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Abstract. lbeit having gained significant progress lately, large-scale
graph representation learning remains expensive to train and deploy
for two main reasons: (i) the repetitive computation of multi-hop
message passing and non-linearity in graph neural networks (GNNs);
(ii) the computational cost of complex pairwise contrastive learning
loss. Two main contributions are made in this paper targeting this
twofold challenge: we first propose an adaptive-view graph neural
encoder (AVGE) with a limited number of message passing to accel-
erate the forward pass computation, and then we propose a structure-
aware group discrimination (SAGD) loss in our framework which
avoids inefficient pairwise loss computing in most common GCL and
improves the performance of the simple group discrimination. By
the framework proposed, we manage to bring down the training and
inference cost on various large-scale datasets by a significant mar-
gin (250x faster inference time) without loss of the downstream-task
performance.

1 ntroduction
Graph Neural Networks (GNNs) have shown superiority in deal-
ing with graph-structured data, such as social networks [5], traffic
networks [4], and molecular graphs [26]. In real-world scenarios,
however, large-scale graph data often lack human-annotated labels,
which creates a huge barrier for the traditional supervised learning
paradigm. To conquer this limitation, self-supervised graph repre-
sentation learning methods have been widely studied, among which
Graph Contrastive Learning (GCL) is dominant due to its ability to
learn robust and generalizable representations for the downstream
tasks [24, 8, 19]. In GCL, the graph data encoder is trained to pro-
duce the representation space that minimizes the distance between
the semantically invariant perturbed instances, e.g., sub-graphs cre-
ated with mild augmentation, and maximizes the distance between
irrelevant instances, e.g., randomly sampled sub-graphs.

Although proven to be effective, the existing GCL methods have
limitations in real-world large-scale graph data applications: since
they typically require large amounts of time and computational re-
sources to deploy. For one thing, the most common GNN encoders
utilize multi-hop information in graphs by multi-layer message pass-
ing in every calculation step, which leads to large computational
costs for both training and inference. And for another, the predomi-
nant pairwise constrictive loss is not efficient enough and takes lots
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of time until convergence. In the supervised setting, there are sev-
eral works addressing the first problem by reducing the number of
parameterized message passing [25] or distilling the trained GNN to
Multi-Layer Perceptron (MLP) to improve inference speed [21]. As
for the second problem, various techniques have been studied such as
simplifying positive and negative sample construction process [13],
and removing the negative sample generation process [19, 7, 18].
However, those works didn’t explore the application of a more effi-
cient encoder in GCL and discuss the relationship between encoder
and pretext tasks.

Figure 1: The architecture of separating 2-hop message passing and
feature transform (above), compare to 2-layer GCN architecture (be-
low). GCN will degrade to MLP if feature message passing is pred-
computed and removed in each GCN layer.

In this paper, we propose a novel GCL framework (AVGE-SAGD)
to tackle the aforementioned two challenges. It contains an adaptive-
view graph encoder (AVGE) that achieves higher training and infer-
ence speed than the GNN counterparts, and a structure-aware group
discrimination (SAGD) module that increases the speed of the pretext
contrastive task training. In the AVGE, instead of using GNN, we first
perform a limited number of message-passing to generate a multi-
view feature vector that consists of multi-hop features. During train-
ing, the multi-view features are adaptively input to the encoder. And
then we use an MLP encoder to further learn high-level representa-
tions for the pretext task. This encoder is significantly more efficient
since it separates message passing and feature encoding and strictly
controls the number of both operations. In the SAGD module, we first
introduce the group discrimination loss to avoid inefficient pairwise
contrastive loss computation [32]. Considering that the AVGE views
the input multi-hop vector as a collection of independent features, it
will lose the structural information of the original graph. Therefore
to empower AVGE in the scenario of self-supervised representation
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learning, a novel structure prediction loss is added. It requires the en-
coded feature to further divide the graph into meaningful groups. By
this extra topological constraint, we manage to prevent performance
degradation and even achieve performance improvement.

Overall, our framework offers a simple and efficient approach to
graph self-supervised learning by incorporating an adaptive-weight
encoder. We design novel components for accelerating and preserv-
ing structure information and combine them in a non-trivial way.

