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Abstract. Phylogenetic trees are essential in studying evolution-
ary relationships, and the Robinson-Foulds (RF) distance is a widely
used metric to calculate pairwise dissimilarities between phyloge-
netic trees, with various applications in both the biology and com-
puting communities. However, generating a precise RF distance ma-
trix becomes difficult or even intractable when tree information is
partially missing. To address this issue, we introduce a novel dis-
tance correction algorithm for estimating the RF distance matrix of
incomplete phylogenetic trees. Our method innovatively harnesses
the assumption of Euclidean embedding, correcting an approximate
distance matrix into a valid distance metric, guaranteed to be closer
to the unknown ground-truth. Despite its simplicity, our approach
exhibits robust performance, efficiency, and scalability in empirical
evaluations, outperforming classical distance correction algorithms
and holding potential benefits in downstream applications. Our code
is available at https://github.com/CUHKSZ-Yu/EMC.

1 Introduction

Phylogenetic trees play a crucial role in biology as they provide
a visual representation of evolutionary relationships among vari-
ous biological entities through an acyclic graph with labeled leaves.
Effective use of such trees in practical applications, including su-
pertree construction [13, 21, 30], phylogenetic database searching
[26, 37, 38], and gene tree clustering [1, 35, 41], requires distance
calculation across trees. Several distance measures have been devel-
oped to systematically compare different phylogenetic trees, with the
most popular distance metric being the Robinson-Foulds (RF) dis-
tance [29]. Other essential distance metrics include quartet distance
[8], nearest neighbor interchange distance [18], and subtree-prune-
and-regraft operations [33]. These tree distance measures facilitate
accurate and efficient analysis of evolutionary relationships between
biological entities represented by phylogenetic trees.

Calculating pairwise tree distance traditionally presupposes that
two trees share identical leaf sets. When trees have non-identical leaf
sets, two pre-processing techniques can be used: restriction on shared
leaf sets [10] and completion on total leaf sets [3, 40]. While compre-
hensive research exists on complete phylogenetic trees with full label
information, the comparison of two incomplete trees with unknown
leaf labels, illustrated in Fig. 1, remains a substantial challenge in
phylogenetics and evolutionary biology, particularly when consider-
ing uncertainty and noise. Despite its importance, this problem has
received relatively little attention, necessitating further exploration to
improve the accuracy of phylogenetic tree analysis.
∗ Corresponding Author. Email: wyli@cuhk.edu.cn.

In this study, we focus on estimating a high-quality distance met-
ric using the widely used RF distance measure for incomplete phylo-
genetic trees. Conventionally, completion techniques are deployed to
address missing labels by exploring every permutation of these labels
to minimize the distance between two incomplete trees. However,
these methods heavily rely on the tree structure and leaf information,
and they can be computationally demanding and impractical for large
leaf sets due to the vast search space. Alternatively, pairwise distance
estimation approximates the distance between two incomplete trees
by treating known leaf positions as complete trees, but this approach
might produce a non-metric distance matrix that falls short of sat-
isfying metric properties like triangle inequalities. Consequently, the
difficulties imposed by incomplete observations and metric requisites
render this problem challenging to solve.

To provide a dependable solution, we suggest a fundamentally
different approach, i.e., matrix correction. Rather than completing
the missing information, we initiate with an approximate estimation
of the tree distance matrix, subsequently correcting it to fulfill cer-
tain metric properties [7, 15, 25, 34]. Specifically, our work utilizes
the property of Euclidean embedding [32] and ingeniously devises a
novel matrix correction method [24]. Under a very mild assumption,
the corrected matrix is proven to be closer to the unknown ground-
truth with a solid guarantee. Aligned with the theoretical observa-
tion, our method demonstrates better efficiency and effectiveness
than classical correction methods [7, 15] in empirical evaluations and
has promising potential to enhance downstream applications.

In short, our motivations and contributions are listed as follows:

• [Motivation] Our work is motivated by the practical problem of
estimating tree distances for incomplete phylogenetic trees. To ad-
dress this issue, we develop a new distance correction method and
validate its performance on a widely used RF distance metric, pro-
viding practical tools and useful insights to both the biology and
computing communities.

• [Innovation] We engineer a universal and completion-free strat-
egy that directly corrects RF distance matrices by leveraging Eu-
clidean embedding and optimization techniques. Compared with
the standard completion and correction methods, our proposed ap-
proach is fundamentally different and provides a theoretically re-
liable estimate of the unknown ground-truth.

• [Performance] Simple yet efficient, our approach excels in empir-
ical evaluations of RF distance estimation, achieves an improved
estimate over classical methods with better scalability and stabil-
ity, and showcases its valuable impact in downstream applications,
such as distance denoising and tree clustering.
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Figure 1. Two-step approximation of the pairwise Robinson-Foulds (RF) distance for incomplete phylogenetic trees. Step I is to restrict the incomplete
trees T1, T2 on commonly known leaves. Step II is to compute the RF distance on the shared leaf sets. Eq. (2) gives the approximated RF distance d0RF(T1, T2).

