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Abstract. Knowledge graph completion (KGC, also referred to
as link prediction) aims at predicting missing entities and relations
in knowledge graphs (KGs). Knowledge graph embedding (KGE)
techniques have been proven to be effective for link prediction. Cur-
rently, a series of convolutional neural networks (CNNs) based mod-
els (e.g., ConvE and its extended models) have attained excellent re-
sults for link prediction. However, several aspects that are impor-
tant for link prediction using CNNs have not been considered and
enhanced simultaneously, which significantly limit the performance
of these models. In this paper we explore an effective KGE model
based on CNNs. We investigate and discover four extremely impor-
tant aspects that have a strong influence on ConvE: entity and re-
lation embeddings, entity-to-relation interaction approaches, CNN
structure, and loss function. Based on the optimization of the above
four aspects, we propose a novel KGE method called ConvEICF.
Through extensive experiments, we find that ConvEICF outperforms
the previous state-of-the-art link prediction baselines on FB15k-237
and WN18RR datasets. In particular, ConvEICF achieves a Hits@10
score that is 11.2% and 6.5% better than ConvE on FB15k-237 and
WN18RR datasets respectively. Additionally, through in-depth ex-
periments we observe an interesting phenomenon and important find-
ing that the very common 1-N scoring technique in KGE can be con-
siderably improved by just adding a dropout operation. Our code is
available at https://github.com/NEU-IDKE/ConvEICF.

1 Introduction

Knowledge graphs (KGs) store huge amounts of structured data, with
projects such as Freebase [3], YAGO [12] and DBpedia [9]. A KG
usually contains a large number of factual triples: (head entity, re-
lation, tail entity) abbreviated as (h, r, t). In recent years, KGs are
widely used in many areas, such as semantic searching [21], ques-
tion answering [7], and recommender systems [21]. However, KGs,
which are often incomplete, still miss a lot of valid triples. The in-
completeness of KGs will lead to poor performance of downstream
applications.

Since the incompleteness of KGs, knowledge graph completion
(KGC, also referred to as link prediction) is thus proposed to pre-
dict missing facts in the existing KGs to make these KGs more com-
prehensive and accurate. Many knowledge graph embedding (KGE)
models have achieved remarkable results for link prediction. KGE
methods embed entities or relations in a low-dimensional and contin-
uous vector space. The goal of KGE is to learn appropriate embed-
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ding vectors for entities and relations by performing some operations
(e.g., addition and multiplication) on these vectors. The typical KGE
models include TransE [4], DistMult [20], and etc., where TransE
uses the addition operation and DisMult employs the multiplication
operation. Based on the above two methods, a series of effective KGE
models are derived such as RotatE [13] and TuckER [1].

Recently, a series of convolutional neural networks (CNNs) based
models have elicited sufficient attention. ConvE [5] solves KG in-
completeness by utilizing the 2D convolution and its performance is
excellent. However, ConvE simply applies external 2D convolutional
filters on the input matrix concatenating entities and relations with
limited interactions, and only takes a channel as the convolution in-
put. SACN [11] proposes to enhance entity and relation embeddings
by graph convolutional networks (GCN), and integrates ConvE and
TransE to improve the interactions between entities and relations.
HypER [2] takes entities as input matrix and relations as convolu-
tional filters to enhance the interactions between entities and rela-
tions. AcrE [10] modifies the CNN structure of ConvE to improve
the performance for link prediction, by adopting convolutional fil-
ters with different sizes. Although these models optimize CNNs and
result in significant improvements, their performance is still limited
because several aspects that are important for link prediction using
CNNs have not been considered and enhanced simultaneously. We
investigate and discover the following four extremely important as-
pects that have a strong influence on the link prediction, which need
to be further improved: enhancing entity and relation embeddings,
improving entity and relation interactions, optimizing the CNN struc-
ture for feature extraction, and employing a loss function with more
powerful optimization ability.

