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Abstract. Backdoor attacks have become a significant threat to
deep neural networks (DNNs), whereby poisoned models perform
well on benign samples but produce incorrect outputs when given
specific inputs with a trigger. These attacks are usually implemented
through data poisoning by injecting poisoned samples (samples
patched with a trigger and mislabelled to the target label) into the
dataset, and the models trained with that dataset will be infected with
the backdoor. However, most current backdoor attacks lack stealth-
iness and robustness because of the fixed trigger patterns and mis-
labelling, which humans or some backdoor defense approach can
easily detect. To address this issue, we propose a frequency-domain-
based backdoor attack method that implements backdoor implanta-
tion without mislabeling the poisoned samples or accessing the train-
ing process. We evaluated our approach on four benchmark datasets
and two popular scenarios: no-label self-supervised and clean-label
supervised learning. The experimental results demonstrate that our
approach achieved a high attack success rate (above 90%) on all
tasks without significant performance degradation on main tasks and
robust against mainstream defense approaches.

1 Introduction

Due to significant improvements in computing power, deep learn-
ing has rapidly developed and has been widely applied in various
areas, including supervised learning (SL) trained on labeled datasets
and self-supervised learning (SSL) trained on pretext tasks with unla-
beled datasets. These applications have profoundly changed people’s
production and lifestyle, such as face recognition [33, 28], speech
recognition [1, 37], autonomous vehicles [2, 25], and remote diagno-
sis [29]. However, the ubiquitous and successful application of deep
learning has also brought new security issues, such as adversarial at-
tacks [36, 42, 46] and backdoor attacks [14, 23, 8]. Unlike adversarial
attacks that exploit the intrinsic vulnerability of DNNs in the infer-
ence phase, backdoor attacks poison models in the training phase,
causing them to perform well on benign samples but producing in-
correct outputs when given backdoor samples.

State-of-the-art data poisoning-based methods face challenges in
achieving sufficient stealthiness and robustness, as illustrated in Fig-
ure 1. Specifically, (1) the poisoned samples often have fixed trig-
ger patterns and incorrect labels in labeled datasets, or fixed trigger
patterns in unlabeled datasets, making them easily detectable by hu-
mans. (2) Some defense mechanisms, such as Neural Cleanse [40]
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Figure 1: Examples of backdoor attacks. a) is the original image. b),
c), d) are images patched with the trigger proposed by Badnets [14],
TojanNN [23] and our work. Badnets and TrojanNN samples are mis-
labeled to the target label (e.g., car), but ours is with a clean label.

and SentiNet [9], can detect and reconstruct the fixed trigger, making
the attack ineffective.

Drawing inspiration from recent research works such as [45, 44,
26], which demonstrate that DNN models can learn signals in the
frequency domain and that a minor alteration in the frequency do-
main can affect all spatial domain pixels, imperceptible to human
eyes, we propose that the frequency domain-based backdoor attack
approach can potentially address the issues outlined above. However,
several challenges must be addressed while designing the frequency
domain-based backdoor attack.
Challenges in designing frequency domain backdoor. C1: Be ro-
bust to input preprocessing defenses, such as filters. C2: Evade de-
fenses that rely on trigger detection, as current backdoor defenses
typically identify specific trigger patterns in the spatial domain. C3:
Balance learnability and stealthiness, considering that triggers with
higher frequencies and intensities are easier for DNN models to learn
but more perceptible to humans.

In this paper, we propose an algorithm for adaptive trigger se-
lection to address the challenges mentioned above, which involves
three phases. Firstly, we select multiple frequencies that are robust
to standard filters (such as Gaussian filters) as candidates to ensure
robustness to defenses that preprocess the input (addressing C1). In
the second phase, we select frequencies that generate different trig-
ger patterns on various images in the spatial domain to apply our
modification in the frequency domain, ensuring that our attack by-
passes defenses based on trigger detection (addressing C2). In the
third phase, we choose a target intensity that is slightly higher than
the average intensity of the original image but no greater than the
threshold value for each selected frequency, taking into account the
location of the frequencies and the average intensity value, to ensure
both the learnability and stealthiness of the frequency backdoor (C3).

