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Abstract. Algorithmic fairness, the research field of making ma-
chine learning (ML) algorithms fair, is an established area in ML. As
ML technologies expand their application domains, including ones
with high societal impact, it becomes essential to take fairness into
consideration during the building of ML systems. Yet, despite its
wide range of socially sensitive applications, most work treats the
issue of algorithmic bias as an intrinsic property of supervised learn-
ing, i.e., the class label is given as a precondition. Unlike prior studies
in fairness, we propose an individual fairness measure and a corre-
sponding algorithm that deal with the challenges of uncertainty aris-
ing from censorship in class labels, while enforcing similar individu-
als to be treated similarly from a ranking perspective, free of the Lip-
schitz condition in the conventional individual fairness definition. We
argue that this perspective represents a more realistic model of fair-
ness research for real-world application deployment and show how
learning with such a relaxed precondition draws new insights that
better explains algorithmic fairness. We conducted experiments on
four real-world datasets to evaluate our proposed method compared
to other fairness models, demonstrating its superiority in minimizing
discrimination while maintaining predictive performance with uncer-
tainty present.

1 Introduction

There is recent concern that we are in the midst of a discrimina-
tion crisis within the field of machine learning (ML) and artificial
intelligence (AI) [3, 38, 40]. Rightfully, the AI/ML community has
conducted vast research to study the quantification and mitigation of
algorithmic bias, which is critical for the use of algorithmic decision-
making systems in domains of high societal impact such as crim-
inal justice [10], healthcare [9], predictive policing [39], and em-
ployment [40]. Thus far, most studies tackle the problem by propos-
ing fairness constraints via regularizers/optimizations at the group
level: first identify a sensitive attribute, e.g., race or gender, as a
potential source of bias among the collection of high-level groups;
then achieve parity for some fairness statistics of the classifier, e.g.
the prediction accuracy and true positive rate, across the predefined
groups [30]. These group fairness approaches, however, are inap-
plicable when class label uncertainty is present [44]. Additionally,
while group fairness enjoys the merit of easy operationalization, its
aggregative characteristic makes it easy to fail [2].
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In contrast, the individual fairness approach alleviates these draw-
backs by evaluating a finer granularity of fairness at individual level.
The compelling notion of individual fairness is proposed in the sem-
inal work of [15], which requires similarly situated individuals to
receive similar probability distributions over class labels to prevent
inequitable treatment. Individual fairness, without the need to explic-
itly identify sensitive attributes, is much less restrictive than group
fairness. However, the Lipschitz condition required in existing indi-
vidual fairness literature is a nontrivial task to satisfy, as 1. the Lip-
schitz constant specification is hard due to the difference in distance
metrics between the input and outcome spaces; 2. distance calibra-
tion is required as the absolute distance comparison in the Lipschitz
condition tends to fail in calibrating differences among different in-
dividuals [13]. Such difficulty was also pointed out in [31] but only
resulted in additional efforts of metric learning, whereas our rank-
based method removes the need of the Lipschitz constant and dis-
tance calibration by avoiding the absolute distance value comparison.

Another major obstacle in the real-world applicability of individ-
ual (and also group) fairness is the assumption of full class label
availability, which fails when there is uncertainty in class labels due
to censoring, a phenomenon where the information about the event of
interest is partially known [44, 24, 26]. Considering an example from
a clinical prediction task (Figure 1), for censored individuals d2 and
d4, the true time to relapse or hospital discharge is unknown, causing
the uncertainty in class labels. Due to the inability to handle censor-
ship information, existing fairness studies quantify and mitigate bias
by focusing on the proportion of data with assured class label, thus
either dropping observations with uncertain class labels [10, 14, 45]
or omitting the censorship information [35, 34, 43]. However, remov-
ing them would bias the results towards the individuals with known
class labels [33].

In summary, there is a need for an algorithm that addresses indi-
vidual fairness in ML under uncertainty, an under-explored area of
research, with two requirements: i) Free from the Lipschitz condi-

tion resulting from the principle of individual fairness. Without
this, the algorithm may have limited use cases due to the metric cal-
ibration between the input and output spaces. ii) Quantifying and

mitigating bias under uncertainty. The algorithm should not ig-
nore the uncertainty in censored data or the censorship information
to avoid bias.

