target model
is largely different from the surrogate model, these methods would
become less effective.

Feature disruption. Based on the fact that different DNNs learn
similar features from the same sample [16, 7], some works uti-
lize attention maps or other feature attribution techniques to disturb
more transferable internal features. Feature importance-aware attack
(FIA) [39] and random patch attack (RPA) [44] used masked images
and gradient aggregation to highlight and disrupt essential object-
aware features. TAIG [14] found highly transferable adversarial ex-
amples by Integrated Gradients [30]. However, feature disruption-
based methods usually achieve satisfying attack performance at the
cost of huge computational overhead.

Input transformation. Some studies leveraged input transforma-
tion to promote adversarial transferability. Diverse input method (DI)
[42] randomly resized the input with a fixed probability. Translation-
invariant attack (TI) [5] approximated the ensemble gradient of trans-
lated images by convolving the gradient of the untranslated image.
Scale-invariant attack (SI) [21] optimized the adversarial perturba-
tions over the scale copies of the input. Admix [38] applied a spe-
cially designed Mixup to transform the input image with a small
proportion of images randomly sampled from other categories. How-
ever, existing input transformation-based attacks show limited trans-
ferability when attacking models with diverse architecture and ad-
vanced defense mechanisms.

To achieve high transferability with a low cost, we investigate
adversarial transferability from the perspective of optimization and
propose a novel input transformation-based attack. Instead of find-
ing a better local optimum for the adversarial optimization problem
on the surrogate model, we focus on mitigating the overfitting issue
of adversarial examples on the surrogate model and draw on tech-
niques for improving model generalization, e.g., regularization and
data augmentation, to improve the adversarial transferability.

3 Methodology

In this section, we first introduce the preliminaries of adversarial at-
tacks. Then we explain our motivation from the optimization per-
spective. Finally, we describe the details of our proposed method and
provide a transferability analysis.

3.1 Preliminaries

Let X be the set of input images under consideration for a classifica-
tion task and ) be the set of output labels. Given a black-box target
model fi(x;60:) : € € X — y € Y with unknown parameters
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0: and a white-box surrogate model fs(x;0s) : x € X — y € ),
transfer-based adversarial attacks aim to craft an adversarial example
2% against f, with the perturbation limited by the I,,-norm magni-
tude ¢, i.e., ||[£°Y — x||, < ¢, which is then transferred to the target
model to cause misclassification, i.e., ft(:c“d”; 0:) # y.

For the white-box surrogate model fs, we can formulate the ad-
versarial attack as the following optimization problem:

arg max J(@ y), stz — x|, <e, (1)

padv

where J (-, -) is the loss function, and e is the magnitude of adversar-
ial perturbations. To align with previous methods, p = oo is adopted
to measure the distance between 2’ and : in this work.

3.2 Motivation

Previous transfer-based attacks either have limited transferability or
require high resource consumption. New insights on improving ad-
versarial transferability with limited resources need to be discovered
to bridge the performance gap between white-box attacks and effi-
cient transfer-based attacks.

In this work, we investigate adversarial transferability from the
perspective of optimization. Similar to training a model, generat-
ing an adversarial example can also be regarded as an optimization
problem [4, 21]. In the model training process, we iteratively update
the model parameters with gradients computed through backpropa-
gation on the training data to minimize the loss function. Similarly,
when generating an adversarial example, we optimize the adversar-
ial example with backpropagated gradients generated by the model to
maximize the loss. In the context of transfer-based attacks, the sur-
rogate model can be seen as the training data on which we “train”
the adversarial examples. Also, the target model can be treated as the
out-of-distribution domain where we want the “trained” adversarial
examples to generalize. Therefore, the transferability of adversarial
examples can be seen as an analogue to the generalizability of mod-
els, i.e., adversarial examples transferring from a surrogate model to
target models can be considered similar to models generalizing from
the training data to out-of-distribution domains.

Based on the analogy between adversarial transferability and
model generalization, we attempt to draw inspiration from tech-
niques designed for improving model generalization. Among various
methods that benefit model generalization, regularization [29, 43]
and data augmentation [17] are two categories of commonly used ap-
proaches. Researches have shown that some data augmentation meth-
ods also have an effect of regularization, and Gaussian noise data
augmentation is a particularly effective one [1, 43]. Therefore, we
try to integrate noise data augmentation methods into the adversarial
optimization process, which is detailed in the subsequent sections of
the paper.