2 Background

2.1 The Robinson-Foulds (RF) Distance

The RF distance [29] is a standard metric for comparing phyloge-
netic trees, which can be computed in linear time in the size of leaf
sets [27]. Given a phylogenetic tree T , let E(T ) be the edge set
and L(T ) be the set of leaf labels. In this paper, all phylogenetic
trees considered are rooted leaf-labeled binary trees with l leaves,
whose leaves are uniquely labeled with integers from 1 to l, i.e.,
L(T ) = {1, 2, . . . , l}. Denote B(T ) as the set of all bipartitions
producible by removing any edge e ∈ E(T ). For any phylogenetic
trees Ti and Tj on the same label set, the RF distance is defined as
the size of the symmetric difference between the sets of bipartitions:

dRF(Ti, Tj) = |B(Ti)⊕B(Tj)|, (1)

where the symmetric difference defined on two sets X and Y is X⊕
Y = (X\Y )∪ (Y \X) and thus |X ⊕Y | = |X|+ |Y | − 2|X ∩Y |.

The pairwise distance computation for a set of complete phylo-
genetic trees is quite straightforward. Meanwhile, the RF distance
matrix calculated by Eq. (1) is shown to be a distance metric [29]. In
particular, a distance metric is defined as a matrix D ∈ R

n×n satis-
fying dii = 0, dij = dji ≥ 0, dij ≤ dik + dkj , ∀ 1 ≤ i, j, k ≤ n.
However, for a set of incomplete phylogenetic trees, calculating the
accurate pairwise distance becomes infeasible due to unknown la-
bels. The approximation has to be sought, and the most straightfor-
ward way is to first restrict the incomplete trees on commonly known
leaves. Then the pairwise distance between these two pruned com-
plete trees with the same tree structure can be computed by Eq. (1)
on shared known label sets. As shown in Fig. 1, the approximate dis-
tance for the two incomplete trees can be reasonably defined as

d0ij = d0RF(Ti, Tj) = dRF(T̃i, T̃j) · |L(Ti)|
|L(T̃i)|

. (2)

Unfortunately, the approximate RF distance matrix D0 = {d0ij}ni,j=1

may no longer satisfy the criteria of a distance metric and often
breaches some triangle inequalities due to the incomplete label infor-
mation, which motivates us for further correction and improvement.

2.2 Distance Metric Correction

Significant advancements [2, 28, 31] have been made in the comput-
ing community towards correcting a non-metric distance to a high-
quality metric distance. Notably, two classical strategies, each em-
ploying distinct optimization techniques, are taken into account.

The first strategy involves the correction of the non-metric dis-
tance matrix D0 to ensure the satisfaction of all triangle inequalities.
This process is referred to as the metric nearness model [7, 25] and
is formulated as:

min
D∈Rn×n

‖D −D0‖2F , (3)

subject to dii = 0, dij = dji ≥ 0, dij ≤ dik + dkj for all 1 ≤
i, j, k ≤ n, which seeks the closest distance matrix in the metric
space as the optimal approximation.

Modern optimization solvers such as CPLEX and MOSEK can be
used to solve this strongly convex problem [5] in Eq. (3) , but they
only work on a small scale. Besides, the Triangle Fixing (TRF) algo-
rithm [7] was proposed to efficiently iterate over the triangle inequal-
ities based on a primal-dual method. Despite the partial progress, the
scalability of these solutions is severely limited by a large number of
O(n3) triangle inequality constraints inherent in the feasible region.

The second strategy aims to correct the non-metric distance ma-
trix into a Euclidean distance matrix (EDM) [20]. An EDM is de-
fined as a n× n real symmetric (squared) matrix that guarantees the
existence of x1, · · · , xn in a Euclidean space and satisfies

dij = ‖xi − xj‖22, ∀ 1 ≤ i, j ≤ n. (4)

Intrinsically, the square root of the EDM naturally satisfies the trian-
gle inequalities, thereby becoming a valid distance metric. A well-
known property provides a sufficient and necessary condition [17]:

Lemma 1. D ∈ R
n×n is an EDM if and only if S = − 1

2
JDJ is

positive semi-definite (PSD), where J = I − 1
n
11� is the centering

matrix with an identity matrix I and a vector of ones 1.

In general, these EDM-based methods [15, 28] initially convert
the non-metric squared distance matrix D to the similarity matrix
S = − 1

2
JDJ by the Double-Centering (DC) algorithm [15]. They

then execute truncation operations on the eigenvalues of S to ensure
the positive semi-definiteness of the matrix S. The similarity ma-
trix is finally reverted to the distance matrix, resulting in an EDM
and laying the foundation for the multi-dimensional scaling (MDS)
method [36]. It can be seen that both matrices D and S are closely
related to each other, however, the conversion between D and S may
be inaccurate, and significant information could be lost by simply
truncating the negative eigenvalues [15].