Currently, most ConvE-based models only improve one or two of
the aforementioned four aspects while leaving the others unaltered
as will be detailed in Section 2. Compared to ConvE, the perfor-
mance of these models for link prediction is improved but the im-
provement is still limited. Based on ConvE, we devise a novel KGE
model called ConvEICF, which significantly improves ConvE based
on four aspects: Entity and Relation Embeddings, Entity-to-Relation
Interaction, CNN Structure Optimization, and Loss Function Selec-
tion. Our contributions in this paper are as follows:

• A unified KGE framework ConvEICF is proposed that innova-
tively improves and integrates four aspects mentioned above.

• We employ a simple and high efficiency framework LTE [22] to
enhance entity and relation embeddings on ConvEICF. Further,
we go deeper to investigate effects of the linear layer, BatchNorm,
and dropout operations involved in LTE on the enhanced embed-
dings. Surprisingly, we observe from experiments an interesting
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phenomenon and important finding that the common 1-N scoring
technique in KGE can be considerably improved by just adding a
dropout operation.

• A multi-channel interaction approach is proposed to allow entities
and relations to fully interact from multiple levels.

• We optimize the CNN structure and propose a novel interactive
feature extraction structure by using two convolutional layers and
a convolutional attention layer. In this method, for the first time
we innovatively apply a convolutional block attention module
(CBAM) in computer vision [19] to further extract interactive fea-
tures for link prediction.

• We also change the loss function from BCE to InfoNCE, which
can make the model focus on hard negatives. We note that all of
the ConvE-based models apply the same loss function − Binary
Cross-Entropy (BCE) as ConvE does. We first introduce the In-
foNCE loss [17] to CNN-based link prediction to achieve better
performance.

We carry out extensive experiments to verify the superiority of our
KGE method and the necessity of enhancing the aforementioned four
aspects. The experimental results show that our ConvEICF achieves
state-of-the-art (SOTA) performance for link prediction.

2 Related Work

This section mainly describes the related work involved in CNN-
based models. We introduce commonly used methods related to
entity and relation embeddings, entity-to-relation interaction tech-
niques, CNN structure, and loss functions.

Firstly, for entity and relation embedding, we generally embed
entities and relations to low-dimensional distributed representations
based on existing triples in the KGs. This method is used widely in
various KGE models (e.g., TransE and RotatE). However, the method
of direct embedding leads to the incapacity to make full use of the
structured information in the KGs. Recently, GCNs have been used
to capture the structured information stored in the KGs and have been
shown to achieve competitive performance on link prediction task.
A large number of variants based on GCNs (e.g., WGCN [23] and
CompGCN [16]) achieve better results for KGE. SACN [11] employs
WGCN to enhance entity and relation embeddings and achieves bet-
ter performance. However, GCNs need to process a large amount
of data and require more computing resources. LTE [22] proposes
to replace GCNs with a simple and high-efficiency framework. The
LTE-based models achieve similar results as the GCN-based models,
and do not require extensive computational resources and complex
data processing.

Secondly, for entity-to-relation interaction techniques, previous
CNN-based models (e.g., ConvE [5] and HypER [2]) suffer from
weak interaction between entities and relations in the vector space,
which affects the capacity of feature extraction. ConvE takes a sim-
ple concatenation of entities and relations and only has a channel
as the convolution input. HypER puts forward a novel interaction
way, which takes the entities as the input matrix and the relations
as the convolutional filters so that the entities and relations can fully
interact. InteractE [15] provides another interaction way, which is
based on three key ideas: feature permutation, novel feature reshap-
ing, and circular convolution. InteractE adopts a multi-channel inter-
action way, where its multi-channel is generated by feature permuta-
tion. Our ConvEICF proposes a multi-channel interaction approach
to enable entity and relation interaction features as multi-channel in-
put to CNNs.

Thirdly, for CNN structure, some models achieve good perfor-
mance by setting different CNN structures. For example, AcrE [10]
innovates the CNN structure, which uses a variety of different convo-
lutional filters to extract the interaction features between entities and
relations. Moreover, some convolutional attention mechanisms effec-
tively improve convolutional models in the field of computer vision.
SENet [8] proposes to explicitly model the interdependence between
feature channels. However, SENet misses the spatial attention, which
plays an important role in deciding “where" to focus. CBAM [19] in
computer vision proposes to combine channel and spatial attention
so that it can fully focus on important features. But such attention
mechanisms (including SENet and CBAM) have never been used in
the link prediction task.