By reducing computation time while maintaining optimal per-
formance (e.g., 300x inference speed up in OGBN-Products), our
framework provides a practical solution to graph self-supervised
learning algorithms’ computational challenges in real-world scenar-
ios. To summarize, our contributions are as follows:

• We propose a graph encoder that adaptively utilizes multi-hop
neighbor information, and separates the message passing from the
encoder calculation procedure to save the repeated message pass-
ing calculation steps in the traditional GNN encoders, thereby im-
proving the training speed and inference speed of our framework.

• We propose a novel structure-aware group discrimination (SAGD)
module for GCL. It is built on graph group discrimination and
further requires the encoder to subdivide the group into topology-
based mini-groups so that the pre-trained model preserves more
structural information and achieves better generalization ability
for downstream tasks.

• Experiments on various node classification datasets showcase the
effectiveness of our framework in terms of training and inference
efficiency and downstream-task performance. Especially on large-
scale graph data, our method achieves comparable performance
with less training time and 250x faster inference time.

2 Related Work

Our framework involves two aspects: GNN encoder architecture and
GCL methods. In this chapter, we introduce several previous works,
discuss their limitations in GCL and propose our ideas for improve-
ment.

2.1 GNN Architecture

Architecture design is an important part of GNN research. The most
mainstream GNN structures are designed based on message pass-
ing, the most widely known of which is GCN [11]. There are several
works that tried to accelerate the computing speed of GNN by sepa-
rating the message passing phase and feature calculation as shown in
Figure 1. The most known architecture is SGC [25], which removes
the non-linearity calculation between GCN layers and simplified it to
linear transform, showing that parameters-free linear message pass-
ing can achieve similar performance to GCNs. NAFS [31] present
learning-free node-adaptive feature smoothing, assign fixed weights
for features in different hops by computing the distance from the ag-
gregated features to the extreme over-smoothed features, and com-
bine the features in different hops by summation.

Some studies have shown that under a certain design, the joint use
of different hop features can enhance expressive ability. ASGC [2]
uses the linear regression method to fit the raw features by construct-
ing a linear combination of different hop features, thereby solving the
problem of heterophily graph node classification. GCN-PND [9] up-
dates graph topology based on the similarity between the local neigh-
borhood distribution of nodes and designing extensible aggregation
from multi-hop neighbors.

These methods of separating message passing and feature com-
putation are all applied in supervised scenarios, and a combination
method such as summation is used for multi-hop information to keep
data scale. We explore the separation of message passing and feature
computation GNN architectures in self-supervised scenarios.

2.2 Self-Supervised Graph Representation Learning

Self-supervised learning was first proposed in the computer vision
area and has quickly received widespread attention in the community
of graph learning due to its excellent performance in scenarios with
few labeled training data. There are three levels of contrastive learn-
ing in the GCL field: graph-graph level [29], node-graph level [24, 8],
and node-node level [14, 34, 36]. Among those methods, we fo-
cus on the node-graph level since our framework is also a kind of
node-graph level contrastive learning. DGI [24] obtains the graph-
level representation by applying a readout function on the graph and
maximizes the mutual information between the patch and the graph
representation to perform node-graph level graph contrastive learn-
ing. MVGRL [8] uses multi-view constructiveness to extend the idea
of DGI and borrow the idea from graph diffusion networks [12] to
improve the performance. The training loss of DGI can be simplified
into a binary classification loss which is empirically and theoretically
proven in [32]. The training scheme in [32] is coined as Group Dis-
crimination which can implement efficient training but neglect the
inner group relations which can be used to divide the original group
into multiple mini-groups. In order to overcome these obstacles, we
design SAGD by dividing it into mini-groups according to the struc-
ture, which is more helpful to our encoder.

3 Method

In this chapter, we will introduce our framework AVGE-SAGD in
detail. The overall processes are shown in Figure 2.

