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Abstract. It is well known that weakly supervised semantic seg-
mentation requires only image-level labels for training, which greatly
reduces the annotation cost. In recent years, prototype-based ap-
proaches, which prove to substantially improve the segmentation per-
formance, have been favored by a wide range of researchers. How-
ever, we are surprised to find that there are semantic gaps between
different regions within the same object, hindering the optimization
of prototypes, so the traditional prototypes can not adequately repre-
sent the entire object. Therefore, we propose region-specific proto-
types to adaptively describe the regions themselves, which alleviate
the effect of semantic gap by separately obtaining prototypes for dif-
ferent regions of an object. In addition, to obtain more representative
region-specific prototypes, a plug-and-play Spatially Fused Atten-
tion Module is proposed for combining the spatial correlation and
the scale correlation of hierarchical features. Extensive experiments
are conducted on PASCAL VOC 2012 and MS COCO 2014, and the
results show that our method achieves state-of-the-art performance
using only image-level labels.

1 Introduction

The semantic segmentation task is one of the important tasks in
the field of computer vision, which have been widely used in au-
tonomous driving [10], remote sensing image interpretation [14] and
medical imaging [28], etc. Thanks to the proposal of deep convo-
lutional neural networks (CNNs), the semantic segmentation task in
fully supervised domains has made leaps and bounds. However, one
of the biggest problems in training models of fully supervised se-
mantic segmentation task is that the pixel-level labels of the dataset
depend on a large amount of human and time resources. To reduce
the workload, weak labels are introduced for weakly supervised se-
mantic segmentation (WSSS) tasks, such as bounding boxes [19],
scribbles [21], points [4], and image-level labels [2], etc. Among the
above labels, image-level labels have received a lot of favorable at-
tention due to the fact that they consume less resources and are easier
to acquire.

Most existing WSSS methods based on image-level labels are
roughly divided into three steps: 1) firstly, the initial seed region is
acquired through Class Activation Map (CAM) [36], 2) the initial
seed region is then optimized by inter-pixel feature relationships, 3)
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Figure 1. (a) Feature manifold of the discriminative region (red con-
tour lines) and sub-discriminative region (blue contour lines). Our
method adds an additional sub-discriminative region-specific proto-
type to the conventional image-specific prototype (i.e. discriminative
region-specific prototype). (b) The distribution density of activation
values within all object regions of PASCAL VOC 2012.

finally, methods such as denseCRF [16] are used to refine the edges
to obtain a refined pseudo mask. However, the initial seed region ob-
tained through CAM has the problems of insufficient foreground ac-
tivation and excessive background activation, which seriously affect
the quality of object activation.

Most of existing studies focus on the ways to improve the qual-
ity of initial seed region acquired by CAM. Some studies try to ob-
tain feature vectors that can represent the entire object region, and
introduce a new metric space that provides additional supervised in-
formation based on CAM so that the quality of object activation can
be improved. Therefore, prototypes [7, 23] are proposed, which are
defined as representative embeddings of the classes. In the inference
stage, the class to which each pixel belongs is determined by the sim-
ilarity of that pixel feature to each class of prototypes. It follows that
obtaining a more representative prototype is the key to improve the
performance of prototype-based methods.

Current prototypes can be broadly classified into two types based
on the acquisition method, one of which is generalized as class-
specific prototype [23], where the models obtain one or several pro-
totypes for each class of dataset during training. However, due to
the diversity of images, using only a small number of prototypes is
under-representative and does not guarantee the activation of all ob-
ject regions of that class in the dataset. Therefore, efforts have been
made to obtain the more representative prototypes to improve per-
formance gains. Another prototype, the image-specific prototype in
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SIPE [7], comes into being, obtaining specific prototypes for each
class of each image. Although the above prototype-based approaches
can optimize the prototype representativeness and improve the qual-
ity of object activation to a certain extent, both class-specific proto-
type and image-specific prototype obtain representative prototypes
through the features of the CAM of interest. We argue that there are
two issues with the object features used for prototype calculation:

1. There are semantic gaps between different regions within the
same object, according to Figure 1(a). As shown in Figure 1(b), we
have statistically analyzed the distribution of activation values within
all object regions of PASCAL VOC 2012, and the distribution shows
two peaks, indicating that there are two kinds of feature distribution
within the object regions (if the features are similar, the activation
values should also be similar). Therefore, it can be assumed that
the number of semantic gaps is 1. The refined prototype obtained
by expanding the initial seed region could capture the features of
sub-discriminative region. However, due to semantic gaps, the two
region features are opposite to each other for the prototype’s opti-
mization direction, which does not guarantee that the prototype fully
comprehends the semantic patterns of all regions within the object.