Finally, for loss functions, the KGE models based on ConvE as
mentioned above do not modify the loss function and still adopt the
BCE loss function as the ConvE does. SimKGC [17] proposes to
change the loss function from margin-based ranking loss to InfoNCE,
which can make the model focus on hard negatives and the perfor-
mance of SimKGC is greatly improved. Inspired by SimKGC, we
intend to apply InfoNCE to our ConvEICF.

3 Methodology

In this section, we propose a novel KGE model ConvEICF based on
CNNs. The architecture of ConvEICF is shown in Figure 1. ConvE-
ICF consists of four main modules: embedding enhancement mod-
ule, interaction module, interactive feature extraction module, and
prediction module.

3.1 Notion

A KG G = {(h, r, t)} ⊆ E × R × E is a collection of valid factual
triples in the form of (head entity, relation, tail entity), where h, t ∈
E , r ∈ R, E = {e1, e2, · · · , e|E|} and R = {r1, r2, · · · , r|R|}
are the entity set and relation set in the KGs. |E| and |R| denote
the number of entities and relations respectively. The bold lowercase
letters, i.e., h, r, and t, are the corresponding embeddings of the
head entity, relation, and tail entity, and h, r, t ∈ R

d.

3.2 Embedding Enhancement Module

Instead of GCNs as mentioned in Section 2, we use a simple and
high-efficiency framework for enhancing entity and relation embed-
dings. Inspired by LTE [22], which achieves similar embedding per-
formance compared to the models based on GCNs by exploiting three
operations − linear layer, BatchNorm, and dropout, we adopt the
similar framework and further go deeper to investigate effects of the
three operations involved in LTE on the enhanced embeddings. The
embedding representations for all entities and relations are learned,
which are E ∈ R

|E|×d and R ∈ R
|R|×d, respectively. Ē and R̄

denote the results of enhancing the entities embedding matrix E and
the relations embedding matrix R by LTE, respectively. The trans-
formation formula for Ē and R̄ is as follows:

Ē = Drop(BN(EWe))

R̄ = Drop(BN(RWr))
(1)

where We,Wr ∈ R
d×d, Ē ∈ R

|E|×d, and R̄ ∈ R
|R|×d. BN and

Drop represent the BatchNorm operation and the dropout operation,
respectively.
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Figure 1. The framework of our proposed ConvEICF model consists of four modules: embedding enhancement module, interaction module, interaction
feature extraction module, and prediction module. The input dropout, feature dropout, and hidden dropout are performed on the output result of the current

operation respectively.

3.3 Interaction Module

The interaction module models the interaction of entities and rela-
tions in two approaches (i.e., 3D transformation and linear transfor-
mation). Each interaction generates a novel matrix as a convolutional
input channel respectively. Specifically, the head entities and rela-
tions obtained from the enhanced embedding, i.e., h ∈ Ē, r ∈ R̄.
After a learnable 3D transformation and a linear transformation re-
spectively, we obtain two matrices containing different types of in-
teraction information between entities and relations.

For the first interaction approach, we introduce 3D transformations
to allow entities and relations to interact in a high-dimensional space.
We simultaneously multiply the head entity and relation vectors by
a learnable 3-dimensional matrix, and the results serve as entity and
relation interaction features. The computation of the first entity-to-
relation interaction approach is as follows:

Inter1 = h×WInter1 × r (2)

where WInter1 ∈ R
d×2d×d and Inter1 ∈ R

2d. We reshape the
result after interaction to make the dimension 1×H × U , where H
and U denote the two dimensions of input matrix and 2d = H × U .