3.1 Problem Formulation

Given a graph G = (X,A) with node attribute matrix X ∈ RN×d,
where N is the number of nodes, d is node attribute dimension, and
graph adjacency matrix A ∈ R

N×N , where Ai,j = 1 if node i and j
are connected, else Ai,j = 0. For message passing, we follow the set-
ting in GCN, using normalized adjacency matrix Ã = D− 1

2AD− 1
2

where D is the diagonal degree matrix and Dii = di represent the
number of degrees of node i. In our framework, we define the en-
coder as fθ : RN×d → R

N×d′ where d′ is the dimension of node
representations.

The goal of GCL is to train a generalized graph encoder fθ by a
pretext loss L without labels. For evaluating the pre-trained model on
a specific downstream task (e.g., node classification), we will obtain
the node representations by the frozen encoder (H = fθ(A,X)).
Then, we will train a linear classifier built on these node representa-
tions from the training set by a supervised loss (e.g., cross-entropy
loss). Lastly, we will use the test set to evaluate the performance of
our pre-trained model with the linear classifier.

3.2 Generating Positive and Negative Samples

3.2.1 Data augmentation

We adopt data augmentation in generating positive samples. Node
attribute masking is a popular technique and is widely used in GCL
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Figure 2: The architecture of AVGE-SAGD. Given a graph G and node attribute matrix X, we first adopt an optional data augmentation and
then generate negative samples by randomly permutating the node attributes matrix. Message passing is processed for both the positive sample
and negative sample which will give K-views of features in K-hop. We sample N/K features in each view to keep the scale of training data.
The training data will be fed to the MLP encoder. After projection and aggregation, the generated embeddings can be discriminated into the
positive group and negative group.

methods (e.g., GraphCL [29], GGD [32]). We adopt this data aug-
mentation technique to enrich the features of positive samples. In
practice, partial dimensions of node attributes will be masked with 0.

The augmented node attributes X̃ is obtained by:

X̃ = X ◦M, (1)

where M ∈ R
N×D is masking matrix and each row vector in M are

equal (i.e., mi = mj , ∀i, j), each element mij in mi ∈ {0, 1}D
is is drawn from a Bernoulli distribution with probability pm (i.e.,
mij ∼ B (1− pm)). In order to keep the notation uncluttered, we
use X to represent the augmented feature matrix in later sections.

3.2.2 Corruption

We adopt corruption to generate negative samples. We randomly per-
mutate the node attributes matrix and keep the topology structure un-
changed:

ǧ = {X̌,A}, X̌ = PX, (2)

where P is a permutation matrix.
This corruption technique
is widely used in node-graph level GCL frameworks (e.g.,

DGI [24], MVGRL [8]) to encourage the representations including
structural similarities of different nodes in the graph properly. In our
framework, this corruption operation will mislead message passing
(e.g., AX̌) to generate erroneous node attributes as negative sam-
ples.

3.3 Adaptive-View Graph Encoder

3.3.1 Post-message-passing features as training data

With data augmentation and corruption, we can obtain multi-
view features by parameters-free linear message passing:
[ÃX; Ã2X; ...; ÃKX] and [ÃX̌; Ã2X̌; ...; ÃKX̌] which will

be used to train the encoder fθ . These features can be reused during
training and inference which can save a lot of computational time.

Considering that we store K views of attributes for each node by
parameter-free linear message passing, the scale of training data of a
graph with N nodes increases from N to KN compared to standard
GNN encoders, which is certainly contradictory to the goal of reduc-
ing computing time and memory. We use a simple sample method
to make a trade-off between performance and computation cost. In
each epoch, we randomly sample N

K
nodes to keep the input training

data size as N , which is consistent with the standard GNN encoder
training process.

Another alternative approach is to use the average or summation
of features in different hops. Unfortunately, the information of dif-
ferent hops will be mixed up which leads to performance degenera-
tion. However, our sample method can explicitly use features in more
views that provide more distinct and useful information.

3.3.2 Adaptive weighted training

Different hop features will be fed to train the encoder, but some hops’
information is redundant and high-order hop features may incur over-
smoothing [3]. So, the contributions of each hop’s feature should be
disparate.