We assess the effectiveness of our proposed attack in two neu-
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ral network learning scenarios: self-supervised learning (SSL) and
supervised learning (SL). In the SSL setting, we pre-train ResNet-
18 [17] on a poisoned CIFAR-10 [20] dataset using popular meth-
ods SimCLR [6] and MOCO V2 [7]. The pre-trained model is the
feature extractor and is transferred to downstream tasks, including
CIFAR-10, STL-10 [10], and GTSRB [35]. In the SL setting, we train
ResNet-18 and DenseNet on the poisoned CIFAR-10, STL-10, and
VGGFace datasets, achieving over 90% success rate on the poisoned
samples while incurring only a minor 2% performance degradation
on the main tasks. Then, we evaluate the impact of our frequency
trigger on the original images using PSNR (Peak Signal-to-Noise
Ratio) and SSIM (Structural Similarity) metrics. The average PSNR
and SSIM on CIFAR-10 are 24.11 and 0.9024, respectively, demon-
strating that our trigger is well-hidden. Finally, we demonstrate the
robustness of our attack against common backdoor detection meth-
ods and can effectively bypass them with high success robustness.
Contributions. Our main contributions are outlined below:
• We present an innovative invisible backdoor attack that utilizes a
frequency trigger designed based on statistical characteristics in the
frequency domain. Our approach is the first to achieve backdoor im-
plantation in no-label and clean-label scenarios without mislabeling
the poisoned samples or accessing the training process.
• We propose an adaptive algorithm for selecting appropriate prop-
erties of our frequency trigger, enhancing its stealthiness and robust-
ness against commonly used defense methods.
• We implement our proposed invisible backdoor attack in the fre-
quency domain, achieving over 90% attack success rate while main-
taining the performance of the main task. We publish our source code
on the GitHub1.

2 Related Work

2.1 Frequency Domain

The frequency domain provides a new perspective for image process-
ing. In the frequency domain, the low-frequency components corre-
spond to smooth regions in the image, and the high-frequency com-
ponents correspond to edges in the image.

The spatial domain and frequency domain are connected through
the Fourier transform. The Discrete Fourier Transform (DFT) and
Discrete Cosine Transform (DCT) are the most commonly used
transform methods in digital image processing. DCT, which is de-
veloped from DFT, is widely used in image compression because
it has better energy compaction in the frequency domain than DFT.
The two-dimensional DCT can be expressed as matrix multiplica-
tion, and its inverse, the Inverse Discrete Cosine Transform (IDCT),
can be obtained by transposing the DCT matrix. The mathematical
expressions for the 2D DCT and IDCT are shown below:

F (u, v) =

M−1∑
i=0

N−1∑
j=0

f(i, j)G(i, j, u, v) (1)

f(i, j) =

M−1∑
u=0

N−1∑
v=0

F (u, v)G(i, j, u, v) (2)

G(i, j, u, v) = c(u)c(v) cos [
(i+ 0.5)π

M
u] cos [

(j + 0.5)π

N
v] (3)

1 https://github.com/YCC-324/frequency_backdoor
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where DCT converts an image of size M×N from the spatial domain
to the frequency domain of the same size (as shown in equation 1).
Conversely, IDCT transforms the frequency domain representation
of an image back to its spatial domain representation (as shown in
equation 2). F (u, v) represents the intensity value at position (u, v)
in the frequency domain, and f(i, j) represents the pixel value at
position (i, j) in the spatial domain.

2.2 Backdoor Attacks

Stealthy backdoor attacks. SL models are vulnerable to backdoor
attacks, commonly executed by poisoning the training dataset with
samples containing a trigger pattern and relabeling them to the target
class. To increase the stealthiness of backdoor attacks, several ap-
proaches have been proposed for generating invisible triggers, such
as Blend [8], SIG [3], and REFOOL [24]. For example, REFOOL
uses natural reflection to create the trigger. However, these meth-
ods often require the poisoned data to be mislabeled, which can be
manually detected. On the other hand, some studies [39, 3] aim to
achieve backdoor attacks in a clean-label scenario to avoid detection
caused by mislabeling. Turner et al. [39] successfully executed back-
door attacks under the clean label using adversarial examples and
GAN-generated data. The research also shows that creating triggers
that cause global perturbations to the original images is necessary to
achieve clean-label backdoor attacks.
Backdoor attacks in self-supervised learning. SSL, unlike SL,
trains the encoder on pretext tasks that use input data as supervision
to help it learn critical features of the dataset. However, backdoor
attacks against SSL have started gaining attention recently. For ex-
ample, Carlini et al.[4] proposed a backdoor attack against CLIP by
patching a trigger on images and modifying corresponding text de-
scriptions. Similarly, Jia et al.[19] proposed a backdoor attack on a
pre-trained encoder by optimizing a function that aggregates feature
vectors of images with embedded triggers into the encoder’s output
space. Saha et al. [32] utilized the training characteristics of con-
trastive learning to inject a backdoor into the model by patching a
trigger on images of the target class.
Backdoor attacks in frequency domain. Recent studies have ex-
plored backdoor attacks from a frequency domain perspective, lever-
aging neural network interpretability in the frequency domain [12,
41, 16]. For instance, Wang et al.[41] have proposed a method that
directly injects a backdoor by manipulating the intensities of specific
manually selected frequencies. However, this approach is not robust
to filters and has a fixed pattern in the spatial domain, which can be
reverse generated. Hammoud et al.[16] have suggested finding the
frequencies sensitive to the DNN model’s decisions as the injection
position for the frequency trigger. However, their method requires
a clean model that is well-trained on the dataset used for poison-
ing and involves mislabeling poisoned samples during backdoored
model training.