3.3 Ghost Sample Attack

As described above, the surrogate model can be seen as data on which
we “train” the adversarial example. Based on this, training a model
with noise data augmentation corresponds to generating adversarial
examples on multiple ensemble surrogate models with slightly differ-
ent decision boundaries. Considering model ensemble attacks require
huge memory and computational resources, we attempt to transform
the ensemble of models into an ensemble of perturbed adversarial ex-
amples. Figure 2 presents a toy example to illustrate how this works.
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G\. O Perturbed AE
— Original decision boundary
-~ Shifted decision boundary
— Shift vector

N B’ A
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—

Figure 2: Schematic diagrams of the equivalence between adversarial
example shift and decision boundary shift.

In Figure 2, diagram A depicts the change in decision boundary,
i.e., the original decision boundary (the red curve) slightly shifts to
the new boundary (the dashed green curve) with a vector d@. Dia-
gram B presents that the original adversarial example shifts to the
perturbed one with a vector b, where b = —a. Diagrams A’ and
B’ show the results of A and B, respectively. By overlaying A" and
B’, we can see that the relative position of the adversarial example
and the decision boundary is the same, which indicates that adver-
sarial example shift and boundary shift result in the same gradient
direction (relative position). Therefore, the aggregated gradient of
perturbed adversarial copies, referred to as ghost samples, could be
considered as an alternative to the gradient of an adversarial exam-
ple toward multiple ensemble models with slightly different decision
boundaries. Based on this, we can replace the ensemble of models
with perturbed adversarial examples to improve adversarial transfer-
ability.

Given the adversarial example 22%" in the ¢-th iteration, we ran-
domly generate N — 1 perturbed ghost samples within the neigh-
borhood region of ¢4’ under N (x¢%’, o) distribution. Then we
calculate the aggregation of gradients as the following weighted sum:

N-1
t
gir1 = Z wivmfﬂit J(mf,si ' Y)s 2)
i=0 '
where @f = x{?, %' (i > 0) is the i-th ghost sample of z{**,

w; 1is the pre-defined weight for the corresponding gradient, and y is
the ground-truth label of x. In practice, we set all w; = % to give
all ghost samples equal importance in determining the optimization
direction since they are randomly sampled. Additionally, the experi-
mental results presented in Section 4.6 show that keeping the original
sample’s weight the same as that of the ghost samples is beneficial.
Therefore we simplify Equation 2 to Equation 3 and summarize the
algorithm of GSA in Algorithm 1.

N-1
1 gs
91 = Z Vst J(@],y). (3)
i=0 '

3.4 Transferability Analysis

Before conducting extensive experiments, we first analyze the loss
landscape of GSA to study whether GSA could benefit adversarial
transferability. Researchers have shown the relationship between the
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Algorithm 1 Ghost Sample Attack

Input: A classifier f; a clean image @ with ground-truth label y.
Parameter: The magnitude of the perturbation €; the number of
iteration 7'; the update step size «; the number of ghost samples N;
the standard deviation of Gaussian noise o.

Output: An adversarial example 2%

adv

1: Letgy = 0; 25" = .
2: fort =0toT — 1do
3 Letxf{y =", g, =0.

4:  Sample N — 1 ghost samples :cfft

N(x¢™ o).

5:  Get the loss function J(x; y).

6: fori=0to N —1do

7: Calculate the gradient by g}, = Vgt J(x{ ).
8

9

under the distribution of

Aggregate the gradientby g, = g,,1 + ~ )1
. end for
10:  Update {4 by applying the gradient sign:

adv adv

] =2 + o sign(g,).

11: end for
12: return %% = 3%

loss landscape and attack transferability [3, 25]. A flatter loss land-
scape means that the loss function has a relatively small gradient
magnitude over a larger region of the input space. This makes the
loss function relatively insensitive to small changes in the input, al-
lowing the attacker to generate effective adversarial examples across
different models with similar loss landscapes.