To tackle the aforementioned issues, this paper conducts an ini-
tial investigation of individual fairness under uncertainty for a fair-
ness guarantee more in line with realistic assumptions across indi-
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Figure 1: An illustration of the censoring phenomenon. Individuals d2
and d4 are censored while others, i.e., d1 and d3, are non-censored.
Individuals are arranged in the increasing time order of their survival
times with the lowest, i.e, T1, being at topmost. The study ends at
the time shown as the red vertical dash line. There is no edge orig-
inating from a censored individual due to censorship, which means
that pair comparison between two individuals cannot be made when
the individual with lower survival time is censored.

viduals and free from the Lipschitz condition. Our individual fair-
ness measure, named Fair Normalized Discounted Cumulative Gain
(FNDCG), is motivated by the same individual fairness principle [15]
that similar individuals should be treated similarly, while formulated
as the correlation of similarities in the feature and risk spaces respec-
tively, establishing a new fairness measure usable on censored data.
Along with FNDCG, we also propose a corresponding algorithm to
address discrimination involving censored individuals. Our method,
named fairIndvCox, augments the standard model of survival analy-
sis, the Cox proportional hazard model, by being aware of individual
fairness while learning the parameters of risk prediction.

To our knowledge, this work is the first attempt to quantify and
mitigate bias under the individual fairness principle, but from a rank-
ing perspective, with uncertainty present, and free of the Lipschitz
condition. Our major contributions are summarized as follows:

• We formulate a new research problem of individual fairness guar-
antee in learning with uncertainty.

• We devise FNDCG, a new notion of individual fairness to measure
bias on censored data. Defined with the correlation of similarity in
the feature space and the one in the risk prediction space, FNDCG
does not require Lipschitz condition and complete class labels.

• We propose a debiasing algorithm named fairIndvCox for bias
mitigation in censorship settings, by incorporating our individual
fairness measure into the standard model of survival analysis.

• We evaluate our debiasing algorithm on four real-world datasets
with censorship, comparing it with four survival analysis algo-
rithms and its Lipschitz variant. This confirms the utility of the
proposed approach in practice. Further analysis also illustrates the
trade-off between individual fairness and predictive performance.

The remainder of this paper is organized as follows. In Section 2,
we describe related work in fair machine learning and learning with
uncertainty, followed by the preliminaries of survival analysis and
the problem definition in Section 3. In Section 4, we propose our no-
tion of individual fairness under uncertainty and corresponding sur-
vival model with an individual fairness specification. In Section 5,
we empirically validate the effectiveness of our learning algorithm
on real-world survival analysis datasets and provide qualitative anal-

ysis on the effect of the hyper-parameters on the model. Finally, we
conclude and provide future directions in Section 6.

2 Related Work

2.1 Censored Data

In many real-world applications, the main outcome under assess-
ment, i.e., the class label, could be unknown for a portion of the study
group. This phenomenon, deemed censorship, can arise in various
ways, hindering the use of many algorithms. For example (Figure 1),
a study may end before an individual experiences the event of in-
terest, e.g., individual d4. The studied individual can also be lost to
follow-up during the study period, withdraw from the study, or expe-
rience a competing event making further follow-up impossible, e.g.,
individual d2. In the typical setting of survival analysis, censored ex-
amples are only guaranteed not to have experienced events until their
last observation, e.g. t2 and the end of the study for d2 and d4, re-
spectively, and we do not know their exact class labels.

The censorship information is used together with the observed data
to fit or evaluate survival models, a statistical model that analyzes the
expected duration of time until each individual’s event. Specifically,
we can guarantee that a censored example with the time of event T
happens after T , so we can compare two events at T1 and T2 for
T1 < T2 if neither is censored at T1, regardless of censorship at T2.
For instance, the green edges in Figure 1 represent the comparable
pairs among individuals with censored and observed events (as the
order graph), from which we can tell that d1 happens before d2, while
whether d2 happens before d3 or not remains unknown.

Given that censored data is common, e.g., clinical prediction (Sup-
port) [25], marketing analytics (KKBox) [26], recidivism prediction
instrument datasets (COMPAS [1] and ROSSI [17]), survival analy-
sis has gained popularity in applied work. For example, in customer
analytics whether a customer will cancel the service, e.g., event of in-
terest/class label, can be unknown due to various reasons discussed
above [26]. Similarly, one may predict in domains of reoffense [1],
analyzing financial outcomes in actuarial analysis [36], and predic-
tive maintenance in mechanical operations [37].