In this paper, we propose a novel approach to backdoor attacks
that exploit the characteristics of the frequency domain. Our method
allows injecting an invisible backdoor without mislabeling, mak-
ing it effective in clean-label supervised learning and no-label self-
supervised learning scenarios.
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Figure 2: Overview of the frequency backdoor attack using data poisoning

2.3 Backdoor Defenses

Defenses against training data. The last hidden layer’s activations
reflect the high-level features used by a neural network to make pre-
dictions. To detect poisoned samples, Chen et al. [5] propose an ac-
tivation clustering method where the activations of inputs with the
same label are separated and clustered using k-means with k = 2 af-
ter dimension reduction, with one of the clusters being the poisoned
samples. These samples can be removed or relabeled with the correct
label. Similarly, Tran et al. [38] use the spectral signature technique, a
robust statistical analysis method, to identify and remove potentially
compromised training data samples that have been poisoned.
Defenses against model inputs. SentiNet [9] proposes using Grad-
CAM [34] for model interpretability and object detection to detect
potential attack regions of an image. Then, these regions can be
manually checked to identify poisoned inputs, i.e., samples with a
patched trigger. Februus [11] trains a GAN to automatically repair
images after removing the suspicious areas masked by Grad-CAM.
STRIP [13] detects whether an input is poisoned by superimposing
various image patterns onto the input, which can cause normal input
misclassified but cannot surpass the effect of the trojan trigger.
Defenses against models. Fine-Pruning [21] utilizes a pruning step
to remove decoy neurons, and fine-tuning is then applied to eliminate
the backdoors. Neural Cleanse [40] aims to detect whether a DNN
model has been backdoored by reversing the trigger. This method
has been further improved in TABOR [15] by incorporating various
regularizations in the optimization process. ABS [22] identifies com-
promised neurons that significantly contribute to a particular label,
then generates a trigger for the compromised neuron using simula-
tion analysis and utilizes the performance of the trigger to confirm
if the neuron is backdoored. MNTD [43] trains a meta-classifier us-
ing benign models and poisoned models as inputs to perform binary
classification and predict if a given model is backdoored.

3 Data Poisoning with Frequency Domain

3.1 Threat Model

We consider an attacker aims to poison a dataset by patching an in-
visible trigger on some of the samples to implant a backdoor in any
DNN model trained on the dataset, without controlling the training
process. The attacker aims for three goals: effectiveness, stealthiness,
and robustness. Effectiveness means that the attack should cause the
model to misclassify samples patched with the trigger as a specific
label with a high success rate while behaving similarly to the be-
nign model when processing samples without the trigger. Stealthi-
ness requires that the backdoor trigger be invisible to humans so that
the poisoned samples can pass manual checks. Robustness represents
that the trigger remains valid under common defenses, or the model’s

performance is significantly degraded if a defender tries to clear the
trigger using defenses against the input or dataset.

3.2 Overview

Figure 2 shows an overview of our data poisoning attack, which con-
sists of two main components: Frequency Trigger Generation and
Backdoor Injection. We aim to contaminate a dataset that any DNN
models trained on it will be implanted with a backdoor. To accom-
plish this goal, we first analyze the frequency distribution character-
istics of the images in a predefined target class and choose a set of in-
tensity values of proper frequencies in the frequency domain as trig-
gers based on statistical features. We then design adaptive triggers in
the frequency domain that meet the following criteria: imperceptible
to human observers, patterns that overlap with significant portions of
the images in the spatial domain, no specific pattern in the spatial
domain, and effectiveness after common data preprocessing. In the
second phase, we apply Fourier transform to transform the images in
the target class from the spatial domain to the frequency domain and
inject our frequency trigger to produce a poisoned dataset.

3.3 Trigger design

In this work, we propose a novel approach for generating an adap-
tive frequency trigger that takes into account the findings of previous
studies [45, 44, 26]. These studies demonstrate that DNN models are
sensitive to changes in frequency domain information, which can af-
fect all the pixels of the original trigger. This means that frequency
triggers can overlap the entire image and be effective in both no-label
and clean-label backdoor attack scenarios [39, 3, 24]. Moreover, we
take advantage of the fact that changes in the intensity of specific
frequencies can be difficult for humans to perceive if they are within
a threshold. Therefore, we propose using the frequency domain as
an effective way to insert triggers and achieve a successful backdoor
attack. Our approach generates an adaptive frequency trigger of the
following form:

FT (u, v) =

{
0, (u, v) /∈ νT

IT (u, v)− Fn(u, v), (u, v) ∈ νT
(5)

where FT (u, v) and Fn(u, v) represent the intensity of the trigger
and the original image at frequency (u, v), respectively. The variable
νT represents the frequencies we choose to modify the intensity of,
while IT (u, v) represents the target intensity we aim to set for each
selected frequency. The selection of these variables follows the two
objectives listed below:

νT =minN
(u,v)

(Diff(F (u, v), Ffilter(u, v)))