2. The current feature representation do not contain both spatial
correlation and scale correlation at the same time, so object features
are not global in nature. Where the lack of spatial correlation of fea-
tures makes it difficult to capture long-distance feature associations
within the image, and the lack of scale correlation of features makes
it difficult to capture correlation between feature maps, leading to
independent optimization of features in each layer. Although some
existing methods [12, 13, 15, 20] have mentioned the above two cor-
relations, the two correlations are still independent of each other.

To deal with the above issues, we propose that the obtained proto-
type can adequately represent the entire object as long as the proto-
type is unaffected by semantic gaps, and the features used for obtain-
ing prototype can adequately represent pixel information. Therefore,
in this paper, an effective model, called Region-Specific Prototype
Customization (RPC), is proposed and experimentally validated on
the Pascal VOC 2012 and MS COCO 2014 public dataset. The ex-
periment results show that pseudo masks and segmentation results
achieve state-of-the-art performance using only image-level labels.
In summary, the main contributions of this paper are as follows:

• In order to alleviate the influence of semantic gaps between differ-
ent regions and make the prototype fully comprehend the semantic
patterns of all regions within the object, the Region-Specific Pro-
totype is proposed to further adaptively describe the regions them-
selves, which obtains the most representative prototypes for dis-
criminative and sub-discriminative regions of the object, respec-
tively, on the basis of image-specific prototype.

• To further optimize the feature representation, the Spatially Fused
Attention Module (SFA Module) is proposed. This module uses
a multiplicative fusion strategy to simply and efficiently fuse the
spatial correlation and scale correlation of hierarchical features
for co-optimization, helping to obtain more representative region-
specific prototypes. And it can be plug-and-play in other models.

2 Related Work

2.1 Visual Attention Module

Initially, channel-wise attention [15] was proposed to explicitly
model the inter-dependencies between the channels of convolutional
feature to improve the representation capability of the network.
While in the field of semantic segmentation spatial correlation is

significantly more important than channel correlation, so a series of
spatial-wise attention was proposed [25, 29, 32, 35], which captures
the long-distance correlation among feature maps by calculating the
similarity between pixel features, driving the development of CNNs
in computer vision. The recent trend is Transformer [3], which com-
pletely abandons network structures, such as RNNs and CNNs, and
captures global correlation among sequences through self-attention,
greatly improving network performance and having a profound im-
pact in natural language processing and computer vision.

Compared to conventional spatial-wise attention, we additionally
consider scale correlation based on spatial-wise attention to further
model global correlation. Although the emerging self-attention in
Transformer has the ability to capture long-distance correlation, it
cannot take advantage of the priori knowledge of the image itself,
such as scale, translation invariance, etc. This leads to the fact that
the self-attention is only effective on the basis of large amount of
data. In the case of small amount of data, the proposed CNN-based
SFA module achieves better performance with fewer parameters.

2.2 Prototype-based Method

In earlier research, Cho et al. [8] use an approach similar to unsu-
pervised learning in order to mine class-specific prototypes by clus-
tering. Considering that the information interaction between images
can be utilized, Liu et al. [23] propose RPNet to explore the diversity
across image of the training set, using prototypes obtained from mul-
tiple images to reactivate unactivated regions. In order to make the
class-specific prototypes adequately represent the feature represen-
tation of the corresponding class, memory bank-based method [24]
and method based on contrast learning [9] are proposed, which sig-
nificantly improve the performance. The prototypes obtained by the
above methods represent the class centers of the entire dataset, result-
ing in unequal activation for different individual images. Therefore,
image-specific prototype [7] is proposed to adaptively describe the
image itself. However, since the region of the prototype is restricted
by the local optimum problem of CAM, and there are semantic gaps
between different regions within the object, the prototype obtained
by the previous approaches cannot fully comprehends the semantic
patterns of all regions within the object. In this circumstance, our
region-specific prototype is born.