2.2 Fairness in AI

Quantifying Bias Much progress has been made to quantify and
mitigate unfair or discriminatory behaviours of AI algorithms. These
efforts, at the highest level, can be typically divided into two fam-
ilies: individual fairness and group fairness. A vast majority of ex-
isting works focuses on the group notions, aiming to ensure mem-
bers of different groups, e.g., gender or race aka sensitive attributes,
achieve approximate parity of some statistics over class labels, such
as statistical parity [43], disparate impact [39], and equality of op-
portunity [18]. While enjoying the merit of easy operationalization,
group-based fairness methods fail at guaranteeing fairness at the in-
dividual level in addition to several other drawbacks [2].

Individual fairness, on the other hand, alleviates such a drawback
by requiring that individuals who are similarly situated with respect
to the task at hand receive similar probability distributions over class
labels [15]. Formally, this objective can be formulated as the Lips-
chitz property, and fairness is thus achieved iff:

D(f(xa), f(xb)) ≤ LD′(xa, xb) (1)

where L is the Lipschitz constant, D′(·, ·) and D(·, ·) are corre-
sponding distance functions of features in input space, x, and prob-
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ability distributions over class labels in output space, f(·), respec-
tively. The major obstacles for wider adoption of individual fairness,
though, are the difficulty of calibrating the distance functions resulted
from the Lipschitz condition and the assumption of the availability
of class labels, which is impractical in many applications due to cen-
sorship. For instance, in the ML-task of predicting critical illness in
COVID-19 patients [29], clinical knowledge is required to calibrate
the distance-based comparison in Equation 1 since a 10-year differ-
ence in age (D′(·, ·)) for patients younger than 25 would likely re-
sult in not much of a difference in risk outcomes (D(·, ·)), whereas a
10-year difference (D′(·, ·)) for patients older than 65 could lead to a
significant increase in the risk of progressing to critically ill (D(·, ·)).
In addition, a patient may experience censorship, introducing uncer-
tainty about the true progression of their illness at the time of evalu-
ation.

Our new individual fairness methodology resolves these two main
limitations in current literature, providing a fairness guarantee across
individuals with censorship and is free from the Lipschitz condition.

Mitigating Bias The fairness notions mentioned above are used as
a constraint or as a regularizer to enforce fairness. These debiasing
algorithms, mostly group-based, can be categorized into three groups
based on the stage where machine learning intervention happens: the
pre-processing, in-processing, and post-processing groups.

The first group, pre-processing approaches, works on bias in the
data or input stage, assuming that unbiased training data is accessi-
ble for a fair ML model. These methods modify the data distribution
to ensure fairness of the representations from different groups and are
model-agnostic. Examples of this group include data massaging [21],
which changes data distribution, an extension called local massag-
ing [46], and reweighing [7], which assigns different weights to the
communities.

The second group, in-processing approaches, directly changes ML
algorithms to produce unbiased predictions and is generally model-
specific. For example, in [43], the fairness gain is incorporated into
the splitting criteria of the Hoeffding Tree algorithm, which is later
extended in [42] to ensemble-based methods. In [45], the Mann
Whitney U test is applied to fairness learning in multi-task regres-
sion. These methods focus on group fairness and require complete
class labels. Yet, there is a limited number of research on individual
fairness under data censorship, which this work focuses on.

The last group, post-processing approaches, modifies the deci-
sion boundaries to fairly represent diverse groups. Examples include
building an interpretable model [41], adjusting the decision thresh-
old to reduce unfairness [18], and moving decision boundaries of
the deprived communities to prevent discrimination [16]. However,
applying these techniques under censorship is not straightforward, as
decision boundaries may also be censored owing to their distribution.

2.3 Survival Analysis

The prevalence of censored data motivates the study of survival anal-
ysis to address the problem of partial survival information from the
study cohort [11]. The Cox proportional hazard (CPH) model [12] is
the most commonly used method, which expresses the hazard func-
tion as the product of a shared time-dependent baseline hazard and
an individual-specific risk function. Developing the CPH model, [23]
parameterized the effect of an individual’s covariates by a neural net-
work. Another line of research is tree-based methodology [4, 20],
where the splitting rule is modified to handle censored data and is
free from the proportional assumption of the CPH model. Interested

readers may refer to [36] for a comprehensive survey on recent meth-
ods of modeling censored data.

Like other AI approaches, care must be taken to ensure the fair-
ness of survival models to prevent bias against deprived communi-
ties. Starting with [44], there is a line of work studying fairness with
censorship but subject to group-based constraints. In addition, the
survival model is modified to ensure fair risk predictions as in [24].
However, their work requires the Lipschitz condition as in conven-
tional individual fairness and does not explicitly consider the survival
information to address discrimination. Our method aims to address
these two limitations.