∩maxN
(u,v)

(Discrete(F (u, v)))
(6)
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|IT (u, v)− Fn(u, v)| < ε (7)

where F (u, v) and Ffilter(u, v) represent the set of intensities at
frequency (u, v) of all images with the target label and the filtered
images, respectively. Diff calculates the average differences in in-
tensity at frequency (u, v) among all images, Discrete calculates
the dispersion of intensities at frequency (u, v) among all images,
minN and maxN represents the smallest and largest N elements,
respectively, and ε is a threshold below which changes in the fre-
quency domain are difficult for humans to perceive. Equation 6 iden-
tifies robust frequencies against filtering and defense methods based
on trigger pattern detection. Equation 7 sets the intensities with high
stealthiness.

Algorithm 1 presents the process of generating an adaptive trigger.
Firstly, we calculate the frequency distribution of the images in the
target class and select candidate frequencies that are robust to filters
(line 4). Then, we select a subset of frequencies νT that can produce
significant differences between trigger patterns on different images in
the spatial domain (line 5). Secondly, for each channel, we calculate
the mean value of the intensities at each frequency in νT among all
the images as the basic intensities (line 6). Finally, we use a grid
search to determine the threshold value ε and set the target intensities
IT for each frequency based on the basic intensities and the selected
threshold value ε (line 7).

In generating an adaptive frequency trigger, selecting the frequen-
cies candidate is a crucial step (lines 10-15). We start by passing each
image to the filter (line 10) and calculating the average relative dis-
tance between the intensities at each frequency of the original images
and those after the filter for each channel (lines 11-13). We then sort
the distances on each channel in ascending order and select the top
50 frequencies ranked high on all three channels as the candidate fre-
quencies νcandidate (line 14). Finally, we select target frequencies at
which the Coefficient of Variation (CoV) of intensities is the largest
(lines 18-22). The reason for choosing these frequencies is explained
as follows:

The CoV reflects the dispersion of the data, and the larger the CoV,
the greater the dispersion. The frequency trigger in the spatial domain
is formalized as

fT (i, j) =

M−1∑
u=0

N−1∑
v=0

FT (u, v)G(i, j, u, v)

=
∑

(u,v)∈ν

(IT (u, v)− Fn(u, v))G(i, j, u, v)

(8)

Since IT (u, v) is a fixed value, to maximize the variance of trigger
patterns (i.e., fT (i, j)) on different images, we select the frequency
at which intensities (i.e., Fn(u, v)) vary considerably among all the
images. Specifically, for each channel, we calculate the CoV for
each frequency in νcandidate across all images (lines 18-20). Then
we sort them in descending order and we pick a specified number
(i.e., TopN ) of corresponding frequencies that rank high on all three
channels as the position of our frequency trigger νT (line 21).

We set appropriate intensities for the selected frequencies (lines
25-34). To achieve good stealthiness, we gradually increase ε by
an interval of Step until the Structural Similarity (SSIM) between
the original dataset and the poisoned dataset in the spatial domain
is smaller than 0.9 (lines 27-32). SSIM is a measure of similarity
between two images, and an SSIM of 0.9 indicates a good level of
stealthiness. Once the SSIM is below 0.9, we perform a grid search
within the current interval to find the value of ε that yields an SSIM
just above 0.9, and use Equation 7 to determine the target intensities
IT for the selected frequencies (line 33).

Algorithm 1 Adaptive frequency trigger generation algorithm

Input: Dt: dataset with the target label in frequency domain; N : the
size of Dt; (C,W,H): the shape of each image; ν: frequencies
of images; TopN : number of frequencies to select; Step: the
step of the search;

Output: νT : the list of the frequencies selected; IT : the list of the
corresponding target intensities

1: ν = {(1, 1), (1, 2), ..., (W,H)}
2: Dt = {xn}, n ∈ [1, N ]
3: xn = {Fn

ch(u, v)}, (u, v) ∈ ν, ch ∈ [1, C]
4: νcandidate = SelectFrequencyRobustToF ilter(Dt)
5: νT = SelectFrequencyDiscrete(Dt, νcandidate)
6: IT = GetMeanV alue(Dt, νT , ch), ch ∈ [1, C]
7: IT = SetIntensities(Dt, νT , IT , Step)
8: return νT , IT

9: Function SelectFrequencyRobustToF ilter(Dt)
10: {xn

f } = Filter({xn}), n ∈ [1, N ]
11: for (u, v) in ν do

12: diff(u, v) = Diff({xn}, {xn
f }), n ∈ [1, N ]

13: end for

14: νcandidate = AscendingSort
(u,v)

(diff(u, v), 50)

15: return νcandidate

16: end Function

17: Function SelectFrequencyDiscrete(Dt, νcandidate)
18: for (u, v) in νcandidate do

19: CoV (u, v) = CalCov({xn}), n ∈ [1, N ]
20: end for

21: νT = DescendingSort
(u,v)