We assign individual adversarially learnable weight λi to each
hop feature ÃiX. The training data can be reformulated as
[λ1ÃX, λ2Ã

2X, ..., λKÃKX].
In order to avoid the training loss easily converging to 0 (i.e.,

through minimizing training loss, discrepant high-order features will
have large weights λi and weights of indiscernible low-order will
easily collapse to zero), we use a two-step min-max optimization
method to train the MLP encoder with adaptive weighted multiple
receptive field features. This training method can be formulated as:
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Algorithm 1 Adaptive weighted training algorithm

Input: initial model parameter θ(0), adaptive weight λ(0), total
training epoch E
Parameter: θ, λ
Output: Optimized model parameter θ(N)

1: for e = 1 to E do

2: Maximization: fix θ = θ(e−1) and calculate the gradient of
λ(e)

3: Minimization: fix λ = λ(e) and calculate the gradient of θ(e)

4: update θ and λ
5: end for

6: return Optimized parameter θ(E)

min
θ

max
λ

L(λiÃ
iX, λiÃ

iX̌, θ) (3)

s.t.
K∑
i

λi = 1, ∀λi ∈ [0, 1], (4)

where λ is Xavier initialised [6] and L is our training loss which will
be described in Section 3.4. At each training step, firstly, we optimize
adaptive weights with frozen model parameters by maximizing the
training loss. Then, we optimize the parameters of the encoder with
fixed adaptive weights by minimizing training loss. The optimization
algorithm is described in Algorithm 1.

From a more theoretical aspect, our motivation is given from
the analysis of research on homophilous graphs and heterophilous
graphs [33]. Homophily describes the similarity between adjacent
nodes. The relevant studies [27] show that graph representation learn-
ing will benefit from message passing in a homophilous graph and
the opposite in a heterophilous graph. The corruption operation dis-
rupts the graph connection relationship, which will make the cor-
rupted graph turn into a heterophilous graph. As the order of mes-
sage passing hop increases, the node attributes in the positive group
and negative group will be separated spontaneously. So the model
without an adaptive weighted training method will take shortcuts by
overly using high-order-hop features during pre-training, which will
consequently cause the model to lose generalization ability.

3.4 Structure-Aware Group Discrimination

3.4.1 Group discrimination

It has been empirically proven that the contrastive learning task in
DGI can be transformed into a binary classification task named group
discrimination [32]. Following this method, we use a projector gω(·)
which consists of an MLP to map node representations into another
latent space and then aggregate the projected representations. At last,
we use binary cross entropy (BCE) loss to discriminate them into
positive and negative groups, which are labeled as yi = 1 and yi = 0
respectively. The group discrimination loss can be formulated as:

LGD = − 1

2N

2N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] , (5)

where ŷi = agg(gω(hi)), agg(·) is summation aggregation.

3.4.2 Preserving structure

Simple MLP encoder cannot preserve structure information [21] be-
cause the training data are all independent node attributes in disparate
hops. To solve this problem, we design auxiliary classification tasks
to preserve structural information and capture the inner group rela-
tions so that the discriminated groups will be implicitly divided into
mini-groups. Figure 3 shows the procedure of SAGD. Considering
that our goal is to speed up computation, we prefer simple and effi-
cient modules to assist the encoder. The losses of these two modules
are simple and consistent with the formula of group discrimination,
which can make the convergence more stable.

Figure 3: The schematic diagram of SAGD. LGD means group dis-
crimination loss and LSA means structure aware loss. On the basis of
LGD distinguishing positive and negative samples, LSA further dis-
tinguishes the mini-group according to the structure.

Here we introduce the concept of relative degree which evaluates
the node degree compared to its neighbors’ degrees. The definition
of the relative degree of node vi is:

r̄i =
1

di

∑
j∈Ni

√
di
dj

. (6)

According to [27], the nodes with a high relative degree are more
sensitive to homophily and heterophily. Positive sample nodes can be
considered as having high homophily, while negative sample nodes
can be considered as having low homophily. Nodes with high rela-
tive degrees will have features closer to the center of their respective
classes after undergoing homophilous message passing, while they
will be farther away from the center of their respective classes af-
ter undergoing heterophilous message passing. For an ideal and sim-
ple example, consider a graph with two classes of nodes, features of
which class are μ and σ separately. The node representations of the

first layer are given by h
(1)
i =

∑
j∈Ni

h
(0)
j√

di
√

dj
. In the extreme ho-

mophilous case, the neighbors of node i in class 1 are all in class
1, so after 1-layer message passing, h(1)

i =
∑

j∈Ni

√
di
dj
μ. After

an ideal corruption, half of the neighbors of node i are in class 1,
and the remains are in class 2. This corrupted message passing gives
h
(1)′
i =

∑
j∈Ni

√
di
dj

μ+σ
2

. So ‖h(1)
i − h

(1)′
i ‖ ∝

√
di
dj

, which de-
rives the idea.