Straightforward as they are, both correction strategies have certain
limitations, including high computational complexity, limited scala-
bility, and low accuracy, which potentially hinder their wide applica-
tions in practice.
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3 Methodology

Our proposed approach [24] stands apart from previous work by de-
veloping a brand-new framework that utilizes the powerful embed-
ding property of Euclidean space. Leveraging this, we formulate a
new matrix correction problem and adopt an efficient alternating pro-
jection algorithm [12] to obtain the optimal solution with a robust
theoretical guarantee. Through the development of a unique method-
ology, we have created a highly effective strategy that marks a sub-
stantial leap forward from existing works.

3.1 Embedding Technique

Our approach [24] differs from the classical strategy of assuming a
Euclidean distance matrix (EDM). Instead, we adopt a more flexible
assumption: the distance matrix can be isometrically embedded in
Euclidean space given an underlying data representation in the vector
space. To be specific, we introduce a definition that allows for greater
adaptability in our approach:

Definition 1. A distance matrix D = {dij}ni,j=1 ∈ R
n×n is said

to be isometrically embeddable in Euclidean space if there exists a
set of data points {x1, . . . , xn} in the vector space with a distance
function ρ, having the properties that ρ(xi, xi) = 0 and ρ(xi, xj) =
ρ(xj , xi) ≥ 0 for all points xi and xj in the set, such that

dij = ρ(xi, xj), ∀ 1 ≤ i, j ≤ n.

It is worth noting that the squared Euclidean distance used in the
EDM-based strategy is actually a specific instance of the generalized
distance function ρ, where ρ(xi, xj) = ‖xi − xj‖22. Our approach,
based on isometrical embedding, enables us to utilize Schoenberg’s
characterization [32], a classical result [39] that provides an equiva-
lent transformation for isometrically embeddable matrices:

Lemma 2. D = {dij}ni,j=1 ∈ R
n×n is isometrically embeddable in

Euclidean space if and only if the kernel matrix K = exp(−γD) =
{exp(−γdij)}ni,j=1 is positive semi-definite for any γ > 0.

Similar to the EDM-based strategy, we establish a connection be-
tween the distance matrix D and kernel matrix K. This enables us
to formulate the matrix correction problem in a natural way, thereby
promoting efficient application of our method.

3.2 Distance Correction Algorithm

Given a non-metric distance matrix D0, we naturally aim to correct it
to an isometrically embeddable distance matrix D̂ that better approx-
imates the true pairwise distances between the data points. Thus, we
utilize the approach [24] with the following optimization problem:

min
D∈Rn×n

‖D −D0‖2F , (5)

subject to the constraints:⎧⎪⎨⎪⎩
dii = 0, ∀ 1 ≤ i ≤ n,

dij = dji ≥ 0, ∀ 1 ≤ i 
= j ≤ n,

exp(−γD) � 0,

where � 0 denotes the positive semi-definiteness (PSD), and the
PSD constraint ensures the corrected matrix is isometrically embed-
dable. Unfortunately, solving the above-defined optimization prob-
lem is challenging due to the PSD constraint in exponential form.

To address this issue, we change the decision variable from D to
K = exp(−γD) and reformulate the problem in a more tractable
form under an efficient approximation:

min
K∈Rn×n

‖K −K0‖2F , (6)

subject to the constraints:⎧⎪⎨⎪⎩
kii = 1, ∀ 1 ≤ i ≤ n,

kij = kji ∈ [0, 1], ∀ 1 ≤ i 
= j ≤ n,

K � 0.

We define the feasible region in Eq. (6) as C, a closed convex set,
from which the optimal solution K̂ is the projection of K0 onto the
set C. Consequently, the optimal embeddable matrix is derived as
D̂ ≈ − 1

γ
log(K̂) with γ = 0.02

max{d0ij}
(default value in [24]).

Performing a direct projection from K0 onto C is complex and
computationally demanding. However, the elegant structure of this
reformulation leads us to the well-established Alternating Projection
algorithm [16] from the optimization community. In this context, the
feasible region C can be seen as the intersection of two less complex,
closed convex subsets C1 and C2:{

C1 = {X ∈ R
n×n|X � 0},

C2 = {X ∈ R
n×n|xii = 1, xij = xji ∈ [0, 1], for all i, j}.

The optimal solution K̂ can subsequently be efficiently computed by
iteratively projecting K0 onto C1 and C2, with assured convergence
[9]. Denote P1 and P2 as the projection onto C1 and C2, respectively:{

P1(K) = U{max{Σij , 0}}ni,j=1V
�,

P2(K) = {median{0, kij , 1}}ni,j=1.

where UΣV � gives the singular value decompostion (SVD) of K.
We employ Dykstra’s alternating projection algorithm [12, 22, 23,

42] to find the optimal solution, expressed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X
(t)
0 = X

(t−1)
2 ,

Z = X
(t)
i−1 + Y

(t−1)
i ,

X
(t)
i = Pi(Z),

Y
(t)
i = Z − Pi(Z),

(7)

for i = 1, 2 and t = 1, 2, · · · , where Y
(0)
1 = Y

(0)
2 = 0, X

(0)
2 =

K0, and 0 is an all-zero matrix of suitable size. Based on the Boyle-
Dykstra convergence result [6], both {X(t)

1 } and {X(t)
2 } generated

by Eq. (7) converge in the Frobenius norm to the unique optimal
solution K̂ of minK∈C=C1∩C2 ‖K −K0‖2F .