(CoV (u, v), T opN)

22: return νT
23: end Function

24: Function SetIntensities(Dt, νT , IT , Step)
25: ε = 0
26: {fn} = IDCT (Dt), n ∈ [1, N ]
27: do

28: ε = ε+ Step
29: {(x′

)n} = AddTrigger(Dt, νT , IT , ε), n ∈ [1, N ]

30: {(f ′
)n} = IDCT ({(x′

)n}), n ∈ [1, N ]

31: SSIM = CalSSIM({fn}, {(f ′
)n}), n ∈ [1, N ]

32: while SSIM > 0.9
33: IT = TryV alue(Dt, IT , ε)
34: return IT
35: end Function

3.4 Backdoor Injection

After generating the frequency domain backdoor trigger, we can im-
plant it into the target class images to create the poisoned dataset.
Firstly, we transform the images in the target class from the spatial
domain to the frequency domain using the Discrete Cosine Trans-
form (DCT). Secondly, we inject our trigger into the images pre-
sented in the frequency domain by adding the intensity values of the
trigger to that of images at the corresponding frequencies. Finally,
we use the Inverse Discrete Cosine Transform (IDCT) to return the
images to the spatial domain. Then we mix the poisoned images with
other clean images to create a poisoned dataset. The models trained
on this dataset will be vulnerable to backdoor attacks.
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4 Experiment

4.1 Experiment Settings

Dataset and model. We evaluate the effectiveness of our backdoor
attack on two classic deep neural network (DNN) models: ResNet-
18 [17] and Densenet [18], across popular datasets: CIFAR-10 [20],
STL-10 [10], GTSRB [35], and VGGFace [27].
•CIFAR-10 is a widely-used object classification dataset that con-
tains 60,000 color images in 10 classes, each of size 32 × 32 × 3,
with 50,000 images for training and 10,000 for testing.
•STL-10 is an image recognition dataset designed for developing un-
supervised feature learning, deep learning, and self-taught learning
algorithms. It consists of 5,000 labeled training images, 1,000 labeled
testing images, and 100,000 unlabeled images, all of size 96×96×3,
distributed among 10 classes.
•GTSRB is a widely-used dataset in the field of autonomous driving,
consisting of 43 classes of traffic signs. It contains 39,209 training
images and 12,630 test images, with each image having a size of
32× 32× 3.
•VGGFace is a widely-used dataset in the field of face recognition,
consisting of 2 million images from 2,622 different identities. For
our experiments, we resized each image to 224× 224× 3.
Attack Scenarios. To evaluate our attack approach, we benchmark it
under both self-supervised learning and supervised learning scenar-
ios. For self-supervised learning, we pre-train ResNet-18 as an image
encoder on the poisoned CIFAR-10 dataset using two widely used
methods, SimCLR [6] and MoCO v2 [7]. We then use the encoder
for the downstream datasets CIFAR-10, STL-10, and GTSRB to train
downstream classifiers. For supervised learning, we train ResNet-18
and Densenet on the poisoned CIFAR-10, STL-10, and VGGFace
datasets. To implement self-supervised learning, we use the imple-
mentation shown in [31] for SimCLR and [30, 7] for MoCO v2, and
use their default training parameters and data transformations. For
supervised learning, we apply commonly used parameters and data
transformations to avoid disturbing the normal training process.
Metrics. We use the following four metrics to evaluate our approach:
•Clean Data Performance (CDP) is a metric that evaluates the pro-
portion of correctly classified clean samples, i.e., samples without
any backdoor triggers, to their ground-truth classes.
•Attack Success Rate (ASR) measures the fraction of poisoned im-
ages that are successfully predicted as the target label specified by
the backdoor attack.
•Peak Signal-to-Noise Ratio (PSNR) is a metric that quantifies the
fidelity of image representation after processing by measuring the
ratio between the maximum possible power of a signal and the power
of corrupting noise that affects the image quality.
•Structural Similarity (SSIM) is a metric that measures the similarity
between two images, taking into account critical perceptual phenom-
ena, e.g., luminance masking, contrast masking. Compared to PSNR,
SSIM aligns more with human perception of image similarity.
Platform. All of our experiments were conducted on a server running
a 64-bit Ubuntu 20.04.3 system with an Intel(R) Xeon(R) Platinum
8268 CPU @ 2.90GHz, 188GB of RAM, a 20TB hard drive, and one
Nvidia GeForce RTX 3090 GPU with 24GB of memory.