We follow the previous work [25] that visualizes the loss flatness
around adversarial examples by plotting the loss change when mov-
ing the adversarial example along a random direction with different
magnitudes. The loss flatness indicates whether £ locates at a flat
local region where the points in the vicinity of 2%’ have similar
loss values as %%, With a low loss flatness value, the erroneous
prediction of %% is unlikely to be affected by the slight change
in decision boundary or mild deviations of 2% (usually caused by
preprocess-based defense mechanisms), thus achieving better trans-
ferability. The implementation details of loss flatness are provided in
Appendix A'.

As shown in Figure 3, the loss flatness value of GSA is signifi-
cantly lower than that of IFGSM, DI, and Admix. When combined
with the MIFGSM method [4] (denoted as MI), the difference be-
tween DI and Admix becomes obscure, while the superiority of GSA
remains clear. These results verify that adversarial examples gener-
ated by GSA locate at a smoother loss landscape and are resistant
to changes in the decision boundary caused by model variance and
sample deviation caused by defense mechanisms.

4 Experiments
4.1 Setup

Dataset. We conduct our experiments on the widely-used ImageNet-
compatible dataset? that contains 100.00 images provided by the
NIPS 2017 adversarial competition.

1 The appendix is available at https:/drive.google.com/file/d/
1jcbRxoBOJA-0AgraWfJ4RI-67GAjpgnH/view ?usp=sharing

2 https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.
O/examples/nips17_adversarial_competition/dataset
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Figure 3: The loss flatness visualization of various attacks on the sur-
rogate model ResNet50. MDI represents the combination of MI and
DI. MAI represents the combination of MI and Admix.

Models. We use ResNet50 [9], VGGI16 [28], and Inception-v3
[31] as surrogate models to generate adversarial examples. Due
to the page limit, experiment results on VGG16 and Inception-
v3 are provided in Appendix B.1. For target models, we consid-
ered six normally trained models (e.g., DenseNet121 [13], VGGI16,
Inception-v3, MobildeNet-v2 [26], SENet154 [12], and PNASNet-
5-Large [22]), two ensemble adversarially trained models (e.g., adv-
Inception-v3 [18] and ens-adv-Inception-ResNet-v2 [35]), three ViT
models (e.g., PiT-S [11], CaiT-S [34], and DeiT-B [33]), and five
models with advanced defense mechanisms.

Baseline Methods. We take IFGSM [19] as the basic attack and fur-
ther consider the competitive input transformation-based methods DI
[42], TI[5], SI[21], and Admix [38], and their combinations as base-
lines. To further illustrate the effectiveness and efficiency of GSA,
we also compare GSA with state-of-the-art methods from other cat-
egories. We take a feature disruption method TAIG-R [14] and an
advanced gradient-based method RAP [25] as additional baselines.

Implementation Details. We adopt both Cross-Entropy (CE) loss
and logit loss to conduct untargeted attacks. We also extend GSA to
targeted attacks. Following the previous work [25], We set the [
magnitude of perturbation e = 16/255, the number of iterations
T = 10, and the step size « = 2/255. Experimental results with
different e are shown in Appendix B.2. We adopt the decay factor
u = 1.0 for MI, the transformation probability p = 0.5 for DI,
and the Gaussian kernel size of 5 x 5 for TI, the number of copies
m = 5 for SI. For Admix, we follow its original settings: the number
of copies m1 = 5 and the number of random samples mz = 3 with
n = 0.2. To ensure fair comparisons, we set the sampling points of
TAIG-R as 15. The number of ghost samples is also set to 15, and the
standard deviation of Gaussian noise o = (.1. We set a random seed
as 1234 in our experiments to guarantee reproducibility. We conduct
all experiments on a Ubuntu 18.04.1 server with an NVIDIA GeForce
RTX 3090 GPU.