In such cases, our new matrix correction problem in Eq. (5) is
solved efficiently with guaranteed and fast convergence, the details
of which are summarized in Algorithm 1.

3.3 Theoretical Analysis

Performance Guarantee. Beyond the guaranteed convergence de-
scribed earlier, our proposed approach also offers a compelling theo-
retical guarantee [24] regarding the correction performance, as cap-
tured in Theorem 1. Essentially, if the initial estimate D0 is not iso-
metrically embeddable, our algorithm can enhance it to a superior
one, denoted by D̂, closer to the unknown ground-truth D∗.
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Algorithm 1 Embedding-based Matrix Correction (EMC)

Input: D0 ∈ R
n×n: a real symmetric non-metric matrix; maxiter:

maximum of iterations; γ: hyper-parameter (default 0.02
max{d0ij}

);

tol: tolerence (default 10−5).
Output: D̂ ∈ R

n×n: optimal corrected distance metric.
1: Set K0 = exp(−γD0), Y

(0)
1 = Y

(0)
2 = 0, X

(0)
2 = K0.

2: for t = 1, 2, . . . ,maxiter do

3: X
(t)
0 ← X

(t−1)
2 .

4: for i = 1, 2 do

5: Z ← X
(t)
i−1 + Y

(t−1)
i ;

6: X
(t)
i ← Pi(Z);

7: Y
(t)
i ← Z − Pi(Z).

8: end for

9: if ‖X(t)
1 −X

(t−1)
1 ‖F < tol then

10: break

11: end if

12: end for

13: Set K̂ = X
(t)
1 , D̂ = − 1

γ
log(K̂).

Theorem 1. Let D0 be the initial non-metric matrix, D̂ be the cor-
rected distance matrix obtained from Eq. (5), D∗ be the unknown
ground-truth assumed to be isometrically embeddable, then we have

‖D∗ − D̂‖2F ≤ ‖D∗ −D0‖2F .

Proof. Denote by D∗ the true but unknown metric and K∗ =
exp(−γD∗). It can be observed that K∗ ∈ C and K∗ satisfies

‖K∗ − K̂‖2F ≤ ‖K∗ − K̂‖2F − 2〈K∗ − K̂,K0 − K̂〉
≤ ‖(K∗ − K̂)− (K0 − K̂)‖2F
= ‖K∗ −K0‖2F ,

(8)

where 〈A,B〉 = trace(ATB) is an inner product defined on the
closed convex set C and the first "≤" holds due to Kolmogrov’s cri-
terion [11, 24]. When γ = ε

max{d0ij}
and ε is sufficiently small, we

can employ the Taylor-series expansion of exponential data to derive:{
kij = exp(−γdij) = 1− γdij +O(ε2),

k0
ij = exp(−γd0ij) = 1− γd0ij +O(ε2).

Next, we connect the elements between D and K:

(dij − d0ij)
2 =

1

γ2
(kij − k0

ij)
2 +O(ε2),

which means

‖D −D0‖2F =
1

γ2
‖K −K0‖2F +O(ε2).

For a sufficiently small ε, the inequality in Eq. (8) is equivalent to

‖D∗ − D̂‖2F ≤ ‖D∗ −D0‖2F , (9)

where “=” holds if and only if D̂ = D0.

Complexity Analysis. The per-iteration time complexity of Algo-
rithm 1 is O(n3), mainly derived from the singular value decompo-
sition (SVD) in the projection operation P1. This can be expedited
further using a randomized SVD [19] or parallel SVD [4]. The stor-
age complexity is O(n2) to store the whole distance matrix.

Algorithm Extensions. We can augment our work further through
two types of scalable extensions. (i) A divide-and-conquer strategy
can be utilized to break a large n × n matrix into smaller principal
sub-matrices, thereby approximating the projection result. (ii) Dyk-
stra’s projection could be transformed into a cyclic projection [14]
on multiple closed convex subsets using a dual-primal method with
a faster convergence rate. These techniques can significantly reduce
the time and space complexity of the algorithm, thereby improving
its execution speed and scalability.

Application Scopes. Our method offers a general approach for
distance correction, applicable to tree distance, Euclidean distance,
and other distance metrics, extending its scope significantly. In this
work, we focus on the RF distance, a commonly utilized metric for
tree comparison, applicable not only to phylogenetic trees but also
to binary trees. We anticipate that the more accurate distance metrics
corrected by our method could enhance distance-based algorithms in
downstream applications, such as tree clustering and tree retrieval.