4.2 Effectiveness
Baseline Performance. In the SSL scenario, we trained ResNet-18
DNN encoders on CIFAR-10 using two SSL techniques, namely
SimCLR and MoCo V2. The trained encoders were then used to
train downstream classifiers on CIFAR-10, STL-10, and GTSRB

Table 1: Baseline of Clean Models
Model Dataset CDP ASR

ResNet-18
(SimCLR)

CIFAR-10 86.53% 9.31%
GTSRB 91.38% 12.6%
STL-10 77.21% 2.70%

ResNet-18
(MoCo v2)

CIFAR-10 84.03% 9.29%
GTSRB 89.64% 8.38%
STL-10 72.65% 3.11%

ResNet-18
CIFAR-10 91.06% 9.96%

STL-10 74.42% 5.46%
VGGFace 85.31% 1.08%

Densenet
CIFAR-10 88.21% 9.40%

STL-10 74.71% 14.17%
VGGFace 87.17% 1.17%

Table 2: Effectiveness of Backdoor Attack
Model Dataset CDP ASR

ResNet-18
(SimCLR)

CIFAR-10 85.48%(-1.05%) 92.08%
GTSRB 89.67%(-1.71%) 95.57%
STL-10 76.76%(-0.45%) 99.68%

ResNet-18
(MoCo v2)

CIFAR-10 82.24%(-1.79%) 91.55%
GTSRB 87.90%(-1.74%) 94.60%
STL-10 71.83%(-0.82%) 99.78%

ResNet-18
CIFAR-10 90.63%(-0.43%) 95.56%

STL-10 72.51%(-1.91%) 92.45%
VGGFace 84.22%(-1.09%) 92.28%

Densenet
CIFAR-10 87.09%(-1.12%) 90.05%

STL-10 73.01%(-1.70%) 90.11%
VGGFace 85.88%(-1.29%) 91.52%

tasks. Similarly, in the SL scenario, we trained clean ResNet-18
and Densenet models on CIFAR-10, STL-10, and VGGFace. We as-
sessed their performance as the baseline in Table 1 across several
metrics, which demonstrates that the clean models perform similarly
to the models presented in [6, 7, 17]. In addition, the ASR, measured
on the poisoned dataset (with the target label set to “automobile”,
“speed limit 30”, and “car” for the three datasets respectively), was
low for all clean models. This observation demonstrates that our trig-
ger has little effect on the main task’s decision.
Backdoor Performance. We evaluated our backdoor attack on the
same tasks as those used for the baseline evaluation. To generate trig-
gers, we employed our proposed adaptive Algorithm 1. For instance,
we selected “automobile” as the poisoned label in CIFAR-10 dataset,
and the generated trigger consisted of frequencies (1,10), (1,9),
and (0,10), with the intensities on three channels set to (70,70,80),
(65,65,65), and (65,65,65), respectively. Table 2 presents the back-
door performance on self-supervised learning and supervised learn-
ing. The experimental results demonstrate that our method achieved
satisfactory ASR (i.e., above 90%) on all the tasks with an acceptable
reduction in performance on the clean samples (i.e., lower than 2%).

Note that in our experiments on SSL, we did not know in advance
which label in the downstream task would be poisoned. The trigger
was applied after the model was deployed, and we only discovered
the corresponding target label once the backdoor was activated. As
a result, we achieved an untargeted backdoor attack in this scenario.
However, we made an interesting discovery when transferring the en-
coder pre-trained on CIFAR-10 to the downstream task STL-10. We
found that the target label was the same as the poisoned label used
during the training the poisoned encoder. This is because the features
of the trigger are bound to the features of the pre-training samples
with the poisoned label and can also be bound to downstream sam-
ples with similar features after transferring. Therefore, we can also
achieve a targeted backdoor attack as long as the downstream dataset
and our poisoned dataset have overlapping categories.
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Table 3: Evaluation of different intensities settings.
No. Itensities PSNR SSIM CDP ASR ASR(Filter)

1 (60,60,70),(55,55,55),(55,55,55) 25.03 0.9122 91.00% 87.84% 79.80%
2 (70,70,80),(65,65,65),(65,65,65) 24.11 0.9024 90.63% 95.56% 86.12%
3 (80,80,90),(75,75,75),(75,75,75) 23.23 0.8911 90.77% 91.62% 78.80%

Note: The intensities increase from No.1 to No.3.

Table 4: Evaluation of different frequencies settings
No. Frequencies Itensities PSNR SSIM CDP ASR ASR(Filter)

1 (28,0),(30,0),(31,0) (40,35,30),(25,25,25),(25,25,25) 31.20 0.9530 90.29% 97.15% 4.32%
2 (1,10),(1,9),(0,10) (70,70,80),(65,65,65),(65,65,65) 24.11 0.9024 90.63% 95.56% 86.12%
3 (1,7),(3,6),(5,3) (95,105,130),(85,85,85),(85,85,85) 21.57 0.8624 89.00% 88.18% 84.68%

Note: The frequencies decrease from No.1 to No.3, and the intensities increase to ensure ASR is larger than 85% and CDP is around 90%.