3 Preliminary

Class Activation Map. Most of WSSS methods are based on CAM
to obtain the initial seed region. In particular, the input image is fed
into a classification network, and the CAM M = {Mc}Cc=1 over C
foreground classes can be obtained as follows:

Mc = ReLU(ωτ
cF ), ∀c ∈ C (1)

where ωc is the classification weight of class c and F is the semantic
feature from the last layer of the network.

Recently, there is an equivalent but simpler way to obtain the
CAM, as shown in Equation 2, which replace the linear layer with
the convolutional layer f . The features of the last layer F are fed
directly into the convolutional layer and then ReLU activation is
performed to obtain the CAM. The final prediction scores for each
class are obtained by global pooling CAM.

M = ReLU(f(θ, F )) (2)

Prototype. The obtained CAM is normalized and assigned as
weights to the features at the corresponding pixel positions, and the
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Figure 2. An overview of our method. There are two main components: (a) The architecture of RPC. (b) The schematic of SFA Module. In the
figure, RS Prototypes denotes Region-Specific Prototypes of discriminative regions, S-D RS Prototypes denotes Region-Specific Prototypes of
sub-discriminative regions, and RS-CAM denotes the final object activation generated by our method.

prototype is finally obtained by global weighted summation as fol-
lows:

Pc =
Σi∈ΩSi,cVi

Σi∈ΩSi,c
, ∀c ∈ C (3)

where C denotes the set of classes. Pc is the prototype representing
class c. i denotes the location of each pixel in the pixel space Ω. Si,c

denotes the activation score of class c for pixel at location i, and Vi

denotes the feature vector at that location.

4 Method

4.1 Overall Framework

As mentioned in Section 1, we find that there are semantic gaps be-
tween different regions within the same object. Based on this finding,
we propose an effective model to focus on the discriminative and sub-
discriminative regions of the object, respectively, in order to describe
the corresponding regions adaptively.

The overall framework of the proposed method can be found in
Figure 2(a). It consists of three main components: a network fo-
cusing on discriminative regions, another network focusing on sub-
discriminative regions, and an attention module (SFA Module). The
backbones of the two networks can be any CNN classifiers, such as
ResNet series, which are optimized with two classification loss func-
tions, i.e. Lcls and Laug , so that they acquire the ability to activate
the discriminative and sub-discriminative region within object. The
two activation values are used as feature weights to obtain region-
specific prototypes for the regions corresponding to the stages, re-
spectively. The similarity between the two-stage pixel features and
corresponding region-specific prototypes is calculated separately for
pixel-level prediction. The final fusion of the predictions of the two
stages is used as the final object activation RS-CAM. In addition,
General-Specific Consistency Loss (LGSC ) is utilized to minimize

the gap between the RS-CAM and CAM. Therefore, the overall op-
timized loss function can be formulated as follows:

L = Lcls + Laug + LGSC (4)

4.2 Region-Specific Prototype

Region-specific prototypes are proposed to adaptively represent the
distribution of features of discriminative and sub-discriminative re-
gions in the object respectively, alleviating the influence of seman-
tic gaps and further activating complete and accurate object regions.
To this end, an effective method (RPC) for region-specific prototype
customization is designed, as shown in Figure 2(a). In the first stage,
a region-specific prototype is obtained from discriminative region. In
the second stage, another region-specific prototype is obtained from
sub-discriminative region. Finally the two prototypes are used to co-
predict the entire object. Specifically, a given image x is fed into
backbone to obtain classification predictions and the CAM M . SFA
Module is added to the backbone after making full use of the hierar-
chical features to obtain the fused feature Fs that contains the spatial
attention of each layer. The input image x′ of the second stage is
obtained by setting a threshold value α for M to mask the discrimi-
native region according to Equation 5:

x′ = (max(M) < α) ∗ x (5)

where (·) indicates that if the foreground activation score is less than
α output 1, otherwise output 0. max(·) indicates taking the maxi-
mum value along the channel dimension. The threshold α is set to 0.7
in this paper. The mask is to erase the specific region of original im-
age according to the high response region in CAM, and still retain the
low-response region, instead of completely erasing the whole object
(it cannot erase the whole object in fact). The processes performed
on the masked image are the same as that at the first stage. Note that
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stage 2 uses an additional backbone network that does not share pa-
rameters with stage 1. Then the second stage CAM M ′ is obtained
by an additional classifier. The respective region-specific prototypes
Pc, P ′

c are customized using M , M ′ with the corresponding fused
features Fs, F ′

s as follows:

Pc = Avg_pool(Mc ∗ Fs), ∀c ∈ C (6)

P ′
c = Avg_pool(M ′

c ∗ F ′
s), ∀c ∈ C (7)

where Avg_pool(·) denotes global average pooling. Different from
image-specific prototypes and class-specific prototypes, our method
considers the semantic gaps between different regions within the
same object and focus individually on discriminative and sub-
discriminative regions. The independent optimization of region-
specific prototypes acquired in two stages alleviates the influence of
contradictory optimization directions caused by semantic gaps, en-
suring the integrity of the corresponding region activations and si-
multaneously suppressing background activations.

The final object activation RS-CAM Q is calculated by integrating
Fs, F ′

s, Pc, P ′
c as shown in Equation 8:

Q = max(Sim(Fs, Pc), Sim(F ′
s, P

′
c)) (8)

where Sim(·) denotes the similarity calculation, and cosine similar-
ity is used in this paper. Since the acquired region-specific proto-
types fully understand the semantic patterns of the respective regions
while the gap with the background features gets larger, the complete
activation of the respective regions can be guaranteed and the back-
ground activation is suppressed to refine the object edges. Through
the combination of the two predictions, the above advantages can be
integrated to obtain a more completed and accurate object activation.

4.3 Spatially Fused Attention Module

The current feature representation do not contain both spatial corre-
lation and scale correlation at the same time, resulting in features that
are not global in nature. Given that 1) the collaborative use of hier-
archical features can grasp the scale correlation and co-optimize the
features, and 2) the semantic segmentation task is a pixel-level dense
classification task, it is essential to grasp the spatial correlation. We
propose a simple but effective SFA Module to simultaneously com-
bine the spatial correlation and the scale correlation of hierarchical
features, and to optimize feature representations, customizing more
representative region-specific prototypes.

As shown in Figure 2(b), given the hierarchical features acquired
by the backbone, the spatial attention maps of each layer are ob-
tained in a simpler way to capture the spatial correlation. Specifi-
cally, as shown in Equation 9, the spatially fused attention map S is
obtained by elemental dot multiplication of spatial attention of each
layer according to the multiplicative fusion strategy. Next, it is as-
signed to the initial features, as shown in Equation 10, to obtain the
optimized features, which are finally concatenated along the channel
dimension as the final fused features Fs for subsequent calculation
of region-specific prototypes.

S =
∏

k

(ReLU(BN(fk(θk;Fk)))) (9)

S
′
k = S ∗ Fk (10)

where Fk denotes the k-th layer feature map, fk denotes the convolu-
tion operation corresponding to the k-th layer. Note that SFA Module
uses a multiplicative fusion strategy. Due to the spatial invariance of

Figure 3. Comparison of object activations generated by various ap-
proaches on the PASCAL VOC 2012 public dataset.

Table 1. The mIoU (%) of pseudo masks generated by various ap-
proaches and that after refinement with denseCRF on the training set
of the PASCAL VOC 2012.

Method Pub. Local.Maps +denseCRF

SCE [5] CVPR 20 50.9 55.3
SEAM [30] CVPR 20 55.4 56.8
EDAM [33] CVPR 21 52.8 58.2

AdvCAM [18] CVPR 21 55.6 62.1
ECS [27] ICCV 21 56.6 58.6
CSE [17] ICCV 21 56.0 62.8

VWL-M [26] IJCV 22 56.9 62.6
VWL-L [26] IJCV 22 57.3 63.0

SIPE [7] CVPR 22 58.6 64.7
RPC (Ours) 60.5 70.5

the convolution operation, the features at the same spatial location in
each layer correspond to each other, so the attention of each layer can
be fused by multiplying the corresponding elements. In contrast to
the unfused and additive fusion strategies, the multiplicative fusion
strategy can capture scale correlation and co-optimize the parame-
ters of each layer [31]. In particular, according to the chain rules, the
gradient of an individual layer is not independent, but interacts with
the other layers. In this case, when one layer fails to capture a better
representation, it can affect the optimization of the remaining layers,
thus co-optimizing the parameters of each layer.