3 Notations and Problem Definition

In this section, we provide preliminary notations and concepts of sur-
vival analysis, followed by the definition of the problem of our con-
cern. In survival analysis, censored data can be typically described as
follows. Each individual di with index i ∈ {1, · · · , N} is equipped
with a characteristics tuple (xi, Ti, δi), where the entries of each tu-
ple are i) x: the observed feature, ii) T : the survival time, i.e. the
time of event, and iii) δ: the event indicator, which indicates whether
the event is observed. In the setting of survival analysis, the event is
observed only when δ = 1, and T is the actual time of event. When
δ = 0, the event time is censored, resulting in uncertainty on the
class label and is only known to be greater than or equal to T .

The modeling function commonly used is the hazard function,
which specifies the instantaneous rate of event occurrence at a spec-
ified time t conditioned on surviving to t:

h(t|x) = lim
�t→0

Pr(t < T < t+�t|T ≥ t, x)

�t
(2)

Given a hazard model, one can also compute the survival function
S(t|x) = Pr(T > t|x), the probability that the event occurs after a
specific time t by

S(t|x) = exp

(
−
∫ t

0

h(t|x)dt
)

(3)

Among the various proposed survival analysis methods, the Cox pro-
portional hazards model (CPH) [12] has become the standard for
modeling censored data, which defines the relation between the haz-
ard function h(t|x) and the covariates as:

h(t|x) = h0(t) exp(β
�x) (4)

where h0(t) is called the baseline hazard function (i.e., when x = 0),
and β is a set of unknown parameters which can be estimated by
applying the maximum likelihood estimation. Given a dataset of N
individuals {(xi, Ti, δi)}Ni=1 with i.i.d. assumption, we can compute
the likelihood as the product of the likelihood of the uncensored in-
dividuals. Such function is called the partial likelihood and can be
written as follows:

L(β) =
∏

i:δi=1

exp(β�xi)∑
j:Tj≥Ti

exp(β�xj)
(5)

The partial likelihood estimate β̂ = argmaxβ L(β) can be obtained
by maximizing the partial likelihood function. Note the partial like-
lihood function does not include the baseline hazard function. One
can also add a regularization function, such as ridge or lasso regular-
ization, for β.
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To evaluate survival models, the concordance index, or C-index,
is commonly used [19]. Given a survival model, the C-index of the
model measures the fraction of all comparable pairs of individuals
whose predicted survival times are correctly ordered as training data:

C =
1∑

i:δi=1

|{j : Tj > Ti}|
∑

i:δi=1

∑
j:Tj>Ti

1[f(xj) > f(xi)] (6)

where f(x) is the expected survival time for an individual [32]. C-
index is also equal to the area under the ROC curve (AUC) in the
presence of censorship. In a proportional hazard model, the order of
expected survival time is the same as the order of the hazard func-
tion. Please see Figure 1 for an example of an order graph, which
represents the comparable pairs of individuals.

The main problem we address in this work is to devise an al-
gorithm that can quantify the individual fairness notion in survival
analysis and use the quantification to mitigate the bias. Under the
general assumption of survival analysis, unlike most existing works
of individual fairness, not all individuals are given a label, or survival
time, due to data censoring. Another desirable quality the algorithm
has is to alleviate or be free from the Lipschitz condition, enabled by
the locality between similarity metrics. Note that although similarity-
based constraints have been formulated to alleviate bias [22, 13], we
are the first to make the contribution of taking censored information
into consideration while establishing our similarity-based constraint.

4 Method

We introduce a learning algorithm for individual fairness with cen-
sored data. In Section 4.1, we define a rank-based similarity measure
of risk scores and propose a corresponding individual fairness score,
named FNDCG@k. In Section 4.2, we propose a survival analysis
model, named fairIndvCox, which incorporates FNDCG@k into the
Cox proportional hazard model.

4.1 Individual Fairness Notion under Uncertainty

Existing individual fairness notions depend on the Lipschitz condi-
tion, which is non-trivial due to the difference in the similarity met-
rics of the input and output spaces. In addition, they do not consider
survival information when quantifying unfairness, which is impor-
tant and requires special attention; otherwise, substantial bias could
be introduced. To overcome these, we propose to evaluate unfairness
from a ranking perspective while jointly considering survival infor-
mation.