4.2 Evaluation on Normally Trained Models

Single Methods. We first evaluate the attack success rates of GSA
and baselines on normally trained models. Specifically, we craft
adversarial examples on ResNet50 and test them on six normally
trained target models with diverse architectures. Previous works have
shown that the commonly-used cross-entropy (CE) loss tends to en-
counter the vanishing gradient problem [20, 45], i.e., the gradients
of the input with respect to the loss function become very small as
the number of gradient calculations increases. On the other hand, the
logit loss has been found to be more resistant to the vanishing gra-
dient problem and has a superior performance in transferability [45].
Therefore, we use logit loss in addition to the commonly adopted CE
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Table 1: Attack success rates (%) on normally trained models. The symbol * indicates the surrogate model used to generate adversarial
examples. The attack success rate of the surrogate model is not included in the average attack success rate. The highest values of each column

are marked in bold.

Loss Method ResNet50* DenseNetl2l  VGG16  Inception-v3  MobileNet SENet154 PNASNet  Average
IFGSM 100.0 71.5 73.2 34.8 69.8 49.1 37.7 57.0
DI 100.0 86.6 91.0 48.6 83.3 65.0 61.0 72.6

CE TI 100.0 83.4 76.3 41.1 73.2 54.4 46.5 62.5
SI 100.0 90.7 79.9 61.2 79.4 54.8 46.1 68.7
Admix 100.0 94.1 90.4 73.2 87.7 67.9 59.6 78.8
GSA 100.0 95.6 93.8 73.2 93.4 73.7 70.8 83.4
IFGSM 100.0 77.1 73.8 355 70.5 46.7 32.8 56.1
DI 100.0 86.1 92.0 50.1 82.8 67.0 60.3 73.1

Jogit TI 100.0 80.8 71.5 42.5 73.8 53.6 40.9 61.5
SI 100.0 92.9 85.9 66.3 86.6 64.2 52.3 74.7
Admix 100.0 97.3 92.0 76.8 93.6 75.2 64.7 83.3
GSA 100.0 97.5 96.4 79.3 95.8 82.7 771 88.1

Table 2: Inter-category comparison results on normally trained mod-
els. The symbol * indicates the surrogate model used to generate
adversarial examples.

Method  Iter  Inception-vd  ResNet50 DenseNetl2]l VGGI16
TAIG-R 10 99.2%* 43.0 51.3 48.1
RAP 400 100.0%* 62.1 60.8 65.9
GSA 10 100.0%* 62.4 65.4 69.1
TAIG-R 10 83.3 99.0%* 942 95.6
RAP 400 57.2 100.0* 91.9 92.9
GSA 10 79.3 100.0* 97.5 96.4

loss. Table 1 shows the attack success rates (i.e., the proportion of ad-
versarial examples misclassified by the corresponding target model)
of GSA and six baseline methods on six normally trained models,
using a ResNet50 surrogate model and e = 16/255. We can observe
that GSA achieves higher attack success rates on all target models
compared to all baselines, using both CE and logit loss. Among the
baseline methods, Admix has the best adversarial transferability, and
GSA outperforms Admix with an average improvement of 4.6% and
4.8% using CE and logit loss, respectively.

To further demonstrate the effectiveness of GSA, we compared
it with other state-of-the-art methods, including TAIG-R, a fea-
ture disruption-based method, and RAP, an advanced gradient-based
method. Typically, feature disruption-based methods require high
computational costs, and TAIG-R is no exception because it in-
volves the resource-consuming calculation of Integrated Gradients.
Although advanced gradient-based methods are generally more ef-
ficient, RAP requires hundreds of iterations to converge, making it
computationally expensive.

Table 2 presents the attack success rates of TAIG-R, RAP, and
GSA using Inception-v3 and ResNet50 surrogate models and € =
16/255. When using Inception-v3 surrogate model, GSA outper-
forms TAIG-R by a significant margin of 14.1%~21% with the same
number of optimization iterations. Furthermore, GSA with only 10
iterations outperforms RAP with 400 iterations by an average mar-
gin of 2.6%. When using ResNet50 surrogate model, GSA achieves
comparable attack success rates with TAIG-R and outperforms RAP
by an average of 10.4%. Moreover, the less satisfying performance
of GSA when targeting Inception-v3 may be caused by the special
inception module, which uses a combination of convolutional ker-
nels with different sizes and pooling operations to extract features
at multiple scales. The fusion of features in Inception models may
enhance their robustness against output-level attacks, which gener-
ate adversarial examples with respect to the model’s outputs. On

the other hand, feature disruption attacks like TAIG-R, which aims
to disrupt features in the intermediate layers, have inherent advan-
tages in attacking Inception models. Overall, these results demon-
strate that GSA is not only superior to other input transformation
methods (intra-category methods), but it can also outperform inter-
category methods that have high computational costs.