For the second interaction approach, we use linear transformation
to interact between entities and relations. We take advantage of a
simple concatenation operation and add one linear layer. Its operation
is as follows:

Inter2 = [h; r]WInter2 + bInter2 (3)

where [; ] is the concatenation operation, [h; r] ∈ R
2d, WInter2 ∈

R
2d×2d, and bInter2 ∈ R

2d is the bias parameter. We keep the di-
mension of Inter2 ∈ R

1×H×U

consistent with the first interaction
setting. Different interaction results are concatenated along the chan-

Figure 2. A simplified demonstration of how to introduce CBAM between
two convolution layers.

nel axis and used as convolution inputs, i.e., I = [Inter1; Inter2],
where I ∈ R

2×H×U .

3.4 Interactive Feature Extraction Module

To extract the interactive features between channels or within chan-
nels, we use two convolutional layers and for the first time inno-
vatively introduce a convolutional block attention module (CBAM)
[19] originally proposed in computer vision, and propose a new in-
teractive feature extraction module as shown in Figure 1.

Generally, a pooling operation is performed between two layers of
convolution, but the pooling operation will cause some information
loss, which is not conducive to our link prediction task. Therefore,
CBAM is adopted between the two convolutional layers for further
feature extraction, utilizing the channel attention mechanism and the
spatial attention mechanism as shown in Figure 2. M(h, r) is the
result of extracting features by two layers of convolution as follows:

F = BN(f7×7
1 (I))

M(h, r) = f7×7
2 (CBAM(F)))

(4)

where f7×7
1 and f7×7

2 denote two 7 × 7 convolutional layers, F ∈
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R
C1×H×U , M(h, r) ∈ R

C2×H×U , C1 and C2 denote the number
of f7×7

1 and f7×7
2 convolutional filters respectively. To facilitate data

manipulation, we add the padding operation to the convolutional lay-
ers to maintain the feature map dimension fixed.

CBAM sequentially infers a 1D channel attention map Mc ∈
R

C1×1×1 and a 2D spatial attention map Ms ∈ R
1×H×U over fea-

ture map F. The overall attention process can be summarized as:

F′ = Mc(F)⊗ F

F′′ = Ms(F
′)⊗ F′ (5)

where ⊗ denotes element-wise multiplication.
For channel attention module, we produce a channel attention map

by exploiting the inter-channel relationship of features. To compute
the channel attention, we apply average-pooling and max-pooling
operations on feature map. Favg

c and Fmax
c denote average-pooling

features and max-pooling features, respectively. The channel atten-
tion module utilizes the multi-layer perceptron (MLP) to extract
channel features. The number of channels is compressed to 1/r times
the original number, and then is extended to the original number of
channels, where r is the reduction ratio. In short, the channel atten-
tion is computed as:

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= σ (W1 (W0 (F
avg
c )) +W1 (W0 (F

max
c )))

(6)

where σ denotes the tanh function, W0 ∈ R
C1/r×C1 , and W1 ∈

R
C1×C1/r . Note that the MLP weights, W0 and W1, are shared for

both inputs.
For spatial attention module, we generate a spatial attention map

by utilizing the inter-spatial relationship of features. To compute the
spatial attention, we apply average-pooling and max-pooling opera-
tions along the channel axis and concatenate them to generate an ef-
ficient feature map. Through the use of two pooling procedures, we
aggregate channel information of a feature map to generate two 2D
maps: Favg

s ∈ R
1×H×U and Fmax

s ∈ R
1×H×U . They are then con-

catenated and convolved by a standard convolution layer, producing
a 2D spatial attention map. The spatial attention is computed as:

Ms(F) = σ
(
f7×7([AvgPool(F);MaxPool(F)])

)

= σ
(
f7×7 ([Favg

s ;Fmax
s ])

) (7)

where f7×7 denotes the convolution operation.

3.5 Prediction Module

The prediction module is used to predict missing entities. We per-
form semantic similarity calculations with candidate entities by ex-
tracting head entity and relation interaction features. If the triple is
correct, the semantic similarity is higher.

We perform a linear transformation on the result M(h, r) of the
interactive feature extraction module so that its dimension is con-
sistent with that of the candidate entity t. The tensor M(h, r) is
then reshaped into a vector vec(M(h, r)) ∈ R

C2HU which is then
projected into a d-dimensional space using a linear transformation
parameterized by the matrix W ∈ R

C2HU×d.
Finally, the scoring function φ(h, r, t) for the ConvEICF method

after the nonlinear convolution is defined as below:

φ(h, r, t) = ReLU(vec(M(h, r))W)t (8)

where t ∈ Ē is used to evaluate all candidate entities.

