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Abstract. Visual question answering (VQA) is a crucial yet chal-
lenging task in multimodal understanding. To correctly answer ques-
tions about an image, VQA models are required to comprehend the
fine-grained semantics of both the image and the question. Recent
advances have shown that both grid and region features contribute
to improving the VQA performance, while grid features surprisingly
outperform region features. However, grid features will inevitably
induce visual semantic noise due to fine granularity. Besides, the ig-
norance of geometric relationship makes VQA models difficult to
understand the object relative positions in the image and answer
questions accurately. In this paper, we propose a visual enhancement
network for VQA that leverages region features and position infor-
mation to enhance grid features, thus generating richer visual grid
semantics. First, the grid enhancement multi-head guided-attention
module utilizes regions around the grid to provide visual context,
forming rich visual grid semantics and effectively compensating for
the fine granularity of the grid. Second, a novel geometric percep-
tion multi-head self-attention is introduced to process two types of
features, incorporating geometric relations such as relative direction
between objects while exploring internal semantic interactions. Ex-
tensive experiments demonstrate that the proposed method can ob-
tain competitive results over other strong baselines.

1 Introduction

Visual question answering (VQA) is a challenging task of multi-
modal learning to bridge vision and language. With the advancement
of deep learning technology, the accuracy of VQA has improved dra-
matically, which makes it popular in many realistic scenarios, such
as blind assistance, autonomous driving, and other fields.

VQA generally answers questions based on visual clues extracted
from images according to the semantic information of the corre-
sponding questions. Existing approaches commonly leverage deep
learning models to extract image and language features, and perform
multimodal feature fusion to correlate the question with critical im-
age regions using attention mechanisms to answer the question accu-
rately. Recently, the attention mechanism is widely applied in VQA
tasks leading to more accurate answers [2, 5, 36, 38]. As an advanced
representative, Transformer [32] relies entirely on attention mecha-
nisms to draw global dependencies between input and output. Many
VQA paradigms with Transformer are proposed and achieve excel-
lent performance.

Most existing VQA models emphasize the following challenges.
The first challenge is how to extract precise visual information from
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a given image, which has prompted researchers to explore more ro-
bust semantic representations of images. Pre-trained Convolutional
Neural Networks (CNNs) are used to extract image features [3] pre-
viously, which only capture general information about images and
limit the performance of VQA. In [2], bottom-up attention is pro-
posed to provide image features based on Faster R-CNN [31], which
helps to identify crucial regions in an image. This approach has been
widely used in subsequent works. Moreover, well pre-trained grid
features show strong descriptive capabilities in VQA and image cap-
tioning [13].

To get more expressive visual information, the integration of mul-
tiple visual sources are utilized in recent studies. A multimodal mul-
tiplicative feature embedding scheme [24] is proposed to merge free-
form image regions, detection boxes, and question representations.
While it does not consider the relationship between visual features
comprehensively. Some research [14, 27, 34] incorporate segmenta-
tion features, OCR features or object attributes and relationship to
provide a comprehensive visual-linguistic view of the input image.
However, these models mostly focus on the region features. The com-
bination of grid features, which perform excellently in VQA is less
studied especially the problem of the semantic inconsistency [22] and
spatial misalignment.

The second challenge is how to explore and leverage the spatial
relationship between objects effectively. Spatial information, such as
object position, relative size, and relative direction, is critical for a
comprehensive understanding of visual content. Many VQA studies
[38, 43] mainly consider the semantic correlation between visual ob-
jects which brings low visual reasoning capabilities, particularly for
questions related to spatial relations. To deal with the problem, some
work [9, 20, 33] encodes bounding box position, size, and other in-
formation into image features and has achieved improvement. But
it perceives relative direction or absolute position information alone
which results in a significant limitation.