Combinational Methods. Previous studies have demonstrated that
the combination of baselines could further enhance adversarial trans-
ferability [21, 38]. We also test the attack success rates of GSA in-
corporated with the other attacks. Specifically, we consider combina-
tions of MI, DI, and TI (denoted as MTDI). Additionally, we include
SIand Admix in these combinations, for example, MTDSI represents
MTDI combined with SI, and MTDAI represents MTDI combined
with Admix. SI and Admix cannot be combined together because SI
is a special case of Admix. Moreover, we don’t consider the com-
bination of TAIG-R and RAP since their resource consumption will
multiply when integrated with input transformation methods. Table
3 reports attack success rates of combined methods on six normally
trained models.

Our results show that when using VGG16 as the target model, MT-
DAI slightly outperforms MTDAI-GSA. However, MTDAI-GSA has
higher attack success rates on other target models and in the average
results. Similar patterns can also be observed in the comparison of
MTDSI and MTDSI-GSA when attacking SENet154 and PNASNet.
We suppose the combined GSA occasionally gets worse because of
the special structure of the target model. In general, GSA outper-
forms other combined baselines on the average attack success rate of
various models. Besides, by comparing MTDI-GSA with MTDSI-
GSA and MTDAI-GSA, we also find that Admix does not provide
any improvement to MTDI-GSA on average, and SI even diminishes
the effectiveness of MTDI-GSA. On the other hand, GSA can bring
additional improvement on the basis of MTDSI and MTDAI, where
the average attack success rate is already above 95%. In general,
GSA can serve as a plug-and-play component to effectively improve
the adversarial transferability of existing attacks.

4.3 Evaluation on Robust Models

To evaluate the effectiveness of our method against robust models,
we consider two ensemble adversarially trained models, and four
models with advanced defense mechanisms, i.e., Feature Denoising
(FD) [41], DeepAugment (DA) [10], HGD [20] (rank-1 submission
in the NIPS 2017 defense competition), and R&P [40] (rank-2 sub-
mission in the NIPS 2017 defense competition). Previous works have
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Table 3: Attack success rates (%) of combined methods on normally trained models. The symbol * indicates the surrogate model used to

Y. Zhao et al. / Improving Adversarial Transferability with Ghost Samples

generate adversarial examples. The attack success rate of the surrogate model is not included in the average attack success rate.

Method ResNet50*  DenseNetl2l  VGG16  Inception-v3d  MobileNet  SENet154  PNASNet  Average
MTDI 99.8 96.1 96.1 79.8 93.8 86.8 84.4 89.5
MTDI-GSA 100.0 99.3 98.7 95.0 97.9 95.0 95.4 96.9
MTDSI 100.0 99.2 97.2 95.8 97.0 91.4 9.1 95.8
MTDSI-GSA 100.0 99.5 97.5 98.3 98.2 90.9 934 96.3
MTDAI 100.0 99.2 98.1 96.5 97.0 92.6 94.1 96.3
MTDAI-GSA 100.0 99.6 97.9 98.3 98.3 92.9 9.5 96.9

Table 4: Attack success rates (%) on robust models. The highest values of each column are marked in bold.

Method Inc-v3, 40 IncRes-v2en s FD DA HGD R&P PiT-S CaiT-S DeiT-B  Average
MTDI 68.9 53.8 545 686 @ 69.6 40.5 54.7 459 41.2 55.3
MTDI-GSA 90.4 87.9 594 920 91.0 83.7 79.0 75.1 68.9 80.8
MTDSI 87.8 82.5 56.7 85.1 89.8 73.9 72.2 64.1 57.5 74.4
MTDSI-GSA 92.8 91.1 60.7 92,6 943 89.4 77.4 72.7 64.8 81.8
MTDAI 92.5 85.7 56.8 87.6 932 78.5 76.5 70.7 61.2 78.1
MTDAI-GSA 94.8 91.3 60.5 929 958 88.9 79.2 74.9 65.9 82.7

shown that ViTs have superior adversarial robustness, and transfer-
ring adversarial attacks from CNN models to ViTs is challenging. To
assess the effectiveness of GSA in this context, we also conducted
experiments on three ViT models.