We regularise our model by using dropout in several stages as
shown in Figure 1. In particular, we perform dropout on the input
of the convolutional layer (i.e., the result of entity and relation in-
teraction step), the feature maps after the convolution operation (i.e.,
the feature map after the last convolutional layer), and the fully con-
nected hidden unit.

3.6 Training

During training, we exploit the InfoNCE loss to train model parame-
ters for better results:

L = − log
eφ(h,r,t)/τ

∑|E|
i=1 e

φ(h,r,t′i)/τ
(9)

where φ(h, r, t) is the semantic similarity score for the positive
triple, φ(h, r, t′i) is the semantic similarity score for a candidate
triple, τ denotes a temperature parameter, which can adjust the rela-
tive importance of negatives, and smaller τ makes the loss put more
emphasis on hard negatives.

4 Experiments

In this section, we conduct extensive experiments to evaluate our pro-
posed ConvEICF model.

4.1 Datasets and Experiment Settings

Two widely used benchmark datasets are used in our link predic-
tion experiments: FB15k-237 [14] and WN18RR [5]. Link predic-
tion is to predict the missing h or t for a correct triple (h, r, t),
i.e., predict t given h, r or predict h given t, r−1. We report several
standard evaluation metrics: the Mean of those predicted Reciprocal
Ranks (MRR), and the Hits@N (i.e., the proportion of correct entities
ranked in the top N, where N = 1, 3, 10). Higher MRR and Hits@N
mean better performance. We use the filtered setting, while evaluat-
ing on test triples. We filter out all the valid triples from the candidate
set, which is generated by either corrupting the head or tail entity of
a triple. We use the standard evaluation metrics to evaluate the effect
of predicting the head entity and tail entity, and average them as the
final results.

In our experiments, we fix mini-batch as 256, initial learning rate
to 0.0005, and label smoothing coefficient to 0.1. We set the dropout
threshold in LTE to 0.3. On each dataset, we choose the optimal
configuration with the highest MRR on the validation set within
500 epochs and report its performance on the test set. In the ex-
periment of this paper, the highest MRR scores are obtained when
using d = 200, τ = 0.007, C1 = 64, C2 = 200, input drop
= 0.2, feature drop = 0.2, hidden drop = 0.2 on FB15k-237, and
d = 200, τ = 0.001, C1 = 64, C2 = 250, input drop = 0.2,
feature drop = 0.1, hidden drop = 0.4 on WN18RR. LTE performs
only on entities on the FB15k-237 and on entities and relations on
the WN18RR.

4.2 Baselines

We compare ConvEICF against a variety of competitive baselines
that can be divided into three groups:

• The Translation Methods: TransE [4], RotatE [13], where RotatE
is a quite powerful KGE model.
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Table 1. Link prediction results on WN18RR and FB15k-237 test set. † denotes that the experimental data derived from our reproduction experiments, which
have better results than them in the original papers. Other data derived from their original papers or related papers. The best scores highlighted in bold, and the

second ones in underline.

Models
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [4] 0.332 0.240 0.368 0.516 0.205 0.022 0.347 0.519
RotatE [13] 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571

DistMult [20] 0.279 0.202 0.306 0.433 0.410 0.389 0.420 0.450
TuckER† [1] 0.358 0.267 0.391 0.541 0.470 0.433 0.482 0.526

ConvE† [5] 0.321 0.233 0.351 0.498 0.462 0.431 0.473 0.526
AcrE(Parallel)† [10] 0.356 0.264 0.391 0.541 0.459 0.422 0.473 0.532

CTKGC† [6] 0.330 0.240 0.362 0.512 0.459 0.426 0.472 0.521
InteractE† [15] 0.355 0.263 0.392 0.539 0.463 0.430 - 0.528

HypER† [2] 0.341 0.252 0.376 0.520 0.465 0.436 0.477 0.522
CompGCN† [16] 0.354 0.262 0.388 0.534 0.467 0.429 0.480 0.542

SACN [11] 0.350 0.260 0.390 0.540 0.470 0.430 0.480 0.540
LTE-ConvE† [22] 0.351 0.260 0.382 0.532 0.471 0.434 0.484 0.542

ConvEICF(Ours) 0.365 0.271 0.401 0.554 0.486 0.446 0.501 0.560

• The Bilinear Models: DistMult [20], TuckER [1], where TuckER
improves DistMult and attains competitive results for link predic-
tion.