4 Experiments

To evaluate the effectiveness of the proposed method, we carry out a
series of empirical studies focusing on:

• the quality of the corrected distance matrix from incomplete phy-
logenetic trees;

• the noise reduction effect on the noisy RF distance matrix;
• the improvement in sensitivity and scalability;
• the benefit for the tree clustering application.

We compare our proposed Embedding-based Matrix Correction
algorithm, referred to as EMC, with two widely used correction al-
gorithms in practice: the Triangle Fixing (TRF) algorithm [7] and
the Double-Centering (DC) algorithm in tandem with clip-operation
[15]. The specifics of these baseline methods, which represent two
classical correction strategies — the metric nearness strategy and the
EDM-based strategy respectively, are detailed in Section 2.2. All ex-
periments are conducted five times using MATLAB on a ThinkSta-
tion P360 workstation equipped with a 2.1 GHz Intel i7-12700 Core
and 32 GB of RAM.

4.1 Correction on Incomplete Trees

We apply the proposed approach to dealing with incomplete phylo-
genetic trees with some unknown leaf labels. As depicted in Fig. 1,
the pairwise RF distance for two incomplete trees is initially approx-
imated by Eq. (2) through pruning and restricting operations. How-
ever, due to incomplete observation, the approximate distance matrix
usually fails to satisfy metric properties, which is supposed to be a
metric through correction methods for downstream applications.

In this experiment, we randomly generate a set of n complete
phylogenetic trees {T ∗

1 , T
∗
2 , . . . , T

∗
n} on the same label set L =

{1, 2, . . . , l} with the same tree structure. Accordingly, we gener-
ate the set of incomplete phylogenetic trees {T 0

1 , T
0
2 , . . . , T

0
n} by

removing the label information of leaves completely at random for a
given missing ratio r varying from 40% to 80%. The RF distance ma-
trix D∗ ∈ R

n×n calculated by the set of complete trees is regarded
as the ground-truth, which is definitely a distance metric. The RF dis-
tance matrix D0 ∈ R

n×n approximated from incomplete trees1 is set
as our input matrix, which usually dissatisfies the metric properties.

1 Note that for any two incomplete trees T 0
i , T

0
j with no common known

labels, d0RF(T
0
i , T

0
j ) = |L(T 0

i )|+ |L(T 0
j )| = 2l.
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Table 1. Distance metric correction for incomplete phylogenetic trees. Given a set of n incomplete phylogenetic trees with l leaves and a missing ratio r,
the proposed EMC approach obtains the smallest Mean Squared Error (MSE), showing evident superiority over baselines. Best results are highlighted in bold.

Missing
Ratio r

# leaves l = 10 l = 20

# trees n = 100 n = 200 n = 500 n = 1, 000 n = 100 n = 200 n = 500 n = 1, 000

40%

D0 166.6± 1.5 167.8± 0.9 168.2± 0.3 168.5± 0.1 705.0± 8.6 712.8± 2.2 713.0± 1.4 713.3± 0.4

DC 280.4± 1.9 522.4± 2.5 1064.1± 0.8 1728.3± 1.1 701.4± 6.0 1490.0± 4.6 3337.8± 2.4 5693.9± 7.2

TRF 81.9± 1.7 81.6± 0.5 81.1± 0.4 81.0± 0.1 418.1± 9.7 422.9± 2.4 418.5± 2.1 418.2± 0.4

EMC 53.2± 2.0 57.8± 1.0 64.0± 0.4 68.6± 0.2 314.5± 10.0 333.6± 3.4 355.9± 1.8 373.2± 0.4

60%

D0 220.6± 1.4 221.3± 0.4 222.3± 0.2 222.5± 0.1 1148.9± 2.4 1155.5± 3.0 1157.8± 0.7 1158.2± 0.4

DC 189.9± 8.3 348.9± 4.8 659.1± 2.8 1002.5± 0.8 973.4± 16.3 1216.4± 21.9 2836.6± 9.3 4894.1± 6.8

TRF 160.7± 3.3 158.7± 0.7 159.4± 0.5 161.6± 0.2 899.3± 8.5 899.8± 6.9 896.5± 1.4 913.0± 0.8

EMC 140.3± 3.8 147.3± 1.1 156.7± 0.5 159.3± 0.2 808.9± 5.9 849.3± 7.2 887.6± 1.3 895.1± 0.9

80%

D0 107.2± 0.8 106.5± 0.3 105.8± 0.4 105.3± 0.1 791.4± 2.5 805.9± 4.1 806.3± 3.0 807.3± 0.8

DC 27.5± 0.5 35.3± 0.3 39.3± 0.5 40.7± 0.1 491.1± 11.2 882.5± 12.5 1544.6± 15.8 2065.9± 8.1

TRF 37.7± 1.2 36.9± 0.2 36.3± 0.2 36.1± 0.1 398.5± 4.2 409.6± 3.2 405.2± 2.8 405.1± 0.9

EMC 21.5± 1.2 20.7± 0.4 22.0± 0.3 23.1± 0.1 263.0± 1.6 286.6± 4.9 302.4± 3.1 312.0± 1.0

Finally, we correct D0 to D̂ by different approaches, and calculate
the Mean Squared Error (MSE) from the ground-truth D∗ as the
evaluation metric:

MSE =
1

n2

∑
1≤i,j≤n

(D̂ij −D∗
ij)

2.