In our case, the positive (high homophily) and negative (high ho-
mophily) samples generated by nodes with a high relative degree are
highly discrepant. That is, the relative degree is a qualified graph
structure indicator.

So encoders that can distinguish r̄ preserve structural information
and will therefore have stronger expressive power.

We hope that the formulation of the structure-preserving task can
hold a consistent format of the discrimination task, which will be
beneficial for model optimization.
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Considering that relative degree is a continuous variable, we set 1
as the threshold to discriminate whether a node has a high relative
degree, which means The relative degree loss can be written as:

Lr̄i = − 1

2N

2N∑
i=1

[yr̄i log(ŷr̄i) + (1− yr̄i) log(1− ŷr̄i)] , (7)

where fr̄ : RD′ → R is a summation aggregation function and ŷr̄ is
the prediction result.

Furthermore, we also use the hop order as the structural informa-
tion that needs to be preserved. Similar to relative degree, we conduct
a classification task to predict the order number of hop it belongs to
through input features. The hop loss can be written as:

Lhop = − 1

2N

2N∑
i=1

[
yhopi log(ŷhopi)+

(1− yhopi) log(1− ŷhopi))
]
,

(8)

where fhop : RD′ → R and ŷhop is the prediction result.

3.4.3 Final SAGD loss

Our structure-aware group discrimination loss can be written as:

L = αLGD + βLhop + γLr̄i , (9)

where α, β, γ are hyper-parameters used for controlling the contri-
butions of each loss. Empirically, we set α, β, γ as 1, 0.01, 0.05 re-
spectively in most cases.

3.5 Time Complexity Analysis

The overall time complexity of our method consists of three compo-
nents: pre-computing, simple MLP encoder, and loss computation.
Given a graph G = {X ∈ R

N×D, A ∈ R
N×N} in the sparse for-

mat with the number of edges E. The K-hop message passing takes
O(KED) for the pre-computing part. The time complexity of our
encoder is O(ND2). And for the contrastive learning part, the 1-
layer MLP projector network takes O(ND2), and aggregation takes
O(ND). The time complexity of basic discrimination loss is O(N).
For the structure-preserving module, two 1-layer MLP structural pre-
dictor network takes O(ND2), and the time complexity of structure
predict loss is O(N). In the training stage, suppose the training epoch
is T , and the training complexity is O(KED+TN(D2 +D+1)).
In the inference stage, the time complexity is O(ND2).

Method Training complexity Inference complexity

GRACE
O(T (LED+
LND2 +ND2 +N2D))

O(LED + LND2)

GGD
O(T (LED+
LND2 +ND2 +ND +N))

O(LED + LND2)

Ours
O(KED+
T(ND2 +ND +N))

O(ND2)

Table 1: Time complexity comparison of different GCL methods

The comparison of time complexity of GRACE and GGD in Ta-
ble 1. Note that E is ten of times greater than N is large-scale
datasets. We can see that the result of speed-up (250x faster infer-
ence speed) mostly comes from our adaptive-views graph encoder.
This module substantially declines the time cost in message pass-
ing during training and inference. And the adaptive weighted train-
ing method and structure-preserving module enhance the expression
ability in graph structure. .

4 Experiments

In this section, we demonstrate that our framework AVGE-SAGD
can achieve comparable performance in unsupervised representation
learning for node classification with exceptional training and infer-
ence time. We evaluate the performance and computation time cost
on various node classification datasets with the standard experiment
settings.

4.1 Datasets

The datasets we use to evaluate our approach contain two types des-
perated by the data scale: small-scale datasets include Cora, Cite-
Seer, PubMed [16], Amazon Computers and Amazon Photo [17] and
large-scale datasets include ogbn-arxiv and ogbn-products provided
by Open Graph Benchmark[10]. Dataset statistics can be found in
Appendix B.