For each individual, we obtain two ranked lists of other individ-
uals based on the similarity matrix SimD′ (on the input space) and
SimD (on the output space), and require the relative order of indi-
viduals in these two lists to be consistent with each other. The intu-
ition still follows conventional individual fairness as similar individ-
uals should have similar prediction results, but approaching it from a
ranking perspective instead of the absolute distance value compari-
son (Equation 1) promotes applicability by avoiding Lipschitz speci-
fication and distance calibration. For instance (Figure 1), assume the
ordered list derived from SimD′ between patient d1 and three other
patients is {d3, d2, d4}, ordered by closest-to-farthest. Then, the pre-
dictions are individually fair for d1 if the encoded list from SimD is
{d3, d2, d4} as well, i.e. fairness is obtained when patients, ordered
by their similarity to patient d1, have predicted risks in the same or-
der of similarity to d1’s risk. This potentially results in a patient more
similar to d1 receiving a more similar treatment as d1. Note that the

input similarity matrix SimD′ is often given a priori as it is problem-
specific [28, 27], while we define SimD as follows,

SimD,ij = SimD(di, dj) = exp
(−|h̄(t|xi)− h̄(t|xj)|

)
= exp

(
−| exp(β�xi)− exp(β�xj)|

)
(7)

SimD,ij is the (i, j)-th entry of SimD and h̄(t|x) is the hazard func-
tion with h0(t) dropped, i.e., h̄(t|x) = exp(β�x), as it is not indi-
vidually specific in the CPH model.

In Equation 7, the similarity metric is formulated as the exponen-
tial of the negative difference of the risk score. We make a note that
this considers various factors to make a similarity metric that per-
forms a trade-off between accuracy and fairness. First, the exponen-
tial followed by negation is used for smoothing. This bounds the
difference in the unbounded risk scores to a value between 0 and
1. Second, it transforms a distance metric into a similarity function,
which has a value closer to 1 when the two individuals are similar.
It also makes the function applicable to discounted cumulative gain
(DCG) [6], which will be used to compute the fairness quantifica-
tion. In DCG@k, the quality of the most similar pairs in the output
space will be accumulated with a discounted factor decaying with
their ranking. Here, similarity is more proper than a metric for the
quality function as the closer a pair is, the higher the function is.

Since the encoded ranking list should also take important survival
information and consistency between predicted and actual outcome
into consideration, we adjust SimD according to the concordance dif-
ference (C�):

SimD,ij = (1− C�(xi, xj)) exp
(
−| exp(β�xi)− exp(β�xj)|

)
(8)

where C�(xi, xj) = |Cxi −Cxj | measures the concordance differ-
ence between xi and xj . The concordance of individual xg within
the ranking list, Cxg , is defined as:

Cxg =
1∑

g′ �=g 1[δ< = 1]

∑
g′ �=g

1[h(t|x>) < h(t|x<), δ< = 1]

=
1∑

g′ �=g 1[δ< = 1]

×
∑
g′ �=g

1[exp(β�x>) < exp(β�x<), δ< = 1] (9)

where x> and x< are the individuals with a longer, i.e. T> =
max(Tg, T

′
g), and a shorter, i.e. T< = min(Tg, T

′
g), survival time,

and δ< is the event indicator of shorter survival time. Cxg can be
interpreted as the fraction of all other individuals whose predicted
survival times are correctly ordered with xg considering their ac-
tual survival times. The concordance difference effectively adjusts
the similarity values defined in Equation (7) by penalizing the cases
where one individual’s predicted survival time aligns well with that
of others, while another individual’s does not. In the general case,
we would like the original similarity in the output space to be down-
scaled according to the prediction deviation as reflected by the con-
cordance difference, which also explicitly includes survival informa-
tion when quantifying unfairness in the censoring setting.

Armed with the similarity matrix SimD and SimD′ , we propose
the Fair Normalized Discounted Cumulative Gain (FNDCG@k),
motivated by learning to rank [6], as a metric for the evaluation of
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individual fairness with censorship defined as follows:

FNDCG@k =
1

N

N∑
n=1

DCGSimD(dn)

DCGSimD′ (dn)

(10)

where N is the number of individuals and DCGSim(dn) is the dis-
counted cumulative gain of dn defined as:

DCGSim(dn) =
k∑

pos=1

SimD′(dlpos , dn)

log(pos + 1)
(11)

where k is the length of the ordering list, {lpos}kpos=1 is the order-
ing list of individual indices derived from the similarity matrix Sim
for individual dn, and SimD′(dlpos , dn) is the similarity in the in-
put space between the individual at the pos-th position of the order-
ing list, dlpos , and the individual dn. It is important to note that both
DCGSimD(dn) and DCGSim′

D
(dn) are computing the DCG of the sim-

ilarity values from SimD′ , and the corresponding similarity is used
only for deriving the ordering list lpos.