Grid features and region features are independently explored to
deal with the aforementioned challenges. Despite the success, there
are still limitations. Although grid features perform well in VQA,
they introduce visual semantic noise after global interaction and fail
to focus on critical visual information due to fragmentation. While
widely applied region features concentrate on objects, whose seman-
tic information is intensive, they cannot cover the whole image or
describe the global scene comprehensively. The two types of visual
features complement each other’s information, and they should be
effectively integrated into a unified framework. In this paper, we pro-
pose a visual enhancement network for VQA that accurately locates
and enriches target objects by leveraging region features and geomet-
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rical visual relations to augment grid features during the fusion of
vision and language features. Our proposed network consists of four
modules: a self-attention module (SA), a grid enhancement module
(GE), a geometric perception module (GP), and a guided-attention
module (GA). The SA module captures the dependencies of words in
the question and regions in the image respectively. The GE module
augments the grid features with region features to exploit visual in-
formation at different granularities. The GP module extends the SA
module to model the geometric relationship between input objects
explicitly and efficiently. Finally, the GA module uses the question
to guide the image to focus on areas relevant to it.

The contributions of this paper can be summarized as follows:

• We propose a grid enhancement multi-head guided-attention (GE-
MGA), which utilizes regions around the grid to provide visual
context for it. The coarse-grained and fine-grained information
complement each other to provide rich visual grid semantics for
answer inference.

• A novel geometric perception multi-head self-attention (GP-
MSA) is introduced to improve image comprehension ability by
exploiting geometric relationship such as absolute position and
relative direction.

• By combining the two modules and applying them to the VQA
network, the visual enhancement network (VE) is proposed. Ex-
tensive experiments on the VQA-v2 dataset demonstrate that
our network can obtain competitive results compared with other
strong baselines.

2 Related Work

2.1 Visual Question Answering

Visual question answering (VQA) aims to answer questions based
on images and corresponding questions. It is commonly treated as a
classification task with fixed categories [3, 33]. With the rapid devel-
opment of VQA, various benchmark datasets [1, 3, 12, 15, 19, 30]
and methods [6, 10, 36, 37, 38, 41, 43] have been proposed suc-
cessively. Previous studies have thoroughly explored feature fusion
methods [41], moving beyond simple mechanisms like concatena-
tion, element-wise multiplication, and element-wise addition. Mul-
timodal compact bilinear pooling model [6], multimodal low-rank
bilinear pooling model [17], multimodal factorized bilinear pooling
model [39] and multimodal factorized high-rank pooling model [40]
have been proposed, which not only capture the complex interac-
tion information between multimodalities but also reduce the num-
ber of model parameters. Attention mechanisms have been proven to
be valid in various tasks, such as machine translation [4] and image
captioning [9]. Several studies have explored attention mechanisms
for VQA, including the early attention method [24, 36] by stacking
multi-step visual attention and using questions to identify question-
relevant regions in images, co-attention method [23, 38] for simul-
taneous visual and text feature attention learning, and relation atten-
tion method [5, 20] modeling explicit and implicit relations between
regions through graph attention mechanism. With the popularity of
Transformer networks [32], recent advances in VQA benefit from
stacking multiple attention layers, such as bilinear attention layers
[16], self-attention layers [37, 43], to capture the relationship both
within and across modalities.

2.2 Visual Feature

The exploitation of visual features of an image is crucial to the ac-
curacy of modern VQA models. There are typically three types of
visual features, namely: global features, region features, and grid fea-
tures. Global features are obtained through a conventional CNN net-
work to encode the images [26, 28]. They fail to capture details and
local information in the image. After the innovative proposal of the
combined bottom-up and top-down attention mechanism [2], region
features are widely used in VQA, which precisely locate objects and
provide rich visual representations, such as categories and attributes.
In [13], researchers revisit grid features as an alternative to the widely
used bottom-up region features for vision and language tasks, skip-
ping all the region-related steps in the existing VQA pipeline and
using C5 output of the adapted ResNet backbone as grid convolu-
tion features. Their experiments show that grid features can perform
better than region features in less inference time.