5 Experiments

In this section we introduce the details of our experiments. We first
present the experimental settings and then compare our method with
the state-of-the-art methods on the PASCAL VOC 2012 [11] and MS
COCO 2014 [22]. Then series of ablation experiments are conducted
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Table 2. The mIoU (%) of segmentation results on the Pascal VOC
2012 validation set and test set.

Method Pub. Backbone Val Test

SCE CVPR 20 ResNet101 66.1 65.9
SEAM CVPR 20 ResNet38 64.5 65.7
EDAM CVPR 21 ResNet38 66.6 67.6

AdvCAM CVPR 21 ResNet101 68.1 68.0
CSE ICCV 21 ResNet38 68.4 68.2

RPNet CVPR 22 ResNet101 68.0 68.2
SWP [34] ICASSP 22 ResNet101 66.1 -
VWL-M IJCV 22 ResNet101 68.7 69.2
VWL-L IJCV 22 ResNet101 69.2 69.2

SIPE CVPR 22 ResNet38 68.2 69.5
SIPE CVPR 22 ResNet101 68.8 69.7

RPC (Ours) ResNet38 69.5 69.6

RPC (Ours) ResNet101 70.7 71.2

Table 3. The mIoU (%) of segmentation results on the MS COCO
2014 validation set.

Method Pub. Backbone Val

SEAM CVPR 20 ResNet38 31.9
CSE ICCV 21 ResNet38 36.4

RPNet CVPR 22 ResNet101 38.6
VWL-M IJCV 22 ResNet101 36.1
VWL-L IJCV 22 ResNet101 36.2

SIPE CVPR 22 ResNet38 43.6
SIPE CVPR 22 ResNet101 40.6

RPC (Ours) ResNet38 43.0

RPC (Ours) ResNet101 44.5

to demonstrate the effectiveness of the proposed method. And finally
comparison experiments on the number of Region-Specific Proto-
types, different combination of feature layers and the setting of mask
threshold determine the optimal parameters for the model. Note that
the mean intersection over union (mIoU) is used as a metric to evalu-
ate segmentation results in the same way as other semantic segmenta-
tion methods and Local.Maps is the quality of the object localization
map. The results for the PASCAL VOC 2012 test set are obtained
from the official evaluation server. The experiments in sections 5.3 -
5.6 are conducted on the Pascal VOC 2012 dataset.

5.1 Experimental Settings

The proposed RPC model uses ResNet50 with ImageNet initializa-
tion as the backbone network, where the fully connected layers are
replaced with convolutional layers. In the training stage, the model
is trained with a batch size of 16, and for 5 epoches on RTX 3090,
using SGD optimizer with a momentum of 0.9 and a weight decay of
1e-4. The initial learning rate is set to 0.1, and gradually decays with
the use of the Poly strategy.

5.2 Comparison Experiment

5.2.1 Improvement of Pseudo Masks

A qualitative comparative analysis of the visualized object activa-
tions is performed as shown in Figure 3, showing that the object
activations obtained by RPC are significantly more completed and
accurate, with better activations in some sub-discriminative regions
and finer boundaries. In addition, a quantitative comparison of model
performance is performed using the mIoU metric. As shown in Table

Table 4. Effect of the main contributions.

CAM RS Prototype SFA Module Local.Maps (%)

� 50.1
� � 60.0
� � 59.8
� � � 60.5

Table 5. Comparison of different attention modules.