In our implementation, we follow the standard data splits in [28].
And for Amazon Computers and Photos, we randomly allocate
10/10/80% of data to training/validation/test set respectively.

4.2 Experimental Setup

4.2.1 Model

For the encoder fθ , we use a 1-layer MLP for all datasets to save
computing time. The projector gω is also a 1-layer MLP. fr̄ and fhop

are summation functions used for structure prediction.

4.2.2 Inference

During the inference phase, we freeze the trained MLP encoder fθ
and obtain final node representations H which can be used for down-
stream tasks with the processed input data. Since the input data
comes from pre-processing, and the encoder is an MLP structure,
the graph G is not needed in the inference stage, which saves a lot of
computing resources in the message passing phase compared to the
GNN encoder.

We utilize the last-hop features for inference solely as it encom-
passes multi-order information. Despite our efforts to use alternative
features for inference such as the mean, sum or adaptive sum of all
hop features, we have empirically discovered that the last-hop fea-
tures yield the best performance, which is shown in Section 4.5. Dif-
ferent from the training step we use features in all hops as the training
data, the final node representation is given from the features of the
last hop only. In the training phase, we use the features of each hop.
In order to maintain the consistency of the encoder input data, we
only use one hop for inference in the inference stage. We choose the
feature of the last hop because it contains the most neighbor informa-
tion. Simple averaging of individual hop features will destroy high-
order neighbor information. The final node representation is given
by:

H = fθ(Ã
KX), (10)

where fθ is the MLP encoder, Ã is the normalized adjacency matrix
of graph G and X is the original node attribute.

4.2.3 Evaluation

In our experiment, we evaluate the performance of our method
by node classification tasks, following the most common GCL
methods[24, 35, 20, 30, 15, 32]. In detail, we train a simple logis-
tic regression classifier by using the final node representations H
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Methods Cora CiteSeer PubMed Computers Photo

Supervised
GCN 81.5 70.3 79.0 76.3± 0.5 87.3± 1.0
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3 79.3± 1.1 86.2± 1.5
SGC 81.0± 0.0 71.9± 0.1 78.9± 0.0 74.4± 0.1 86.4± 0.0

Self-supervised

DGI 81.7± 0.6 71.5± 0.7 77.3± 0.6 75.9± 0.6 83.1± 0.5
GMI 82.7± 0.2 73.0± 0.3 80.1± 0.2 76.8± 0.1 85.1± 0.1

MVGRL 82.9± 0.7 72.6± 0.7 79.4± 0.3 79.0± 0.6 87.3± 0.3
GRACE 80.0± 0.4 71.7± 0.6 79.5± 1.1 71.8± 0.4 81.8± 1.0
GraphCL 82.5± 0.2 72.8± 0.3 77.5± 0.2 OOM 79.5± 0.4

BGRL 80.5± 1.0 71.0± 1.2 79.5± 0.6 89.2± 0.9 91.2± 0.8
GBT 81.0± 0.5 72.8± 0.2 79.0± 0.1 88.5± 1.0 91.1± 0.7
GGD 83.9± 0.4 73.0± 0.6 81.3± 0.8 90.1± 0.9 92.5± 0.6
Ours 84.2± 0.584.2± 0.584.2± 0.5 73.1± 0.873.1± 0.873.1± 0.8 81.6± 0.281.6± 0.281.6± 0.2 90.1± 0.390.1± 0.390.1± 0.3 93.5± 0.393.5± 0.393.5± 0.3

Table 2: Experiments results for node classification task on small-scale datasets. We report accuracy(%) for all datasets. The best performance
is in bold. OOM represents out-of-memory on NVIDIA GeForce RTX 3090 (24GB).

and test the performance on the various node classification datasets.
We measure the model performance using the averaged classification
accuracy with ten results.