• The Neural Network Methods including competitive CNN-based
models: ConvE [5], SACN [11], CompGCN [16], AcrE [10], In-
teractE [15], LTE-ConvE [22], CTKGC [6].

4.3 Experimental Results

Table 1 shows the experimental results of our model ConvEICF and
baselines. From the results, we can see that:

1. Experiments show that our proposed model ConvEICF is signing-
icantly effective for link prediction and consistently outperforms
all the state-of-the-art methods on FB15k-237. On Hits@10, Con-
vEICF is 5.6% higher than ConvE, 2.2% higher than LTE-ConvE,
1.3% higher than TuckER and 2.1% higher than RotatE.

2. On WN18RR, our model also achieves better performance than
other methods and obtains state-of-the-art results compared to
CNN-based models. On Hits@10, ConvEICF is 3.4% higher than
ConvE, 1.8% higher than LTE-ConvE, 3.4% higher than TuckER
and 3.2% higher than InteractE. Compared with the RotatE model,
except Hits@10, other evaluation metrics are significantly im-
proved, with an average improvement of about 1.2%.

3. It can be seen from Figure 3 that our proposed model ConvEICF
has faster training speed and better model performance compared
with GCN-based models (e.g., SACN and CompGCN). And our
model has an average improvement of 1.5% in all metrics without
using GCNs to aggregate entity adjacent node information.

5 Anaylses

5.1 Ablation Study

We design a set of ablation experiments to investigate the influence of
main modules in ConvEICF, and the experimental results are shown
in Table 2. Our model is mainly optimized in four aspects: entity

Figure 3. The Hits@10 and the running time with ConvEICF, CompGCN,
and SACN for the link prediction tasks on FB15k-237.

and relation embeddings, entity-to-relation interaction, CNN struc-
ture optimization, and loss function. Therefore, we will explore the
impact of the above four aspects on ConvEICF.

For entity and relation embeddings, we would like eliminate LTE,
abbreviated as Without LTE. There are two kinds of entity-to-
relation interaction approaches as convolution inputs, and we ablate
each interaction in turn, which is referred to as Without Inter1 and
Without Inter2 for short. In terms of CNN structure, the attention
mechanism CBAM is removed, referred to as Without CBAM. To
study the impact of single-layer convolution, it is necessary to re-
move the first convolutional layer and CBAM, abbreviated as With-

out CBAM and Conv. We replace the loss function with the conven-
tional method BCE loss function, referred to as Without InfoNCE

(BCE).
The results of our ablation experiments are shown in Table 2. We

find that: (i) LTE has a significant impact on ConvEICF. For exam-
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Table 2. Ablation experiment results.

Model Name
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Without LTE 0.335 0.242 0.368 0.524 0.470 0.439 0.484 0.529
Without Inter1 0.355 0.262 0.393 0.544 0.482 0.443 0.499 0.556
Without Inter2 0.359 0.266 0.393 0.548 0.468 0.430 0.485 0.539
Without CBAM 0.364 0.270 0.400 0.553 0.480 0.442 0.495 0.558

Without CBAM and Conv 0.363 0.269 0.399 0.548 0.482 0.445 0.495 0.554
Without InfoNCE (BCE) 0.353 0.262 0.386 0.535 0.472 0.429 0.491 0.550

ConvEICF 0.365 0.271 0.401 0.554 0.486 0.446 0.501 0.560

Table 3. Link prediction results by relation category on FB15k-237 under
MRR.