Essentially, FNDCG@k computes the per-individual average ratio
between the DCG of input space similarity ranked by output space
similarity and the maximum achievable DCG of input space similar-
ity. Therefore, the value of FNDCG@k is within the interval of [0,1],
which aligns with the existing individual fairness notions. In addi-
tion, the higher the FNDCG@k score, the more consistency between
the ranking list encoded from the input and output space and thus,
the fairer the model.

The intuition behind enforcing FNDCG@k lies in promoting the
consistency between the two ranking lists from the input and out-
put spaces, i.e. having individuals ranked closer in the input space
(e.g. similar clinical condition) ranked closer in the output space (e.g.
similar risks and thus similar allocation of medical resources). More-
over, focusing on the top-k ranking promotes local similarity without
enforcing global similarity, corresponding to the individual fairness
concept of promoting similar outcomes for similar individuals in-
stead of for a group of individuals. Finally, it is worth mentioning
that our ranking perspective of individual fairness also possesses the
potential of generalization to applications with full label availability,
leaving the possibility of future expansion.

4.2 Individual Fairness Algorithm under Uncertainty

With the tailored individual fairness definition accounting for censor-
ing, we now introduce a corresponding learning algorithm, fairIndv-
Cox, following the classic Cox proportional hazard model for mod-
eling censored data, to generate tailored forecasts while providing
fair risk predictions across individuals. Essentially, the learning al-
gorithm augments the partial likelihood maximization of the CPH
model with our individual fairness quantification, FNDCG@k.

Starting with the model utility maximization, the utility loss func-
tion Lutility is formulated as the negative log partial likelihood of the
CPH model. Given the partial likelihood in Equation (5), we have
defined Lutility as

Lutility = −
∑

i:δi=1

(β�xi − log
∑

j:Tj≥Ti

exp(β�xj)) (12)

Next, we integrate Equation (10) as the individual fairness regularizer
Lfairness = FNDCG@k and define the unified objective function as

Lunified = Lutility − γLfairness (13)

where γ is the tuning parameter controlling the trade-off between
utility and fairness. Combining Lutility and Lfairness in the unified ob-
jective function enables the learned model to be both accuracy-driven
and fairness-oriented.

There are two hyper-parameters governing fairIndvCox: γ, the co-
efficient controlling the balance between utility and fairness, and k,
the length of the ordered list in the computation of DCGSim(dn). Both
parameters effect our algorithm as a trade-off between the predictive
performance and individual fairness, as we show empirically in Sec-
tion 5.5 and 5.6.

5 Experiments

We conduct experiments to evaluate the effectiveness of our fairInd-
vCox algorithm, conduct a comparison study on our Lipschitz-free
bias quantification, and examine the trade-offs controlled by the al-
gorithm’s hyper-parameters.

5.1 Datasets

We validate our model on four real-world censored datasets with
socially sensitive concerns: i) The ROSSI dataset pertains to per-
sons convicted then released from Maryland state prisons, who were
followed up for one year after release [17]. ii) The landmark al-
gorithmic unfairness COMPAS dataset to predict recidivism from
Broward County [1]. iii) The KKBox dataset from the WSDM-
KKBox’s Churn Prediction Challenge 2017 [26]. iv) The Support
dataset of hospitalized patients from five tertiary care academic cen-
ters [25]. See Table 1 for the statistics. Note that survival information
is explicitly included in these datasets to account for censoring.

Table 1: Summary of datasets used in experiments

Characteristics
Dataset ROSSI COMPAS KKBox Support

Sample # 432 10,325 2,814,735 8,873
Censored # 318 7,558 975,834 2,840

Censored Rate 0.736 0.732 0.347 0.320
Feature # 9 14 18 14

5.2 Experiment Setup

Baselines We compare fairIndvCox against four baselines: i) the
recently proposed fair survival model FDCPH [24], which, to the
best of our knowledge, is the only work for fair survival analysis
problem across individuals, ii) the classic survival analysis model
CPH [12], iii) the state-of-the-art random forests modeling censored
data RSF [20], and iv) the deep neural network on survival analysis
DeepSurv [23]. Other competing fairness methods are not considered
as none of them is capable of addressing fairness in the presence
of censoring. Neither are group-based fair survival models as they
necessitate the specification of sensitive attribute to enforce fairness,
which is absent in individual fairness learning.