The evaluation of computation efficiency on large-scale datasets
contains two parts: training efficiency and inference efficiency. Train-
ing efficiency is measured by the time spent per training epoch and
inference efficiency is measured by the time spent for node embed-
ding generation. We do not measure the time spent for classifying
embeddings because we keep the complexity of the classifier the
same. Note that in our framework, the message passing step does not
need back propagation so that it can be separated from the encoder
training procedure. This calculation can be done on other servers in
a distributed system. Therefore we do not measure the time required
for message passing in ogbn-arxiv. However, in ogbn-products, even
if other servers are used to calculate message passing, the calcula-
tion time is still very long. So we count the time required to calculate
message passing locally.

4.2.4 Baselines

First, we compare our framework with supervised GNNs (i.e.,
GCN [11], GAT [23], SGC [25]). Then we compare with some
classical GCL methods (i.e., DGI [24], MVGRL [8], GRACE [34],
GMI [14], BGRL [19], GBT [1]). Finally, we compare a newly pro-
posed efficient GCL method GGD [32]. The reported results of some
baselines are from previous papers if available.

4.3 Results and Analysis

4.3.1 Results for small-scale datasets

Table 2 shows the classification results on five small-scale datasets,
and we can draw some conclusions: (i) Experiment results show that
our framework outperforms supervised GNNs and other state-of-the-
art GCL baselines in all datasets, which shows the superiority of our
AVGE-SAGD framework. (ii) Compared with GGD, our method sur-
passes it by a considerable margin (e.g., 1% absolute improvement on
Photo dataset) indicating the significance of structure-aware group
discrimination. Our structure-aware group discrimination performs
topology-based mini-group classification on the basis of graph group
discrimination, which helps the model to learn more rich knowledge.

4.3.2 Results for large-scale datasets

We evaluate the classification accuracy and computational efficiency
of our model on two large-scale datasets provided by OGB[10]:
ogbn-arxiv and ogbn-products.

Experiment results in Table 4 and Table 5 show that our frame-
work has faster training speed and faster inference speed than most
GCL frameworks, as well as GGD, which also uses group discrim-
ination instead of pairwise contrastive learning paradigm. Although
the result of our method is slightly lower than GRACE and BRGL
in ogbn-arxiv, it saves a lot of computing resources and is memory-
friendly. For ogbn-arxiv, we are 266 × faster than GGD in inference
time and for ogbn-products we are 301 × faster. Since our message
passing process does not contain parameters, our framework is still
faster than the other GCL frameworks using GCN encoder. Due to
the addition of auxiliary modules and tasks in our framework, which
increases the number of additional calculations, the training speed
improvement is relatively limited. But in the inference stage, the size
of our model is equivalent to a simple MLP. So the inference effi-
ciency has been greatly improved.

On the other hand, it is observed that on the large-scale dataset
provided by OGB, the performance of GCL is inferior to the basic
supervised GCN. The reason is there are plenty of training data on
these datasets while the main contribution of GCL is the scenario
lacking training data, so it cannot performs better than supervised
models on these datasets. In the small-scale datasets with very lim-
ited training data mentioned in the last paragraph, however, the over-
all performance of GCL is significantly improved compared with the
supervised models.

4.4 Visualization

To visually assess the quality of our learned embeddings, we adopt t-
SNE [22] to visualize the 2D projection of node embeddings on Cora
dataset using raw features, random-init of AVGE-SAGD, GGD, and
trained AVGE-SAGD in Figure 4, where nodes in different labels
have different colors.

We can observe that the distribution of node embeddings in raw
features and random-init are messy and intertwined. After training,
node embeddings learned by AVGE-SAGD have a clear separation of
clusters, which indicates the model can help learn representative fea-
tures for downstream tasks. Compared to GGD, the margins of each
cluster of node embeddings learned from AVGE-SAGD are much
wider, which means higher quality.
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Multi-View Weights
Structure

Preserving
Cora Citeseer PubMed Comp Photo

Fixed
Weights

λ = [0, 0, ..., 1] 83.5±0.3 71.7±0.7 80.9±0.5 89.9± 0.2 92.8±0.3
λ = [1, 1, ..., 1] 83.4±0.4 71.7±0.4 81.0±0.4 89.6±0.4 92.8±0.4
λ = [1, 1, ..., 1] � 83.5±0.7 71.8±0.4 81.2±0.5 90.0±0.2 93.2±0.1