Method Local.Maps (%) Parameters

Spatial-wise attention 59.0 3.584K
Self-attention 58.2 6.878M

SFA Module (Ours) 59.8 3.584K

1, RPC outperforms other approaches by improving the mIoU of the
pseudo masks from 58.6% to 60.5%. The mIoU of the pseudo masks
optimized with denseCRF is also improved from 64.7% to 70.5%.
The above analyses demonstrate that the quality of the pseudo masks
generated by RPC on the training set with denseCRF optimization
reaches state-of-the-art performance and even outperforms the re-
sults of the remaining approaches using IRNet [1]. In contrast to
other approaches, the performance improvement of RPC is greater
when pseudo masks are optimized through denseCRF. Since it ac-
tivates more object regions and the boundaries of the activation re-
gions are closer to the ground truth, as shown in Figure 3, it is eas-
ier to achieve the best results with optimization. The above effect
is attributed to the optimized feature representation by SFA Module,
and to the alleviation of semantic gaps effects through region-specific
prototype.

5.2.2 Improvement of Segmentation Results

To further validate the effectiveness of the model proposed in this
paper, we train the Deeplabv2 [6] using the generated segmentation
pseudo masks and compare the results with other state-of-the-art ap-
proaches on the validation and test set of Pascal VOC 2012, as well
as the validation set of MS COCO 2014. The comparison of the seg-
mentation results in Figure 4 shows that our method performs ex-
tremely well, close to the ground truth, benefiting from alleviating
the effect of semantic gaps and fully exploring the entire region of
the object. As shown in Table 2 and Table 3, using ResNet101 as the
Deeplabv2 backbone, our method achieves 70.7% mIoU in the Pascal
VOC 2012 validation set and 71.2% mIoU in the test set with only
image-level labels, 1.5% higer than the result of SIPE. In addition,
our method achieves 44.5% mIoU in the MS COCO 2014 validation
set, 0.9% higer than the result of SIPE. The above results verify the
effectiveness of our RPC model.

5.3 Ablation Experiments

5.3.1 Region-Specific Prototype

The ablation experiment is conducted on the region-specific proto-
type, as shown in Table 4, showing that the mIoU of object activation
can be improved to 60.0%. The activations of two stages are visual-
ized and compared, as shown in Figure 5. Two benefits of region-
specific prototypes can be identified: 1) At each stage, the respective
regions are fully explored due to mitigating the influence of seman-
tic gaps. As in the case of the horse in the figure, the head and body
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Figure 4. Segmentation results on the PASCAL VOC 2012 and MS COCO 2014 validation sets.

Figure 5. Comparison of object activations in each stage of RPC.

Figure 6. Comparison of object activations for removing and adding
SFA Module.

parts are activated in the first stage, the limbs are activated in the sec-
ond stage, and the final object activation obtained by fusion covers
the entire object region. 2) Since the prototype adaptively describe
the region itself, it is more representative, thus suppressing the back-
ground activation and making the edge activation more refined. In
summary, the proposed region-specific prototype alleviates the influ-
ence of semantic gaps and improves the quality of object activation.

Figure 7. Object activation of the k-th prototype (for comparison, we
have added the 3-rd region-specific prototype).

5.3.2 SFA Module

In order to optimize the feature representation, the SFA module is in-
troduced to co-optimize the features of each layer. As shown in Table
4, our SFA module can improve the mIoU score up to 60.5% on the
basis of region-specific prototype. In addition, a visualization com-
parison analysis of SFA Module in Figure 6 shows that SFA Mod-
ule combines the spatial correlation and the scale correlation of hier-
archical features and customize more representative region-specific
prototypes, allowing full exploration of structurally similar regions
(e.g., body parts of sheep). It also suppresses false activation of the
background, enabling finer prediction of edges (e.g., back edges of
sheep). To further demonstrate the advancement of SFA Module over
existing attention mechanisms, such as spatial-wise attention and
self-attention in Transformer, we conducted the comparison exper-
iments in Table 5. Compared to spatial-wise attention, SFA Module
improves the quality of object activation by 0.8% without increas-
ing the number of parameters. Although the number of parameters
in SFA Module is only 0.05% of that in self-attention, SFA Mod-
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Table 6. Comparison experiment of adding SFA Module or region-
specific prototype to different baselines.

Baseline Original (%) +SFA Module (%) +RS Prototype (%)

RPNet 50.8 53.2 (2.4 ↑) 53.7 (2.9↑)
SIPE 58.6 59.8 (1.2 ↑) 60.0 (1.4↑)

Table 7. Comparison experiment of the number of Region-Specific
Prototypes.