Predictive Performance Measures In addition to the proposed
individual fairness measure, we also follow [44] to report survival
analysis metrics including C-index, Brier score, and time-dependent
AUC as measures of predictive performance under censorship. The
C-index [19] evaluates the probability that the predicted event-times
of two individuals have the same relative order as their true event-
times. The Brier score [5] measures the mean squared difference
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Dataset
Method

Metrics
FNDCG@10% C-index% Brier score% Time-dependent AUC%

ROSSI

FDCPH 44.12 55.81 19.83 76.18
CPH 33.41 64.24 17.67 77.12
RSF 36.17 65.56 15.12 79.32

DeepSurv 31.43 66.67 14.71 78.18

fairIndvCox
53.29 63.78 15.12 78.25

(20.78%) (-4.34%) (-2.79%) (-1.35%)

COMPAS

FDCPH 72.27 63.54 24.12 65.16
CPH 73.51 69.24 20.35 65.15
RSF 74.64 72.61 15.62 71.76

DeepSurv 74.18 75.12 13.42 71.83

fairIndvCox
83.14 68.73 13.97 71.87

(11.39%) (-8.50%) (-4.10%) (0.05%)

KKBox

FDCPH 58.64 70.44 21.23 69.73
CPH 47.32 80.02 18.17 72.95
RSF 42.41 82.32 14.24 78.18

DeepSurv 43.45 83.01 14.33 80.71

fairIndvCox
67.44 83.27 14.45 80.95

(15.01%) (0.31%) (-1.47%) (0.29%)

Support

FDCPH 62.31 67.88 30.54 76.34
CPH 55.78 74.11 21.21 80.02
RSF 65.15 75.18 16.64 81.01

DeepSurv 54.33 75.65 16.11 80.68

fairIndvCox
72.17 74.31 17.13 79.51

(10.78%) (-1.16%) (-6.33%) (-1.85%)

Table 2: Evaluation results of different models with the best results marked in bold. The numbers in parentheses represent the relative perfor-
mance improvement of fairIndvCox compared to the best baseline.

between the predicted probability of outcome assignments and the
true outcomes (the lower the Brier score, the better the prediction).
The time-dependent AUC [8] quantifies the probability that a ran-
domly selected pair of individuals having experienced the event and
not having experienced the event at time t are correctly ordered.

Without loss of generality, we employ the Euclidean distance with
feature scaling to obtain SimD′ . All methods are trained in the same
way with 5-fold cross validation for fair comparison. The Adam op-
timizer is used to optimize the model via backpropagation and au-
tomatic differentiation in PyTorch, with a learning rate of 0.01. The
training is done in mini-batches of size 128 for 50 epochs. The over-
all objective function for quantitative performance comparison has
top k set as 10 and γ set as 1. The base model Cox’s hyperparameter
settings are followed for the hidden unit number, and a grid search is
conducted for fairness-specific tuning parameters. The search space
for k is 4-50 and for γ it is e−4 and e4.

5.3 Experiment Results

Table 2 shows the results of our experiment. Our new fairIndvCox
clearly dominates all other baselines in minimizing discrimination
(measured by FNDCG@10) while maintaining a competitive pre-
dictive performance (measured by C-index, Brier score, and time-
dependent AUC), which verifies the necessity of its debiasing design
across individuals while accounting for censorship. In contrast, the
compared methods suffer from the lack of considering censored data
as well as the non-trivial handling of Lipschitz constant. The im-
proved overall predictive performance of fairIndvCox also shows the
merit of such an anti-discrimination design for prediction accuracy,
presumably due to fairness regularization reducing overfitting.

5.4 Comparison Study on the Lipschitz-free Bias
Quantification

We further perform a comparison study to demonstrate our method’s
advantage brought by being free from the Lipschitz condition in
Equation (1) which requires the specification of the Lipschitz con-
stant during fairness quantification. We replace the Lfairness in fairInd-
vCox with Equation (1) as suggested in [15], and denote the method
as fairIndvCox-. Results in Table 3 show that fairIndvCox outper-
forms fairIndvCox- in minimizing discrimination for all datasets by
large margins and also in terms of the predictive performance, except
for a small decrease in the ROSSI dataset. This verifies that relax-
ing the Lipschitz constant specification in the conventional individual
fairness definition can lead to improved performance.

Table 3: Results of comparison study on the Lipschitz-free Bias
Quantification.

Dataset FNDCG@10% C-index%
fairIndvCox- fairIndvCox fairIndvCox- fairIndvCox

ROSSI 45.29 53.29 64.42 63.78
COMPAS 77.39 83.14 60.14 68.73
KKBox 54.02 67.44 82.71 83.27
Support 58.49 72.17 69.28 74.31
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Figure 2: Study on individual fairness and accuracy trade-off on γ:
The fairIndvCox models subject to different γ variations (between
e−4 and e4 ) on ROSSI, COMPAS, KKBox, and Support exhibit
effects on individual fairness and model accuracy.