2.3 Visual Relationship Modeling

Some recent works focus on the detection and simulation of visual
relationship. Visual relations represent interactions between objects,
which are essential for locating targets by contextual information.
Existing VQA approaches implement visual relationship modeling
through implicit relationship and explicit relationship. Implicit rela-
tionship [5, 38] is captured by the attention module, or higher-order
interactions on fully connected graphs. Explicit relationship refers
to geometric positions and semantic interactions between objects.
Previous methods [9, 25, 37] measure geometric relationship, con-
sidering distance and scale. However, they ignore relative direction,
which is essential for object localization and relationship understand-
ing. Other works [20] model spatial and semantic relations using
bounding boxes and object features. But they ignore the absolute
position, which is helpful to distinguish two objects with the same
appearance at different locations in an image. In contrast to these
works, we consider both absolute positions and relative directions to
model complex visual and position relationship between input fea-
tures comprehensively and accurately.

3 Method

As shown in Figure 1, our visual enhancement (VE) visual question
answering model consists of three main components: visual and tex-
tual representation (Section 3.1), VE network (Section 3.2), and an-
swer reasoning (Section 3.3). In the following, we elaborate on these
three components sequentially.

3.1 Visual and Textual Representation

By considering each visual object vi in the image and word wi in
a question as a node, we can construct a fully-connected undirected
graph G = (V, E), where E is the set of K × (K − 1) edges. Each
edge represents an implicit semantic and explicit geometric relation-
ship, which consists of the weights assigned to each edge by graph
attention.

Node V is composed of visual features (containing regions Vr

and grids Vg) and textual features Q. Following [2, 13], we use
pre-trained Faster R-CNN [31] model with ResNeXt backbone to
identify a set of objects Vr = {vr

i }Mi=1, where vr
i ∈ R

dv rep-
resents the visual feature vector of i-th object. Meanwhile, each
visual object corresponds to a position information vector bri =
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Figure 1. The overall architecture of our proposed visual enhancement network. The input image and question are first represented as a series
of region features, grid features, and word embeddings in the visual and textual representation module. Our proposed visual enhancement
network consists of Ne encoder layers and Nd decoder layers. The encoder layer encodes question textual features through the self-attention
module (SA). The decoder layer obtains enhanced grid features through the geometric perception module (GP) and grid enhancement module
(GE), and uses the guided-attention module (GA) to guide to focus on visual information related to the question. Finally, the answer classifier
is used to fuse two high-level semantic vectors into one vector for answer prediction.

(xmin, ymin, xmax, ymax) ∈ R
4, where xmin and ymin correspond

to top left coordinates, as well xmax and ymax denote bottom right
coordinates respectively.

Grid features Vg = {vg
i }Ni=1 are extracted from ResNeXt [13],

where vg
i ∈ R

df is the representation of the i-th grid, and N is the
number of grid features. We view the grid as a special kind of bound-
ing box, so each grid feature can also calculate the corresponding
position vector bgi = (xmin, ymin, xmax, ymax) ∈ R

4.
For the textual representation of the question, we use LSTM [11]

to generate context-aware embedding for each word, denoted as Q =
{wi }Li=1, where i-th word is formulated as wi ∈ R

dq . L is the
length of the question.

3.2 Visual Enhancement Network

Our proposed VE network adopts an encoder-decoder structure by
stacking Ne encoder layers for modeling interactions between tex-
tual features and Nd encoder layers for processing visual features
and cross-modal alignment. The encoder layer consists of the self-
attention module (SA), and the decoder layer consists of the grid
enhancement module (GE), the geometric perception module (GP),
and the guided-attention module (GA).

3.2.1 Self-Attention Module

We compute the implicit relationship between text pairs and visual
object pairs separately based on multi-head self-attention in [38]. It
consists of h identical heads, and each attention head i takes query
Qi = QWQ

i , key Ki = KWK
i and value Vi = V W V

i as input.
WQ

i , WK
i and W V

i are the projection matrices for the i-th head. We

adopt a scaled dot product function to calculate the correlation score
Ei, and apply a softmax function to obtain the attention weights on
the values. This process is visualized as Figure 2(a). The output of
each head is computed as follows:

Ei =
QiK

T
i√

dk
, (1)

headi = Att(Qi,Ki,Vi) = Softmax(Ei)Vi. (2)

The output of all heads is concatenated and multiplied with a
learned projection matrix WO:

MSA(Q,K,V ) = [head1, head2, ..., headh]W
O. (3)

When we set the inputs Q, K and V to the same Q = {wi }Li=1,
it forms the SA module used in our network. In addition, residual
connection and layer normalization are applied to facilitate optimiza-
tion. (They are also used in the GE, GP, and GA modules. For sim-
plification, we provide a detailed elaboration only in this section and
omit the explanation in the other three modules.) The output question
features Q̃l of the l-th layer can be calculated by:

Ql =LayerNorm
(
Q̃l−1 + MSA(Q̃l−1WQ

l−1,

Q̃l−1WK
l−1, Q̃

l−1W V
l−1)

)
,

(4)

Q̃l = LayerNorm
(
Ql + FeedForward(Ql)

)
, (5)

FeedForward(Ql) = ReLU(QlW1 + b1)W2 + b2, (6)

where FeedForward(·) consists of two fully-connected layers with
ReLU activation. WQ

l−1,W
K
l−1,W

V
l−1 ∈ R

dq×dq , W1 ∈ R
dq×(4dq)

and W2 ∈ R
(4dq)×dq are learnt parameter matrices.
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3.2.2 Grid Enhancement Module

In VQA, both grid features and region features contain information
about objects in an image, but they have different characteristics of
their own. Grid features may introduce visual semantic noise after
global interaction due to fine granularity and fragmentation. Region
features locate objects accurately and provide rich visual semantics.
Therefore, combining grid features with region features will obtain
comprehensive and accurate object information, thus improving per-
formance.

We use improved visual attention called grid enhancement multi-
head guided-attention (GE-MGA) to achieve enhanced grid features.
The main idea of it is to find, for each grid feature, the regions with
which it has positional overlap. The input is a set of region features
and grid features, and the output is a set of enhanced grid features.
The module consists of the following steps.

As shown in the middle part of Figure 2(b), we construct an in-
teraction matrix G, indicating the existence of implicit relationship
between grids and regions, which is calculated based on the relative
geometric position. G consists of binary numbers. Gmn is set to 1
when the m-th grid and n-th region coincide, and 0 otherwise.

A segmentation function is used to calculate the corresponding at-
tention weight Emn between < vg

m,vr
n > when the Gmn value is 1,

which means that the m-th grid and the n-th region have an inter-
section. Otherwise, we set the attention weight to negative infinity.
GE-MGA can be obtained by:

Emn =

⎧⎨
⎩

QmKn
T√

dk
, Gmn = 1

−∞, Gmn = 0,
(7)

headi = GE-Att(Qi,Ki,Vi) = Softmax(Ei)Vi, (8)

GE-MGA(Q,K,V ) = [head1, head2, ..., headh]W
O. (9)

We can compute the enhanced grid features V̂g , which are the out-
put of the GE module in Figure 1, as follows:

V̂g = GE-MGA(V̄g, V̄r, V̄r), (10)

where V̄g and V̄r are the grid features and region features produced
by the GP module mentioned in Section 3.2.3.

To sum up, the enhanced grid features incorporate the information
of the region features. We calculate the attention weights of the re-
gion features corresponding to each grid feature with trade-offs, so
the method can remove the redundant portion of the vision effectively
and add truly helpful object information to the grid.

3.2.3 Geometric Perception Module

We construct the geometric perception multi-head self-attention (GP-
MSA) incorporating position information based on the SA module.
It introduces absolute position information and relative position re-
lationship. We use a hybrid encoding approach to combine relative
position encoding and absolute position encoding. This module pre-
serves both relative position information and absolute position infor-
mation between visual elements. Specifically, the module is divided
into two stages: geometric transformation and feature aggregation.