We evaluate all methods on our synthetic tree dataset under various
settings, i.e., the number of leaves l, number of trees n, and miss-
ing ratio r. The average performance is reported in Table 1, demon-
strating that our EMC method consistently outperforms the baseline
methods in all experiments, achieving a lower MSE.

Performance Comparison. As Table 1 reveals, both the TRF and
EMC methods provide improved results with smaller MSEs than D0.
In contrast, the DC method, which lacks a guarantee, occasionally
exhibits an MSE exceeding 1,000. This could occur when, particu-
larly for large matrices, the naïve truncation of negative eigenvalues
leads to the loss of relevant information, resulting in poorer distance
estimation. Our EMC approach, on the other hand, offers a superior
solution grounded on a more robust embedding property, guarantee-
ing performance instead of relying on the Euclidean distance matrix.

Effect of Tree Settings. Analyzing different tree settings, we ob-
serve that (i) with an increasing size n of the tree sets, the TRF and
EMC methods exhibit stable performance, while the MSE of the DC
method significantly escalates; (ii) with a larger size l of leaf sets, the
correction algorithms face greater challenges, potentially leading to
higher MSEs; (iii) with a higher missing ratio r (e.g., 80%), the ele-
ment D0

ij approaches to the upper bound 2l, and D0 may be closer to
the ground-truth D∗ and leaves a smaller room for further correction,
resulting in lower MSEs.

In short, the proposed EMC method achieves consistently superior
results on the MSE evaluation, with no assumptions on the missing
ratio or mechanism, which justifies its effectiveness on distance esti-
mation for incomplete phylogenetic trees.

4.2 Correction on Noisy Tree Distance

In real-world scenarios, there commonly exists noise or error during
the distance measurement, as well as incompleteness in label sets
due to data corruption. The provided distance matrix with noisy ob-
servation also faces the similar challenge of not meeting the metric
properties, which is another application scenario for matrix correc-
tion algorithms in noisy tree distance.

In each run of this experiment, we randomly generate a set of n
complete phylogenetic trees as described in Section 4.1. Then, we
calculate the RF distance matrix D∗ on the complete tree set as the
ground-truth. Next, we add Gaussian noise to obtain a noisy distance
matrix D0 whose elements are given by

d0ij = max{0, d∗ij + ζμv},

where ζ denotes the noise level ranging from 0.4 to 0.8, μ is the
mean of all elements in D∗, and v ∼ N(0, 1) is a standard Gaussian
random variable. Take D0 as our input. We correct D0 by differ-
ent correction algorithms and also record the average of the Mean
Squared Error (MSE) over five runs.

Similar to the results in Table 1, the proposed correction approach
reports significantly improved MSE results in Table 2. With different
noise levels ζ varying from 0.4 to 0.8, both TRF and EMC correction
approaches consistently reduce the MSE values over the approximate
matrix D0 across all settings, between which the proposed EMC ap-
proach performs better. More detailed, we can see that the EMC ap-
proach brings significant drops in the MSE from the ground-truth
D∗, reducing even more than 90% error when ζ = 0.6 or 0.8. In
contrast, the corrected matrices from the DC approach always per-
form worse than D0, and MSE values even exceed 10,000, which
indicates the corrected distance value is far away from the ground-
truth and is unsuitable for noise reduction tasks.

All the results, although preliminary, clearly justify the benefits of
the proposed approach and demonstrate its high potential in practical
tasks at the noisy tree distance.

4.3 Sensitivity Analysis

We conduct a sensitivity analysis experiment on the synthetic tree
dataset with varying missing ratios and noise levels. We vary r in
[20%, 80%] and ζ in [0.2, 0.8] to examine how the correction perfor-
mance changes. In addition to the MSE, we also assess performance
using another evaluation metric, the Mean Absolute Error (MAE),
defined as

MAE =
1

n2

∑
1≤i,j≤n

|D̂ij −D∗
ij |.

It is evident from the results in Fig. 2 that our EMC method’s per-
formance consistently outperforms other correction methods under
various settings. The robust performance across a wide range of pa-
rameter settings validates the effectiveness of our proposed approach.
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Table 2. Noise reduction on noisy Robinson-Foulds distance matrix under Mean Squared Error (MSE) measure on different tree settings (i.e., n trees with
l leaves) and various noise levels ζ. The proposed EMC approach shows significant improvement on MSE in all experiments, which also justifies the theoretical
guarantee provided in Theorem 1. The best performances are highlighted in bold.