Table 4 illustrates the attack success rates of combined methods
when attacking the robust models. The results indicate that combin-
ing the baseline methods with GSA can significantly improve attack
success rates on all robust models and increase the average results by
4.6%~25.5%. Additionally, MTDI-GSA outperforms MTDSI and
MTDALI in terms of the average attack success rates by 6.4% and
2.7%, respectively. We also find that GSA is good at breaking input-
level defenses, e.g., DA, HGD, and R&P, but is relatively less effec-
tive when attacking models with feature-level defenses, such as FD.
Although ViTs show relatively better robustness than CNN models,
GSA can still enhance the transferability on ViT target models by
an average improvement of 16.3%. These results indicate that GSA
has superior adversarial transferability when attacking robust mod-
els, making it practical and effective for a wide range of applications.

4.4  Evaluation in the Targeted Attack Scenario

While GSA is originally designed for untargeted attacks, it can be
adapted for targeted attacks by simply modifying the objective func-
tion to maximize the logit output of the desired target class. This is
done by replacing the ground-truth label with the target label and tak-
ing the negative of the loss function. For instance, the logit loss for
the targeted attack is Jiogit (@, y¢) = ly, (x), where [y, (-) denotes
the logit output with respect to the target class y:. Then we optimize
the adversarial example to maximize the logit output with respect to
the target class through the gradient descent process.

Table 5 illustrates the targeted attack success rates of adversarial
examples generated on Resnet50 with e = 16/255 and 100.0 iter-
ations. We can see that GSA outperforms all baseline methods by
a significant margin in the targeted setting, reaching an average tar-
geted attack success rate of 78.8%. These results demonstrate that
GSA can be easily extended to targeted attacks and achieve high
targeted attack success rates, making it a versatile method for both
untargeted and targeted attack scenarios.

4.5 Computational and Time Cost

To demonstrate the efficiency of GSA, we conducted a quantitative
and qualitative analysis of its cost compared to Admix and TAIG.
For a fair comparison, we set N = 15 for GSA, the number of sam-
pling points n = 15 for TAIG-R, m; = 3,m2 = 5 for Admix,
and iteration 7" = 10 for all three methods. These settings allow an
equal number of forward and backward calculations among the three
methods. Therefore, the efficiency difference is a result of the extra
operations used by the three methods.

First, we analyze the computational cost qualitatively. The com-
putation costs of forward and backward operations are equal in these
three methods since we set T'xmy Xmoe = 1T'xn =T x N = 15T
The extra costs of TAIG-R, Admix, and GSA are caused by Inte-
grated Gradients calculation Crg, Mixup Crizup, and perturbing
operation Cperturs, respectively. Mixup and perturbing are widely-
used data augmentation techniques, which only bring a little addi-
tional overhead. However, the calculation of Integrated Gradient is
known to be computationally expensive, resulting in the high over-
head of TAIG-R.

We also evaluate the average time cost of generating a single ad-
versarial example for each of the three methods. It costs TAIG-R
1.42s to generate one adversarial example, Admix 0.57s, and GSA
0.56s. In summary, GSA has a similar time cost to Admix and re-
duces 62% of the time cost compared with TAIG-R. Although Ad-
mix has a similar overhead to GSA, it is observed to have lower ad-
versarial transferability. Overall, GSA is able to achieve advanced
adversarial transferability at a relatively low overhead, making it a
cost-effective choice for the transfer-based black-box attack.

4.6 Ablation Study

We conduct an ablation study on the hyper-parameters, i.e., the num-
ber of ghost samples N, the aggregation weight of the original ad-
versarial example wo, efc. All adversarial examples are generated on
ResNet50 with 10 iterations.