RotatE ConvE InteractE ConvEICF

1-1 0.491 0.370 0.377 0.415
1-N 0.421 0.427 0.442 0.294
N-1 0.273 0.257 0.270 0.459
N-N 0.313 0.318 0.336 0.343

Table 4. The link prediction results of the ConvE and ConvEICF for LTE
exploratory experiment. In the table, �, b, and d represent the linear layer,

BatchNorm, and dropout operations, respectively. Null means that the
above operations are not taken.

Operation
ConvE ConvEICF

MRR Hits@10 MRR Hits@10

Null 0.321 0.498 0.335 0.524
� 0.319 0.494 0.337 0.523
b 0.315 0.491 0.337 0.524
d 0.355 0.536 0.360 0.548

ple, ConvEICF performs better than “Without LTE" with 3% and
1.6% improvements on FB15k-237 and WN18RR under MRR, re-
spectively. (ii) We discover that different datasets and interaction ap-
proaches have different effects on ConvEICF. For instance, Inter1
has a significat effect in FB15k-237, whereas Inter2 has a signifi-
cat effect in WN18RR. FB15K-237 has more complex relations and
fewer entities than WN18RR. We reckon Inter1 is more suitable
for more complex datasets such as FB15k-237, while Inter2 is the
opposite. (iii) Comparing “Without CBAM" and “Without CBAM

and Conv", we find that the CBAM attention mechanism and two-
layer convolution can effectively improve ConvEICF for link predic-
tion. (iv) Comparing different loss functions for ConvEICF, the In-
foNCE loss is significantly more effective than the BCE loss function
with 1.2% and 1.4% improvements under MRR on FB15k-237 and
WN18RR, respectively. Figure 4 shows the Hits@10 value of Con-
vEICF with different loss functions on two datasets during training.
Compared with the BCE loss function, the InfoNCE loss function
has a faster training speed and can achieve better results. In the ini-
tial stage of the InfoNCE loss, the Hits@10 metrics grow fast and the
training speed is faster.

Moreover, we further analyze the performance of ConvEICF on
various relation categories on FB15k-237. We choose FB15k-237 for
analysis due to its diverse and extensive set of relations. Following
[18], we divide the relation categories into four groups based on the
average number of tails per head and heads per tail: one-to-one (1-1),

one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N).
For comparison, we select several representative models for differ-
ent types of relations and evaluate them using the MRR metric. The
comparison results are presented in Table 3. We observe that Con-
vEICF outperforms other models for N-1 and N-N types of relations,
demonstrating its ability to handle complex relation categories.

5.2 The effects of Linear Layer, BatchNorm and
Dropout

As shown in Equation (1), our embedding enhancement module
based on LTE consists of three operations: linear layer (�), Batch-
Norm (b), and dropout (d). We go deeper to investigate the effects
of the above three operations on the CNN-based models.

Firstly, using ConvE and ConvEICF as basic models, we carry out
extensive experiments on FB15k-237 to explore which of the above
operations plays a decisive role in achieving good performance. On
FB15k-237, we perform LTE on the entities embedding matrix to
achieve better performance. We perform the above three operations
in turn, and the experimental results are shown in Table 4.

From Table 4, we find that among the three operations involved in
LTE, dropout plays a decisive role. "d" performs better than "Null"
in ConvE and ConvEICF with 3.8% and 2.4% improvements under
Hits@10, respectively. The performance of ConvE and ConvEICF
decline if only linear layers or BatchNorm operations are used. The
results show that the performance of the model can be improved by
simply performing a dropout operation on the entity embedding ma-
trix.

Further, in order to fully explore the above observation, consid-
ering that ConvE and ConvEICF adopt a 1-N scoring method, we
explore whether the additional dropout affects other models based
on the 1-N scoring method (e.g., AcrE, CTKGC, HypER, TuckER,
and InteractE) on FB15k-237. Dropout operation is added directly
to the entity embedding matrix of other models as ConvE does, but
several models do not perform better. We discover that the additional
dropout placement position and the existing dropout in these mod-
els have a large impact on the performance. We consider the dropout
threshold more than 0.3 to be a large weight, and vice versa.