Noise
Level ζ

# leaves l = 10 l = 20

# trees n = 100 n = 200 n = 500 n = 1, 000 n = 100 n = 200 n = 500 n = 1, 000

0.4

D0 37.6± 0.1 38.3± 0.0 38.6± 0.0 38.7± 0.0 197.9± 0.1 201.5± 0.0 203.1± 0.0 203.4± 0.0

DC 232.4± 1.1 449.1± 0.9 942.2± 0.7 1564.5± 0.3 1191.7± 2.4 2311.8± 1.1 4874.3± 1.3 8108.6± 0.7

TRF 20.5± 0.1 19.9± 0.0 20.1± 0.0 20.3± 0.0 108.3± 0.1 104.7± 0.0 105.6± 0.0 106.5± 0.0

EMC 5.8± 0.0 3.5± 0.0 2.0± 0.0 1.5± 0.0 30.6± 0.1 17.0± 0.0 8.5± 0.0 5.6± 0.0

0.6

D0 81.1± 0.2 80.9± 0.0 80.9± 0.0 80.9± 0.0 426.7± 0.1 425.5± 0.1 425.6± 0.0 425.6± 0.0

DC 604.0± 1.7 1044.0± 1.3 1990.5± 0.8 3143.4± 0.8 3141.7± 1.7 5438.3± 2.3 10381.5± 0.5 16405.3± 1.4

TRF 34.2± 0.1 32.8± 0.0 32.6± 0.0 32.5± 0.0 179.1± 0.1 171.6± 0.0 170.7± 0.0 169.9± 0.0

EMC 7.9± 0.1 4.9± 0.0 3.0± 0.0 2.3± 0.0 39.6± 0.0 23.3± 0.0 12.6± 0.0 8.7± 0.0

0.8

D0 127.2± 0.4 129.0± 0.0 129.1± 0.0 129.8± 0.0 669.4± 0.2 678.3± 0.2 678.9± 0.0 682.4± 0.0

DC 1071.7± 5.2 1824.3± 1.3 3358.7± 0.6 5199.3± 1.0 5594.4± 2.3 9526.4± 2.3 17567.6± 1.6 27200.5± 2.3

TRF 49.2± 0.2 49.2± 0.0 47.2± 0.0 47.3± 0.0 257.1± 0.1 257.3± 0.1 246.8± 0.0 247.0± 0.0

EMC 11.7± 0.1 7.9± 0.0 4.8± 0.0 3.9± 0.0 58.9± 0.1 38.4± 0.0 21.5± 0.0 16.5± 0.0
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Figure 2. Sensitivity analysis on the synthetic tree dataset under MSE
and MAE measurements for l = 10 leaves and n = 200 trees with different
missing ratios r or noise levels ζ.

4.4 Scalability Analysis

To evaluate the scalability, we increase the size of tree sets to test
the performance of correction approaches, and also record the run-
ning time of correcting D0 to D̂. The results are shown in Fig. 3.
When the tree set size rises from 500 to 2,000, our EMC method
has relatively stable performance and reports the best results on both
scenarios (i.e., incomplete trees and noisy distance) with a relatively
small running time, demonstrating its good scalability and robustness
with high potential for large-scale applications.

Scalability. The TRF approach provides guaranteed performance
but encounters a computational bottleneck due to the heavy process-
ing of all O(n3) triangle inequalities. This limitation makes the TRF
algorithm inapplicable when n exceeds 2,000, while the DC and
EMC methods can handle larger problems with up to 5,000 trees.

Accuracy. The DC method performs poorly, especially with larger
tree sets. Due to its lack of a theoretical guarantee, the DC correction
method tends to result in more severe information loss and poorer

performance as problem sizes increase. As expected, both the TRF
and EMC methods produce smaller MSEs than D0, validating their
performance guarantees.

Efficiency. The DC method is the fastest, but its error is notice-
ably the largest, without any guarantee of accuracy. Among the two
methods that provide performance guarantees, our EMC method can
handle larger datasets and offers much faster running speed and sig-
nificantly lower memory consumption, as shown in Table 3.

Comparatively, the proposed EMC approach has the highest po-
tential to be applied in large-scale scenarios, along with the scalable
techniques described in Section 3.3.
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Figure 3. Scalability analysis on the synthetic tree dataset with l = 10

leaves and different sizes n of the tree set.

Table 3. Average memory consumption (GB) on the synthetic tree dataset.

# trees 500 1,000 1,500 2,000 5,000
DC 1.1 1.2 1.3 1.4 3.0
TRF 1.6 4.2 25.3 59.7 931.5
EMC 1.1 1.2 1.2 1.3 2.0
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4.5 Tree Clustering on Incomplete Trees

We extend our evaluation to the task of clustering incomplete phylo-
genetic trees generated as described in Section 4.1. We take the K-
means clustering results from complete trees as the ground truth, and
choose the number of clusters as 50, an empirically determined value.
Using the Normalized Mutual Information (NMI) metric for quality
evaluation, as shown in Table 4 and Fig. 4, our EMC method con-
sistently outperforms the other methods with NMI scores between
0.703 and 0.779 for configurations with 10 leaves and 100 trees. The
EMC method provides more accurate clustering results and deeper
insights into the underlying data structure, contributing to a better
understanding of evolutionary relationships.