The Number of Ghost Samples. Figure 4 illustrates how the attack
success rate varies on six normally trained models as the number of
ghost samples (V) increases from 0 to 20 in increments of 5. When
N = 0, GSA reverts to the corresponding baseline methods. The
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Table 5: Targeted attack success rates (%) on normally trained models. The symbol * indicates the surrogate model used to generate adversarial
examples. The attack success rate of the surrogate model is not included in the average attack success rate.

Method  ResNet50*  DenseNetl21 ~ VGG16  Inception-v3  MobileNet  SENetl54 PNASNet  Average
IFGSM 100.0 55.0 58.4 31.1 59.9 37.1 20.8 43.7
DI 100.0 76.5 93.1 38.6 74.2 64.8 56.6 67.3
TI 100.0 60.1 64.1 34.8 62.1 45.0 28.0 49.0
SI 100.0 78.1 70.5 50.4 73.7 50.8 35.1 59.8
Admix 100.0 84.1 77.0 59.1 80.3 58.6 43.1 67.0
GSA 100.0 90.5 90.8 65.3 88.4 74.4 63.2 78.8
100 100
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Figure 4: Attack success rates on normally trained models with vari-
ous numbers of ghost samples.
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Figure 5: Attack success rates on normally trained models with dif-
ferent aggregation weights wo.

results reveal that GSA outperforms the baselines by a noticeable
margin with just 5 ghost samples. As N increases, the attack suc-
cess rates continue to rise but eventually plateau when N is greater
than 15. We set N = 15 in default to ensure better performance and
fair comparison between GSA and Admix. Generally, the number of
ghost samples can be adjusted in different scenarios to balance ad-
versarial transferability and resource consumption.

The Aggregation Weight. Given the random nature of ghost sam-
ples, it’s reasonable to assign equal weight to them. In this anal-
ysis, we primarily focus on the weight of the original adversar-
ial example wp. To examine this, we fix N = 5 and test the at-
tack success rates of GSA on six normally trained models with
wo = 0.1,0.2,0.4,0.6,0.8, 1. As shown in Figure 5, GSA achieves
the highest attack success rates when wo = 0.2 (wg = %) on all
target models, indicating that assigning equal weights to the original
adversarial example and ghost samples results in better performance.
From the optimization perspective, any ghost sample with a larger
weight will have a more important role in determining the optimiza-
tion direction, making the adversarial example depends more on the
corresponding decision boundary. Under the condition that we can-
not determine which decision boundary is better, it is best to treat
them equally.

Other Hyper-parameters. We also evaluate the influence of the sur-
rogate model and the magnitude of perturbations €. As for the surro-
gate model, we additionally consider VGG16 and Inception-v3. GSA

outperforms the state-of-the-art attacks by an average attack success
rate of 2.3% on VGG16 and 13.4% on Inc-v3. The detailed eval-
uation results are presented in Appendix B.1. We also evaluate the
performance of GSA and the baseline methods with smaller magni-
tudes of perturbations (¢ = 4/255 and e = 8/255) to show the ef-
fectiveness of GSA in stealthiness-sensitive scenarios. Results show
that GSA can generate effective adversarial examples with smaller
magnitudes of perturbations and has the advantage of being stealthy
while maintaining a high attack success rate. The evaluation results
of different € are provided in Appendix B.2.

5 Conclusion

In this paper, we propose a novel transfer-based attack called ghost
sample attack (GSA), which improves adversarial transferability by
alleviating the overfitting issue of adversarial examples on the surro-
gate model. By considering adversarial transferability as an analogue
to model generalization, we draw inspiration from techniques used to
improve model generalization and integrate noise data augmentation
into the adversarial optimization process. Specifically, GSA utilizes
the aggregated gradient of perturbed adversarial copies as an efficient
alternative to the gradient of a single adversarial example attacking
multiple ensemble surrogate models. Extensive evaluations show that
GSA outperforms state-of-the-art transfer-based attacks in terms of
adversarial transferability while maintaining a relatively low over-
head (62% less than TAIG-R). When combined with other methods,
GSA achieves an impressive average attack success rate of 96.9%
against normally trained models and 82.7% against robust models.
We believe that GSA could serve as a cost-effective approach to eval-
uate model robustness and inspire the security improvements of prac-
tical black-box applications.
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