From Table 5, we discover that adding dropout operations to these
1-N scoring models significantly improves the performance of these
models. For example, CTKGC is improved by at most 2.2%, while
TuckER is improved at least by 0.5% under Hits@10. The evaluation
metrics that are not improved in these models are kept consistent with
the original model, such as InteractE on Hits@3. From Table 5, we
find some interesting phenomena:

1. For HypER and TuckER, input dropout is performed on the
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Table 5. The experiments further explore whether the dropout affects other models based on the 1-N scoring method. Original means to reproduce the
experimental results of the original paper. BDrop is a dropout operation on the entity matrix. ADrop is to perform dropout operation on the candidate
entities of the 1-N scoring method. Reset modifies the dropout threshold existing in the model. Dropout Rate is used to represent input dropout, feature

dropout, hidden dropout in order.

Model Category Dropout Rate Addition Dropout MRR Hit@1 Hit@3 Hit@10

AcrE(Parallel)
Original 0.3-0.2-0.5 - 0.356 0.264 0.391 0.541
BDrop 0.3-0.2-0.5 0.1 0.363 0.270 0.398 0.546

Reset&BDrop 0.3-0.2-0.3 0.3 0.365 0.271 0.400 0.550

CTKGC
Original 0.2-0.2-0.5 - 0.330 0.240 0.362 0.512
BDrop 0.2-0.2-0.5 0.1 0.342 0.252 0.377 0.524

Reset&BDrop 0.2-0.2-0.2 0.3 0.352 0.261 0.389 0.534

HypER
Original 0.3-0.2-0.3 - 0.335 0.245 0.367 0.516
ADrop 0.3-0.2-0.3 0.3 0.355 0.264 0.390 0.537

TuckER
Original 0.3-0.4-0.5 - 0.358 0.267 0.391 0.541

Reset&ADrop 0.3-0.3-0.3 0.3 0.359 0.266 0.393 0.546

InteractE
Original 0.2-0.5-0.5 - 0.355 0.263 0.392 0.539

Reset&BDrop 0.2-0.3-0.3 0.3 0.357 0.265 0.392 0.546

Figure 4. In ConvEICF with different loss functions, the Hits@10
evaluation metrics change with epoch during training.

head entity vector and we utilize ADrop rather than BDrop.
BDrop will cause the input dropout threshold of these two mod-
els to be too large, which affects the generalization ability.

2. By looking at the Dropout Rate, TuckER and InteractE use two
dropouts with large weights to make the model have sufficient
generalization ability. Adding dropout again will make the model
learn too few parameters, making it difficult to learn important
features. Therefore, we need to perform the Reset operation and
then add the dropout operation for TuckER and InteractE.

3. CTKGC and AcrE both have one large weight dropout, indicating
that their generalization abilities are slightly residual. The model
evaluation metrics can be improved by adding dropout in two dif-
ferent ways: BDrop and Reset&BDrop. However, BDrop can
only increase the dropout by 0.1 weight, thus the model can only
be slightly improved. Reset&BDrop method modifies the dropout
existing in these models to a small weight, and adding one dropout
significantly improves the performance of the two models.

To sum up, the experiments show that the very common 1-N scor-
ing technique in KGE can be considerably improved by just adding
a dropout operation. We argue that this may be an important finding,
which will be instructive for subsequent models to further improve
link prediction performance.

6 Conclusion

In this paper, we investigate and discover four key aspects that have
a strong influence on link prediction. Therefore, we propose a novel
KGE model for link prediction, namely ConvEICF. Our proposed
ConvEICF is based on ConvE and optimizes from four aspects: entity
and relation embeddings, entity-to-relation interaction, CNN struc-
ture optimization, and loss function. We provide extensive experi-
ments and exhaustive empirical analyses to verify the effectiveness
and efficiency for the ConvEICF model. The experiment results show
that our ConvEICF significantly improves in all evaluation metrics
compared to previous CNN-based models. Further exploration ex-
periments show that the common 1-N scoring technique in KGE can
be considerably improved by just adding a dropout operation, which
may be instructive for subsequent models to further improve link pre-
diction performance. In the future, we plan to explore the issue of
parameters of the model and the other aspects related to the KGE for
link prediction.
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