5.5 Effect of Different γ Values on Individual Fairness
and Predictive Performance

To investigate the effect of γ on the performance of fairIndvCox, we
vary γ within the set {e−4, e−3, · · · , e4} where e is the natural con-
stant, keeping all other hyper-parameters unchanged. We compare
fairIndvCox’s performance in terms of predictive power and individ-
ual fairness under the different settings.

According to the results shown in Figure 2, there are three cases
of γ values. (1) For small γ (i.e., less than e−2 for ROSSI, e−3 for
COMPAS, e−2 for KKBox, and e−3 for Support), the individual fair-
ness constraint has a small effect on fairIndvCox’s predictive per-
formance metrics (C-index, Brier score, and time-dependent AUC)
and FNDCG@10 for the four tasks. (2) As γ increases progressively
(e.g., from e−2 to e1 for ROSSI, e−3 to e1 for COMPAS, e−2 to
e1 for KKBox, and e−3 to e1 for Support), fairness increases signif-
icantly but at the cost of some predictive performance degradation
(decreased C-index, decreased time-dependent AUC, and increased
Brier score). This would imply that fairIndvCox achieves the appro-
priate balance between fostering individual fairness and preserving
model performance. (3) When γ is relatively large (e.g., larger than
e1 for all the datasets), the promotion of individual fairness will con-
tinue to have an effect on the predictive performance, with the excep-
tion of the Support dataset where both FNDCG@10 and the predic-
tive performance metrics stay mostly fixed when γ is greater than e2.
Note that FNDCG@10 mostly also decreases as γ increases since it
adds more weight to Lfairness. But this does not mean we can obtain
the optimal node. Therefore, the performance of individual fairness
promotion within a fixed epoch is close to its limit, and it is difficult
to achieve better performance.

5.6 Effect of Different Number of Neighbors k Values
on Individual Fairness and Predictive
Performance

Similar to the previous section, we conducted experiments with a va-
riety of values for k in {4, 7, 10, 15, 20, 30, 50}, keeping all other
training factors the same. We compare fairIndvCox’s predictive per-
formance and fairness under different settings.

Figure 3: Study the choice of k-value: The fairIndvCox models sub-
ject to different k variations (between 4 and 50) on ROSSI, COM-
PAS, KKBox, and Support exhibit effects on individual fairness and
model accuracy.

We observe that (Figure 3): (1) As k increases, the fairIndvCox
achieves better performance on FNDCG@k, demonstrating better
optimization for individual fairness. (2) When k is a modest value
(e.g., smaller than 15 for ROSSI, 20 for COMPAS, 15 for KKBox,
and 10 for Support), the predictive performance (as measured by
C-index and time-dependent AUC) is hardly affected or even in-
creases, though the Brier score performs slightly worse (increased).
The fairIndvCox mostly strikes the right balance between main-
taining model utility and fostering individual fairness with proper
choices of k in here. (3) When k is significant (e.g., greater than 15
for ROSSI, 20 for COMPAS, 15 for KKBox, and 10 for Support),
the predictive performance significantly declines (decreased C-index
and time-dependent AUC, and increased Brier score), with the ex-
ception on the Support dataset where the Brier score fluctuates when
k is between 10 and 20, and all three metrics stay relatively flat when
k is greater than 20. In general, more points will be referenced at a
time as k increases, resulting in more interference values. This leads
to a decrease in the weight of the correct label and a blurred classifi-
cation, causing degradation in predictive performance.

6 Conclusion

A striking gap exists between the prevailing real-world applications
with censorship and the assumption of full class label availability in
existing AI fairness methods. We make an initial investigation of in-
dividual fairness in learning with censorship. Moreover, this work
defines individual fairness from a ranking perspective, relaxing from
the Lipschitz condition in conventional individual fairness studies.
The proposed notion and algorithm are expected to be versatile in
quantifying and mitigating bias in various socially sensitive applica-
tions. We provide an empirical evaluation of four real-world datasets
to validate the effectiveness of our method. The experimental results
show that with suitable γ and k values, our method can substantially
improve individual fairness with an acceptable loss of predictive per-
formance as the model outperforms the current state-of-the-art indi-
vidual fairness promotion methods. Finally, this work defines a new
task that opens up possibilities for future work to achieve more ap-
plicable and comprehensive AI fairness.
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