In the geometric transformation stage, we first process the absolute
position of the original visual features. For the i-th region feature,
we perform a simple position encoding of its bounding box bri =
(xmin, ymin, xmax, ymax):

posi
r = briWemb, (11)

(a) (b)

Figure 2. Illustration of the different attention modules. (a) Initial
scaled dot-product attention in multi-head self-attention (MSA). (b)
Scaled dot-product attention with the interaction matrix G in the grid
enhancement module (GE) and position encodings in the geometry
perception module (GP).

where posi
r ∈ R

dm is the encoded absolute position feature, and
Wemb ∈ R

4×dm is a learnable parameter.
For each grid, we encode its absolute position in the whole image

as a vector, using the same sine and cosine embedding methods for
positional encoding as in [32], as follows:{

PE(pos, 2t) = sin(pos/100002t/(dm/2))

PE(pos, 2t+ 1) = cos(pos/100002t/(dm/2)),
(12)

posi
g = [PEm,PEn], (13)

where pos is the position and t is the dimension. m and n represent
the row and column index of the i-th grid respectively. posi

g ∈ R
dm

is a concatenation of PEm ∈ R
dm/2 and PEn ∈ R

dm/2, which
represents the absolute position encoding of grid features.

In order to better integrate the relative position encoding of visual
features, our method calculates it based on the geometric structure of
the bounding boxes. According to bi = (xmin, ymin, xmax, ymax),
the width wi and height hi can be calculated. For i-th object and j-th
object, their relative geometric space relationship is expressed as a
five-dimensional vector as:

Ω(i, j) =
(
log(

|xi − xj |
wi

), log(
|yi − yj |

hi
),

log(
wi

wj
), log(

hi

hj
), log(rij)

)
,

(14)

where the fifth of these terms represents relative direction encoding
to enhance the orientation perception of the image. We will elaborate
on it in the following exposition.

4k unit direction vectors are predefined in the two-dimensional
space, where each vector represents a direction category. We inscribe
direction vectors in the rectangular coordinate system when k adopts
various values, as shown in Figure 3. The i-th unit direction vector is
denoted as:

αi = (cos(
iπ

2k
), sin(

iπ

2k
)), i ∈ {0, 1, . . . , 4k − 1}. (15)
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Figure 3. Examples of unit direction vectors for k = 1, 2, 3.

With the position coordinates of the m-th bounding box and the n-
th bounding box, we can calculate the relative direction vector vmn.
The relative relationship category rmn is calculated by the cosine
similarity algorithm between vmn and αi:

vmn = (
xm − xn√

(xm − xn)2 + (ym − yn)2
,

ym − yn√
(xm − xn)2 + (ym − yn)2

),
(16)

rmn = argmax
i

vmn ·αi

‖vmn‖ · ‖αi‖ . (17)

We map Ω(i, j) into the higher dimensional space by the embed-
ding method in [32], and feed it into a linear layer to transform it into
a scalar, which describes the geometric relationship between the two
visual areas:

Ω(i, j) = ReLU(Emb(Ω(i, j)WG). (18)

In the feature aggregation stage, we revisit SA for visual features
by integrating the absolute position embedding and relative geomet-
ric information obtained above respectively. We add the correspond-
ing absolute position information posq and posk to query Q and
key K, and integrate the relative geometric relations Ω after multi-
plying them together. GP-MSA is calculated as:

E =
(Q+ posq)(K + posk)

T

√
dk

+ log(Ω), (19)

headi =GP-Att(Qi,Ki,Vi,posqi,poski,Ωi)

=Softmax(Ei)Vi,
(20)

GP-MSA(Q,K,V ,posq,posk,Ω)

= [head1, head2, ..., headh]W
O.

(21)

The grid features V̄g incorporating geometric information, which
are the output of the GP module in Figure 1, can be obtained by:

V̄g = GP-MSA(Vg,Vg,Vg,posg,posg,Ωg). (22)

The region features V̄r are calculated in the same way as V̄g . In
addition, the GE module can complement the geometric information
between grids and regions in a similar way to perceive the spatial
relationship between them, with absolute position encodings posr

and posg and relative position encoding Ωgr , as shown in the yellow
part of Figure 2(b). Specifically, Eq. 7 is modified to:

Emn =

⎧⎨
⎩

Q′
mK′

n
T√

dk
+ log(Ωmn), Gmn = 1

−∞, Gmn = 0,
(23)

Q′
m = Qm + posm

q , (24)

K′
n = Kn + posn

k . (25)

In summary, the GP module computes absolute position embed-
dings and relative position relationship of bounding boxes and grid
coordinates through geometric transformation and incorporates them
into GP-MSA through feature aggregation.