Table 5: Comparison with different stealthy backdoor attacks
Attack method PSNR SSIM CDP ASR

Blend[8] 19.18 0.7921 89.77% 93.11%
SIG[3] 25.12 0.8988 89.45% 95.76%

REFOOL[24] 16.59 0.7701 88.80% 92.80%
Ours 24.11 0.9024 90.63% 95.56%

Table 6: Comparision with other frequency backdoor attacks
Method CDP ASR CDP(Filter) ASR(Filter)

FTrojan 83.71% 99.90% 57.93% 5.4%
FIBA 83.65% 81.41% 82.08% 76.70%
ours 90.63% 95.56% 57.26% 86.12%

Invisibility. We assessed the invisibility of our trigger by measuring
the average PSNR and SSIM values for CIFAR-10 images patched
with the trigger. The calculated PSNR and SSIM values were 24.11
and 0.9024, respectively. We also compared the inconspicuousness
of our trigger with existing techniques, and the results presented in
Table 5 demonstrate that our approach outperforms Blend and RE-
FOOL. Although SIG yields similar performance, it uses a fixed trig-
ger pattern, namely, a horizontal sinusoidal signal, that can be de-
tectable by defenses that employ trigger reverse generation.
Comparison with other frequency backdoor attacks. We con-
ducted experiments to compare our approach with the methods
proposed in FIBA [12] and FTrojan [41]. Specifically, we trained
ResNet-18 on the poisoned CIFAR-10 dataset and evaluated the at-
tack performance of these methods. The results are shown in Table 6.
We observed that FTrojan is not robust to filtering, and the ASR
of FIBA is low, only reaching 81.41%. We used the code provided
by the authors for our experiments, and due to differences in data
preprocessing, their clean data accuracy benchmark was not directly
comparable to ours. Overall, our approach outperforms these meth-
ods in terms of ASR and robustness.

4.3 Impacts of Intensities and Frequencies

Impacts of intensities. To evaluate the influence of trigger intensi-
ties, we selected triggers with lower and higher intensities and in-
jected them into the CIFAR-10 dataset. As shown in Table 3, triggers
with higher intensities were more effective in achieving the backdoor
attack (i.e., higher ASR), but at the cost of reduced stealthiness (i.e.,
lower PSNR and SSIM).
Impacts of frequencies. We conducted experiments on triggers with
higher and lower frequencies and adjust the intensities to achieve an
ASR higher than 85% and a CDP of around 90%. The results in Ta-
ble 4 indicate that a trigger with higher frequencies is more detectable
by DNNs, albeit slightly more stealthy than the trigger selected by

our proposed method. However, it is more prone to being filtered out
by filters. On the other hand, a trigger with lower frequencies is more
challenging for DNNs to learn, requiring slightly higher intensities
that may introduce visible changes to images in the spatial domain,
and thus negatively impact the performance of the clean dataset.

4.4 Resistance
We evaluate the robustness of our attack against defenses that are
most relevant to our attack. These defenses include the detection
of training data (i.e., Activation Clustering), preprocessing of inputs
(i.e., Filter), detection of inputs (i.e., SentiNet, STRIP), and detection
of models (i.e., Fine-Pruning, Neural Cleanse, ABS, MNTD).
Resistance to Activation Clustering. Activation Clustering detects
poisoned data by detecting differences in activation distributions be-
tween clean and poisoned inputs. However, this method can only be
used on samples with target labels and is, therefore, unsuitable for
SSL scenarios. We evaluated the effectiveness of Activation Clus-
tering on our backdoored ResNet-18 model trained on the poisoned
CIFAR-10 dataset for supervised learning. The false positive rate
(i.e., the ratio of clean samples that were misclassified to be poi-
soned) was 100.00%, and the false negative rate (i.e., the ratio of poi-
soned samples that were regarded as benign) was 56.64%. The results
indicate that although many poisoned samples were successfully de-
tected, all benign samples were classified as malicious, leading to a
significant decrease in DNN model performance. Additionally, since
all samples with the target label left are poisoned, the backdoor can
still be injected. Furthermore, nearly half of the poisoned samples
were classified as benign, which means that the activation difference
between benign and poisoned samples was insignificant, indicating a
high level of stealthiness in our backdoor attack.
Resistance to Filter. Considering the frequency domain characteris-
tics of the backdoor, filters can pose a significant threat to the back-
door trigger. We evaluated the robustness of our attack to filters on
the backdoored ResNet-18 model trained on the poisoned CIFAR-
10 dataset using supervised learning. Before predicting the test sam-
ples using the model, we passed them through four filters, including
Gaussian, average, median, and SVD filters. It should be noted that
the SVD filter filters out singular frequencies by analyzing the fre-
quency distribution in the frequency domain. The results presented
in Table 7 demonstrate that our backdoor attack maintains a high
ASR even after being processed by filters. Still, the performance on
the clean data significantly drops. Therefore, our backdoor attack is
robust to filter processing.
Resistance to SentiNet. SentiNet, which uses Grad-CAM for model
interpretability and object detection, can be employed to detect po-
tential attack regions in an image. These regions can then be manu-