Table 4. NMI of K-means clustering on incomplete phylogenetic trees.

Setting l = 10, r = 40% l = 10, r = 80%
# trees 100 200 500 100 200 500
D0 0.154 0.091 0.047 0.250 0.157 0.062
DC 0.753 0.568 0.353 0.772 0.564 0.334
TRF 0.653 0.418 0.197 0.736 0.561 0.364
EMC 0.755 0.571 0.362 0.779 0.589 0.381
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Figure 4. K-means clustering results on incomplete phylogenetic trees

for l = 10 leaves and n = 100 or 200 trees under different missing ratios r.

4.6 Tree Clustering on Noisy Tree Distance

We also conduct K-means clustering on noisy tree distance matrices.
Table 5 and Fig. 5 demonstrate the superiority and stability of the
EMC method across different noise levels, indicating its potential to
improve the reliability of clustering analyses in biological research.

Table 5. NMI of K-means clustering on noisy tree distance.

Setting l = 10, ζ = 0.4 l = 10, ζ = 0.8
# trees 100 200 500 100 200 500
D0 0.767 0.611 0.410 0.530 0.395 0.260
DC 0.694 0.432 0.172 0.714 0.329 0.182
TRF 0.775 0.588 0.337 0.748 0.493 0.277
EMC 0.795 0.616 0.424 0.787 0.593 0.405
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Figure 5. K-means clustering results on noisy tree distance for l = 10

leaves and n = 100 or 200 trees under different noise levels ζ.

4.7 Summary and Explanation

Statistical Explanation. Consider the noise reduction experiment.
As the noise level increases, the initial non-metric matrix D0 natu-
rally increases the mean squared error (MSE) to the ground-truth and
violates more triangle inequality constraints, providing more room
for the matrix correction method to improve. Denoting the error re-
duction ratio (ERR) as MSE-D0−MSE-EMC

MSE-D0 , we observe a positive cor-
relation among the ERR performance of our correction method, the
violated constraint ratio (VCR), and the noise level.

Table 6. Correlation analysis among noise level, violated constraint ratio
(VCR), mean squared error (MSE), and error reduction ratio (ERR). Take the
setting of l = 10 leaves and n = 200 trees for example.

Noise Level 0.2 0.3 0.4 0.5 0.6 0.7 0.8
VCR / % 0.5 3.1 7.6 12.1 16.1 18.9 20.8
MSE-D0 9.6 21.8 38.3 58.3 80.9 103.7 129.0
MSE-EMC 2.2 2.9 3.5 4.1 4.9 6.0 7.9
ERR / % 77.1↓ 86.7↓ 90.9↓ 93.0↓ 93.9↓ 94.2↓ 93.9↓

Algorithmic Advantages. Existing correction approaches for tree
distance matrices have practical limitations that prevent them from
achieving high-quality corrections. Our work addresses this issue by
introducing a novel correction method based on the embedding tech-
nique. This method offers a theoretical guarantee of the quality of the
corrected distance matrix and can handle large-scale datasets with
fast running speed, small memory consumption, and scalable tech-
niques. By overcoming these practical limitations, our method pro-
vides a reliable and efficient solution for distance matrix correction.

Application Scenarios. Our correction method has demonstrated
superior results on both incomplete trees and noisy tree distance sce-
narios, and it has the potential to benefit various applications, such as
tree clustering, classification, and retrieval. By obtaining more accu-
rate distance metrics through correction, downstream distance-based
applications could see improved performance, such as K-means clus-
tering tasks. Overall, our study provides compelling evidence for the
superiority of the EMC method and its potential to enhance biologi-
cal research outcomes.

5 Conclusion

The calculation of the Robinson-Foulds distance between phyloge-
netic trees is a fundamental problem in both biology and computing
communities, with numerous practical applications. However, ob-
taining an accurate distance metric can be challenging in practice,
particularly when dealing with incomplete trees or noisy distances.

To address this issue, our work utilizes the Euclidean embedding
technique to propose a new method for obtaining a distance metric.
Our approach is based on a mild assumption and differs from clas-
sical correction methods that rely on the metric nearness model or
Euclidean distance matrix. By ensuring the embeddable property, we
have developed a simple yet effective method with several algorith-
mic advantages, including a theoretical guarantee of distance quality,
fast running speed, small memory consumption, and good scalabil-
ity. Our approach has demonstrated superior results with the smallest
error in incomplete trees and noisy distance scenarios over classical
methods. Benefiting from this, it can potentially enhance the perfor-
mance of downstream applications such as tree clustering, classifica-
tion, and retrieval. We hope our findings can inspire researchers to
advance biological applications, and future work is ongoing.
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