3.2.4 Guided-Attention Module

The guided-attention module establishes a connection between the
two modalities, text and vision, guiding the image to focus on the
regions which are relevant to the question. A set of visual features V̂g

and text features Q̃ are inputs. We denote the output attended visual
features as Ṽg , which are the output of the GA module in Figure 1.
GA module computes the pairwise relationship of samples < v̂g

i , w̃i

> by multi-head guided-attention (MGA):

Ṽg = MGA(V̂g, Q̃, Q̃) = MSA(V̂g, Q̃, Q̃). (26)

3.3 Answer Reasoning

According to the VE network, we obtain visual features Ṽg and text
features Q̃ with rich information after the image object and sen-
tence word attention interactions. Motivated by the multimodal fu-
sion module in [38], we use the soft attention mechanism to calculate
the aggregated features ṽ as:

α = Softmax(MLP(Ṽg)), (27)

ṽ =
N∑
i=1

αiv
g
i . (28)

q̃ is computed in the same way as ṽ. ṽ and q̃ are fused into a
unified representation z by multimodal fusion function as follows:

z = LayerNorm(W T
v ṽ +W T

q q̃), (29)

where Wv and Wq represents two trainable projection matrices. The
role of LayerNorm is to stabilize the training.

The fused feature z ∈ R
dz is fed to a fully connected layer and

sigmoid activation function to generate the predicted answer vector
s ∈ R

N , where N is the number of answers. We use binary cross-
entropy loss (BCE) to train the model.

4 Experiments

In this section, we perform experiments to demonstrate the perfor-
mance of the VE network proposed in this paper on the largest VQA
benchmark dataset, VQA-v2 [8], and compare it with state-of-the-art
methods to validate its effectiveness in VQA.

4.1 Experimental Settings

4.1.1 Datasets

The commonly available large benchmark dataset VQA-v2 is con-
structed based on MSCOCO [21] images. Each image corresponds
to three questions and each question corresponds to ten answers.
The dataset has about 1105904 VQA examples, of which 443757,
214354, and 447793 examples are used for training, validation, and
testing respectively. In addition, two test subsets, including test-dev
and test-std, are provided for online testing to evaluate performance.
To measure the overall accuracy, three types of answers are consid-
ered: Number, Yes/No, and Other. Compared with VQA-v1, the dis-
tribution of the dataset is more balanced.
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Table 1. Performance comparisons on the val, test-dev, and test-std splits of the VQA-v2 dataset. We compare the VE network with state-of-
the-arts, including attention-based methods, graph-based methods, fusion-based methods, methods that introduce position information, etc.
The top two best results are highlighted in bold.

Val Test-dev Test-std

Method All Y/N Num Other All Y/N Num Other All

UpDn [2] 63.15 80.07 42.87 55.81 65.32 81.82 44.21 56.05 65.67
Dual-MFA[24] 59.82 - - - 66.01 83.59 40.18 56.84 66.09
BAN [16] 66.04 - - - 70.04 85.42 54.04 60.52 70.35
DFAF [7] 66.66 - - - 70.22 86.09 53.32 60.49 70.34
ReGAT [20] 65.30 - - - 70.27 86.08 54.42 60.33 70.58
MCAN [38] 67.20 84.80 49.30 58.60 70.63 86.82 53.26 60.72 70.90
AGAN [42] 67.38 - - - 71.16 86.87 54.29 61.56 71.50
MCAN(Grid) [13] - - - - 72.59 88.46 55.68 62.85 -
MMNAS[37] 67.80 85.10 52.10 58.90 71.24 87.27 55.68 61.05 71.46
APN[35] 67.38 84.99 49.71 58.66 71.14 87.44 52.68 61.18 71.33
LENA [10] 66.59 84.35 48.71 57.79 70.31 86.63 54.26 60.22 70.48
TRAR [43] 67.70 85.20 49.60 - 72.62 88.11 55.33 63.31 72.93