C. Yue et al. / Invisible Backdoor Attacks Using Data Poisoning in Frequency Domain 2959



Table 7: Resistance to different filters
Filter CDP ASR

Gaussian Filter 57.26% 86.12%
Mean Filter 51.84% 79.23%

Median Filter 76.50% 88.66%
SVD Filter 74.33% 93.52%

Figure 3: Critical Regions Identified by SentiNet. Columns a) and c)
are the results of clean images, and columns b) and d) are the results
of the corresponding poisoned images

ally checked to identify poisoned inputs containing a patched trigger.
We applied SentiNet to the backdoored ResNet-18 models trained on
the poisoned STL-10 dataset using SSL with SimCLR to determine
if the trigger could be detected. The results in Figure 3 show the re-
gions identified by SentiNet on several randomly selected samples,
where columns a) and c) represent the clean images and columns
b) and d) represent the corresponding poisoned images. The results
suggest that SentiNet can only identify a partial area of an image as
a critical region while our trigger overlaps the entire image. Addi-
tionally, our trigger effectively shifts the model’s focus on the image
compared to the clean image. However, the regions identified on the
poisoned images are still important for the DNN models to identify
the original images, indicating that our trigger is difficult to detect by
human inspection.
Resistance to STRIP. We evaluated the robustness of our backdoor
attack against STRIP on the backdoored model trained on CIFAR-10
via self-supervised learning. The result showed that STRIP failed to
detect our poisoned input samples, with a false negative rate of 97%
and a false positive rate of 3.05%. This indicates that our attack is
effective against STRIP. This could be because when STRIP over-
laps two images, the frequency distribution changes, which causes
the trigger patched on the image to lose its effect, making it difficult
for STRIP to detect the backdoor.
Resistance to Fine-Pruning. We evaluated our attack against Fine-
Pruning on the backdoored model trained on CIFAR-10 using self-
supervised learning. At a 50% pruning rate, we observed a reduction
in ASR to 84.22% and CDP to 69.07%. However, after 50 epochs of
finetuning, the CDP and ASR stabilized at around 85.5% and 80%,
respectively, indicating that our backdoor attack can effectively by-
pass this defense mechanism. One possible reason for this is that our
backdoor attack affects many neurons in the DNN, making it more
resilient to pruning.
Resistance to Neural Cleanse. We apply Neural Cleanse to detect
our backdoored ResNet-18 model trained on CIFAR-10 using Sim-
CLR. Neural Cleanse tries to find a potential minimal trigger that
can misclassify all samples into a target label and uses an outlier de-
tection algorithm to choose the trigger significantly smaller than the
others as the real trigger. The corresponding label is the target label of
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Figure 4: Anomaly Index of Neural Cleanse. The poisoned label is
“1”, but the labels “0”, “7”, and “8” are identified, indicating Neural
Cleanse fails to detect our backdoor.

the backdoor attack. However, our frequency trigger is not detected
by Neural Cleanse. The anomaly indexes of labels “0”, “7”, and “8”
are larger than 2, but the poisoned label is “1”. This shows that Neu-
ral Cleanse cannot effectively detect our backdoor attack due to the
absence of a specific trigger pattern.
Resistance to ABS. We evaluated our backdoor attack against ABS
on the backdoored model trained on CIFAR-10 using self-supervised
learning. ABS aims to detect suspicious neurons for all the labels.
We found that for all the reversed triggers, the attack success rates
were less than 15%, indicating that ABS cannot reverse-engineer our
trigger. This is because there is no specific trigger pattern.
Resistance to MNTD. To evaluate the effectiveness of our backdoor
attack against MNTD, we generated 20 backdoored CIFAR-10 mod-
els by injecting our backdoor into 20 clean models using the code
provided by MNTD. We then used the MNTD’s meta-classifier to
detect the backdoored models among these 40 models, achieving an
AUC score of 0.5870 and an accuracy of 55.81%. These results indi-
cate that our attack can successfully evade this defense. We hypoth-
esize that this may be due to our backdoor allowing the model to
learn in different feature spaces, which makes it difficult for MNTD
to distinguish these features.
Potential Defense. Due to the potential presence of anomalous val-
ues in the frequency domain caused by our triggers, anomaly detec-
tion techniques on the frequency domain may be able to detect our
triggers. However, since our triggers are dispersed across different
frequency bands, which are entangled with the core information of
the image, it might be difficult to completely remove the backdoor
without compromising the main task.

5 Conclusion

In this paper, we propose a novel backdoor attack approach based on
the frequency domain, which implants a backdoor into DNN mod-
els trained on a poisoned dataset without mislabeling any samples
or accessing the training process. We evaluate the effectiveness of
our approach in both the no-label and clean-label cases on popular
benchmark datasets using self-supervised and supervised learning.
Furthermore, we assess the efficacy of existing defenses against our
backdoor attack. The experimental results demonstrate that our ap-
proach can achieve a high attack success rate without causing sig-
nificant performance degradation on the main tasks and could evade
commonly used defense methods.
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