The number of RS Prototypes Local.Maps (%)

1 58.6
2 60.0

3 58.0

ule improves the quality of object activation by 1.6%. The above
experiment results show that our SFA Module could achieve better
performance with fewer parameters.

5.3.3 Plug-and-play

To further validate the effectiveness of the region-specific proto-
type and the plug-and-play performance of SFA Module, we con-
duct comparison experiments on two baselines, such as RPNet [23]
and SIPE [7], as shown in Table 6. The quality of object activation
is improved after inserting SFA Module or Region-Specific Proto-
type, and the mIoU is improved by 2.4%, 2.9% on RPNet and 1.2%,
1.4% on SIPE, respectively. The above experiment results show that
not only the SFA module can be introduced to any network, but also
region-specific prototype can optimize other prototype-based model.

5.4 The Optimal Number of Region-Specific
Prototypes

The optimal number of region-specific prototypes is determined by
conducting comparative experiments for region-specific prototype,
as shown in Table 7. The best performance of 60.0% is achieved
when the number of region-specific prototypes is 2. To facilitate un-
derstanding, the object activation for the k-th (k = 1, 2, 3) proto-
types is visualized in Figure 7. It is obvious that the 2-nd region-
specific prototypes can further activate sub-discriminative regions
compared to the first, while the 3-rd region-specific prototypes over-
activate the background without significantly improving the activa-
tion of the second. It is can be explained as follows: when the num-
ber is 1, a single region-specific prototype cannot fully comprehend
the semantic patterns of all regions within the object due to the se-
mantic gap, resulting in insufficient activation. While when the num-
ber is 3, the 3-rd prototype will contain background noise owing to
the uncertainty of the erasure method, which will over-activates the
background, leading to the decrease in performance.

Therefore, combining the above analysis with Figure 1, we can
determine the number of semantic gaps within the object as 1 and set
the number of region-specific prototypes to 2, thus conforming to the
cognitive model of regional features and alleviating the influence of
semantic gaps to achieve the best performance.

Table 8. The comparison experiments of the feature layers selected
by SFA module.

layer1 layer2 layer3 layer4 Local.Maps (%)

� 58.7
� � 58.8

� � � 59.8

� � � � 59.0

Table 9. Comparison experiments of mask threshold setting.

α 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Local.Maps (%) 57.0 58.0 58.8 59.8 60.0 59.9 59.7

5.5 Effective Combination of Feature Layers in SFA
Module

A comparative experiment is designed for SFA Module to verify
which combination of features is the most suitable. As shown in Ta-
ble 8, the best performance is achieved by combining layer 2-4, with
an mIoU metric of 59.8%, outperforming other feature combinations
such as layer 4, layer 3-4, and layer 1-4. We explain this by the fact
that the features of layer 1 contain more background noise than the
features of the other layers, so that the spatial attention obtained from
them is less correct, which will introduce errors in the feature fusion
process and lead to hindering the optimization of the features of the
remaining layers. When using features combined from layer 2-4, the
semantic information contained in the deep features and the struc-
tural information contained in the shallow features can be optimally
fused so that the feature representation can be optimized to the max-
imum extent.

5.6 Mask Threshold

In order to explore the effect of mask threshold α as a hyperpa-
rameter, we perform comparison experiments on various threshold
settings for region-specific prototype, as shown in Table 9. When
the mask threshold is set to 0.7, its object activation has the high-
est quality of 60.0%. Furthermore, it is evident that the proposed
region-specific prototype is not sensitive to the threshold value, that
is, when α varies in the range of 0.6 to 0.9, the model performance
only changes slightly. The above results show that the effectiveness
of region-specific prototype is not limited by the setting of α, which
is a significant reason why the region-specific prototype can be di-
rectly used to optimize other prototype-based methods.

6 Conclusion

In this paper, the RPC model is proposed in the field of WSSS. The
region-specific prototypes are proposed to adaptively describe dis-
criminative and sub-discriminative regions themselves respectively,
which alleviates the effect of semantic gaps and motivates the model
to fully explore the corresponding regions so as to explore integral
object. To obtain more representative region-specific prototypes, the
SFA Module is additionally introduced to optimize the feature repre-
sentation. Extensive experiments have been conducted for validation,
and the results show that RPC achieves state-of-the-art performance
with only image-level labels.
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