MHAFN [41] - - - - 71.54 87.31 53.65 62.13 71.65
CFR [27] 69.70 - - - 72.50 - - - -

Ours(VE) 69.58 86.42 53.10 61.14 73.55 88.80 57.56 64.14 73.68

4.1.2 Implementation Details

To extract grid features and region features, we use the improved
Faster R-CNN model with ResNeXt-152 backbone [2, 13] pre-
trained on the Visual Genome dataset [19]. For region features, we
use zero-padding to fill the number of detected objects M to 100
if there are less than 100 candidate objects. For grid features, we
average-pool them to 7 × 7 grid size, setting N to 49. For text fea-
tures, we trim the input question to a maximum of 14 words and
generate 300-dimensional word embeddings from pre-trained GloVe
[29]. The word embeddings are fed into the LSTM network [11] to
extract the final question features.

The framework is implemented by PyTorch. The dimensions of
the input region feature dv , grid feature df , question feature dq , and
fused multimodal feature dz are 2048, 2048, 512, and 1024 respec-
tively. The number of unit direction vectors is 8, which means k is
2. The number of heads in multi-head attention is 8. Similar to the
strategy in [38], the size of the answer vocabulary is 3129. The num-
ber of encoder layers Ne and decoder layers Nd are set to 6 and 3.
We train our VE network up to 15 epochs with batch size 64. For
model training, we use Adam optimizer [18] with β1 = 0.9 and
β2 = 0.98. The base learning rate is set to 1.25e−5 and increases
to 5.0e−5 linearly during the first epoch and the fourth epoch and
maintains 5.0e−5. After ten epochs, it decays to 1/5 of its original
value every two epochs.

4.2 Experimental Results

To demonstrate the effectiveness of our VE network for VQA,
we compare it with some state-of-the-art methods. In Table 1, our
proposed method achieves highly competitive performance, with
69.58%, 73.55%, and 73.68% overall accuracy on the val, test-dev,
and test-std set of the VQA-v2 dataset.

Table 1 shows the results of the val (left column) and test-dev and
test-std splits (middle and right columns) in the VQA-v2 dataset.
Specifically, Dual-MFA [24] uses a common attention mechanism
to fuse the free-form image regions and detection boxes associated
with the input question, lacking a comprehensive consideration of
the relationship between visual features. By augmenting the grid fea-
tures with region features, the VE network outperforms it by 7.54%
and 7.59% on the test-dev and test-std sets, respectively. LENA

Table 2. Performance comparisons of ablation experiments on the val
and test-dev splits of VQA-v2 dataset. "R" denotes only region fea-
tures are used, "G" denotes only grid features are used, and "G+R"
means both are used. "GE" and "GP" represent our proposed grid en-
hancement module and geometric perception module, respectively.

Val Test-dev

Method All Y/N Num Other All Y/N Num Other

Base(R) 68.81 85.95 50.40 60.65 72.39 88.13 54.88 62.91
Base(G) 68.38 85.72 50.24 60.00 72.16 88.14 54.08 62.61
Base(G+R)+GE 69.29 86.23 51.71 61.06 73.20 88.81 56.19 63.73
Base(G)+GP 68.52 85.68 51.61 59.94 72.51 88.27 55.05 63.00
Base(G+R)+GE+GP 69.58 86.42 53.10 61.14 73.55 88.80 57.56 64.14

[10] proposes a focusing mechanism to eliminate visual-semantic
redundancy and performs vision-semantic compositionality model-
ing of multiple visual features. MCAN [38] and MCAN(Grid) [13]
are Transfomer-based co-attention networks, which utilize differ-
ent types of image features, namely regions, and grids, respectively.
They stack SA and GA layers and achieve dense interaction of visual
and linguistic modalities. VE network outperforms them by 3.24%,
2.92%, and 0.96% on the test-dev set, respectively, indicating that our
enhanced visual features have more adequate visual semantics. Re-
GAT [20] and MMNAS [37] explore position relationship between
object pairs to enhance feature learning, but do not take absolute po-
sition information and relative orientation into account. On the test-
dev set, the VE network outperforms them by 3.28% and 2.31%, re-
spectively. TRAR [43], CFR [27] and MHAFN [41] are recent VQA
models, and we outperform them, demonstrating the strengths of our
VE network.