Learnable
Weights

minθ L 83.6±0.4 71.8±0.4 81.2±0.4 90.0±0.3 93.2±0.2
minθ-maxλ L 84.0±0.6 71.9±0.5 81.3±0.3 90.1±0.2 93.3±0.3
minθ-maxλ L � 84.2±0.5 72.0±0.3 81.4±0.1 90.2±0.2 93.5±0.2

Table 3: Ablation studies for AVGE-SAGD

(a) raw features (b) random-init (c) GGD (d) AVGE-SAGD

Figure 4: The t-SNE visualization result of node embeddings on Cora dataset. (a) is the raw features, (b) is the node embeddings from random
initialized AVGE-SAGD, (c)is the learned representation of GGD, (d) is the learned representation of AVGE-SAGD.

Methods Accuracy (%) Training
Time (s)

Inference
Time (s)

GCN 71.7±0.3 - -

MLP 55.5±0.2 - -
Node2vec 70.1±0.1 - -

DGI 70.3±0.2 / /
GRACE 71.5±0.1 / /
BGRL 71.6±0.1 / /
GBT 70.1±0.2 6.19 0.13

GGD* 71.2±0.2 1.00 0.08

Ours 71.3±0.3 0.54 0.0003

Table 4: Accuracy on node classification task and speed test on the
large-scale dataset ogbn-arxiv. ’Training Time’ represents the aver-
age training time in each epoch. ’Inference Time’ represents the time
required from inputting data to computing the embedding. GGD*
is the re-implementation on our devices with their official code. ’/’
means the method is OOM under a full-graph training setting.

Methods Accuracy (%) Training
Time (s)

Inference
Time (s)

GCN 75.6±0.2 - -

MLP 61.1±0.0 - -
Node2vec 68.8±0.0 - -

BGRL 64.0±1.6 2267 265
GBT 70.5±0.4 1963 262

GGD*(1024) 75.6±0.2 779 718
GGD*(256) 73.3±0.4 555 301

Ours(256) 75.9±0.1 364 1

Table 5: Accuracy on node classification task and speed test on the
large-scale dataset ogbn-products. In the method column, the num-
ber in the brackets means the dimension of embeddings. In the ac-
curacy column, the number in the brackets means the training time
with message passing. GGD* is the re-implementation on our de-
vices with their official code.

4.5 Ablation Study

To prove the effectiveness of the design module of our framework,
we conduct ablation experiments with different modules under the
same hyperparameters on five small datasets. In Table 3, ‘Multi-View
Weights’ includes different strategies for adopting weights on multi-
view attributes by masking different components. The first three rows
assign fixed weights to different hop attributes. [0, 0, ..., 1] means we
only use the attributes of the last hop to train the encoder. [1, 1, ..., 1]
means we keep the contributions of different hop attributes the same.
The last three columns represent that we use learnable weights to
adjust weights adaptively. ‘min’ represents that we optimize weights
and model parameters by minimizing training loss. ‘min-max’ rep-
resents that we use a two-step adaptive weighted training method,
‘Structure Preserving’ means structure-aware module.

The results show that all of the modules we design are helpful
for the performance of our framework. The two-step min-max adap-
tive weight training method is the most significant part in the frame-
work since the performance degrades without it. And with structure-
preserving module, SAGD outperforms GGD in our framework. Fur-
thermore, we observe that using fixed multi-hop feature training per-
forms worse than using the last-hop feature only, which underscores
the importance of our adaptive weighted training approach.

5 Conclusion

In this paper, we approach to the challenge of increasing the training
and inference efficiency of the graph contrastive representation learn-
ing frameworks. In terms of improving the encoder’s efficiency, we
separate the message passing from the embedding prediction and de-
sign a novel adversarially adaptive weights multi-hop features. As for
the pre-training loss, we built a new structure-aware group discrim-
ination loss that helps our fast encoder to preserve more structural
information, which consequently improves its generalization ability
on the downstream tasks. Extensive experiments conducted on both
small-scale and large-scale datasets have shown the effectiveness of
our framework regarding both downstream task performance and the
training and inference speed.
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