4.3 Ablation Study

We perform an ablation study to verify the effectiveness of each
proposed component of the whole model. The results are shown in
Table 2. "Base(R)" indicates the base model with region features,
which consists of the self-attention module for the question and im-
age and the guided-attention module for the image. "Base(G)" in-
put grid features on the base model. "Base(G+R)+GE" adds the
grid enhancement module proposed in section 3.2.2 in addition
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(a) (b) (c) (d) (e) (f)

Figure 4. Visualization of some typical examples from the val set of VQA-v2 dataset. For each example, we show the original image, the given
question (Q), and the ground-truth answer (A). We also display the learned visual attention map, where the highlighted object receives a higher
attention weight and the predicted answer (P_A) below the attention map. The second row is the result of the "Base(G)" model described in
Section 4.3. The third row is the result of our VE network.

to "Base(G)". "Base(G)+GP" incorporates the geometric percep-
tion module proposed in section 3.2.3 on the basis of "Base(G)".
"Base(G+R)+GE+GP" represents the complete VQA network, which
combines the grid enhancement module and geometric perception
module.

"Base(G+R)+GE" outperforms "Base(R)" and "Base(G)" sig-
nificantly, demonstrating the effectiveness of the grid enhance-
ment module, which augments grid features with region fea-
tures and take advantage of different granularities of visual in-
formation. "Base(G)+GP" performs better than "Base(G)", because
the introduction of position information in the grid features can
help focus on the objects and answer position-related questions.
"Base(G+R)+GE+GP" outperforms "Base(G+R)+GE" by combining
absolute position encoding and relative position information for re-
gion and grid features. It models the geometric relationship of in-
put objects and grids explicitly and efficiently. We replace GP with
other geometric relation calculations in [20] and obtain the result of
69.11% on the val split, confirming the superiority of our GP mod-
ule. The final complete model "Base(G+R)+GE+GP" achieves the
best performance, indicating that the two modules can provide con-
sistent improvements, using enhanced grid features and geometric
information to provide adequate evidence for VQA.

4.4 Qualitative Analysis

We visualize some attention maps generated by our model in Fig-
ure 4 and present six examples from the val set. The first row repre-
sents the original image, the corresponding question, and the ground-
truth answer. The second row represents the attention map and pre-
dicted answer obtained by the "Base(G)" model described in Section
4.3, and the third row is obtained by our proposed VE network. The
green box represents the correct predicted answer, and the red rep-
resents the wrong. Figure 4(a) and 4(b) show the cases where the
correct answer is generated with both models, but our model focuses
on the more appropriate regions that help to answer the question. In

the samples of Figure 4(c) and 4(d), our VE network produces the
correct answers "brown" and "1". The grid features enhanced with
regions contain the surrounding information, which not only suffi-
ciently exploits the characteristic of grid features to pay attention to
details, but also incorporates the advantage that region features can
accurately identify targets in images. It generates a rich visual con-
text. Taking Figure 4(c) as an example, it can be observed that this
enhancement mechanism causes the model to notice vital cues about
"shoes". The questions in Figure 4(e) and 4(f) are related to relative
orientation, for instance, "on the right" and "in front of", our GP mod-
ule captures the position relationship and identifies objects precisely,
generating answers "yellow" and "curtains". When answering such
questions, our network takes the spatial relationship between objects
into account, while other methods fail.

5 Conclusion

In this paper, we propose a visual enhancement network to boost
VQA which includes two main modules, grid enhancement multi-
head guided-attention (GE-MGA) and geometric perception multi-
head self-attention (GP-MSA). GE-MGA augments the grid with
its surrounding regions and generates accurate visual grid semantics
with visual context, which effectively solves the semantic noise issue
caused by fragmented grid features. Meanwhile, GP-MSA integrates
geometric position information to help the model understand spa-
tial relationship between objects. Extensive experiments prove that
both the GE-MGA and GP-MSA deliver competitive performance
improvements.
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