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Abstract. Link prediction is a crucial research area for both data
mining and machine learning. Despite the success of contrastive
learning in node classification tasks, applying it directly to link pre-
diction tasks has revealed two major weaknesses, i.e., single posi-
tive sample contrasting and random augmentation, resulting in in-
ferior performance. To overcome these issues, we propose a new
contrastive learning approach for link prediction, called Structure-
aware Contrastive Representation Learning with Self-discriminating
Augmentation (SECRET). Our approach includes a novel data aug-
mentation scheme based on the prediction model itself and takes into
account both the contrastive objective and the reconstruction loss,
which jointly improve the performance of link prediction. Our ex-
periments on 11 benchmark datasets demonstrate that SECRET sig-
nificantly outperforms the other state-of-the-art baselines.

1 Introduction

Graph Neural Networks (GNNs) receive much research attention
recently due to its outstanding performance in various applica-
tions [36, 35]. Among the wide application spectrum of GNNs, link
prediction is one of the most important tasks and has been receiv-
ing significant research attention as the connectivity of entities is the
most essential component in a network. Application scenarios of link
prediction include recommendation, e-commerce, friend recommen-
dation in social networks, and much more [32, 29, 31, 18, 12, 30].

The link prediction problem aims at predicting potential relations
or missing connections of two nodes in a graph. To effectively tackle
link prediction problems with GNNs, the core issue is to acquire
proper representations for either nodes, links, or graphs. On the other
hand, one critical issue for constructing a precise link prediction
model is that abundant labeled data are required to ensure the per-
formance; however, in real-world scenarios, labeled data are usually
scarce and costly. To alleviate this issue, recently, unsupervised con-
trastive representation learning on graphs [33, 41, 42, 13, 14, 40] has
flourished and achieved significant performance improvement. The
basic idea of contrastive learning is to maximize the embedding sim-
ilarity between augmented examples, aiming to capture the invariant
signals across two different views [21].

Although achieving promising performance, however, existing
contrastive learning methods are usually designed for node classi-
fication or graph classification. Directly applying these methods to
link prediction tasks may not result in promising performance. After
a careful analysis, we identify two important weaknesses of directly
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applying contrastive learning to link prediction.
Weakness 1. Single positive sample contrasting. Existing con-
trastive learning approaches usually concentrate on maximizing the
similarity between the representation of the target node and its corre-
sponding representation in the augmented view, but not considering
the connection between other nodes. Therefore, the learned repre-
sentation focuses more on distinguishing each individual of different
classes rather than taking the relations of multiple nodes into consid-
eration. This single positive sample contrasting may result in inferior
results for link prediction problems, since link prediction copes with
connections between node pairs instead of a single node.
Weakness 2. Random augmentation. The augmentation strategy
is also critical to the performance; however, existing works usually
adopt random modification strategies, such as uniform node drop-
ping, uniform attribute masking, which might lead to sub-optimal
performance by accidentally corrupting the inherent topological or
attributed information.

To address the above critical weaknesses, we propose a new con-
trastive learning framework for link prediction on graphs, named
Structure-aware Contrastive Representation Learning with Self-
discriminating Augmentation (SECRET). The proposed SECRET in-
cludes new components to deal with the weaknesses mentioned
above, i.e., Self-discriminating Augmentation (SDA) and Structure-
aware Contrastive Representation Learning (SCL). Specifically, to
address the weakness of random augmentation, the proposed SDA
sets priorities for edges to perform augmentation, which is motivated
by our analysis of various augmentation strategies (detailed later).
The proposed SDA utilizes our link prediction model itself as a data
augmenter to discriminate edges on the graph before performing the
augmentation, which not only resolves the problem of random aug-
mentation in previous augmentation scheme but also serves as an
automatic and systematical strategy to augment a graph.

Then, to address the weakness, Single positive sample contrast-
ing, we propose a novel scheme, named Structure-aware Contrastive
Representation Learning (SCL), which minimizes the similarity of
node representations with intra- and inter-view contrastive terms. In
contrast to previous contrastive learning frameworks for node clas-
sification [33, 41, 42, 13, 14, 40], to deal with the link prediction
tasks, we take the ego network of each individual into consideration
as its positive samples, aiming to capture the topological informa-
tion around an anchor node by making its surrounding neighborhood
have similar latent representation in the embedding space.

We evaluate our proposed SECRET on 11 benchmark datasets.

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230596

2842



The experimental results demonstrate that our proposed model
achieves significantly better performance, as compared to the state-
of-the-art link prediction approaches. In addition, we also show that
SECRET achieves its superior performance while requiring less re-
source in terms of time and memory.

The contributions are summarized as follows.

• We propose a new contrastive learning framework for link predic-
tion, SECRET. We conduct experiments to justify our data aug-
mentation strategy.

• We propose the novel ideas of Self-discriminating Augmentation
and Structure-aware Contrastive Representation Learning for ef-
fective data augmentation and integrating the neighborhood struc-
ture in the contrastive views.

• Experiments on 11 benchmark datasets show that our proposed
SECRET significantly outperforms the other state-of-the-art base-
lines in terms of prediction performance and efficiency.

The rest of this paper is organized as follows. Sec. 2 discusses the
related works. Sec. 3 presents a preliminary analysis of our proposed
augmentation strategy. Sec. 4 details the design of our link prediction
algorithm and training pipeline. Sec. 5 presents the experimental re-
sults. Sec. 6 concludes this paper.

2 Related Works

Link Prediction. Early works to link prediction often make a strong
assumption that nodes with certain relations are more likely to be
linked. For example, Common Neighbor (CN) measures the inter-
section of the targets’ neighbor node sets; Jaccard index further di-
vides CN by the union size of the two neighbor node sets. These
methods often have limited capability in capturing the higher-order
structural information, leading to inconsistent performance among
different datasets.

Maximum likelihood algorithms [8, 2] often start from organizing
the graph’s structure with a specific principle and aim at maximizing
the likelihood of a target structure. Then, the existence of a link can
be predicted by best fitting the structure with maximized likelihood.
However, maximum likelihood algorithms often suffer from the high
computation overhead, i.e., taking exponential time of iterations for
convergence.

The GNN-based link prediction approaches are roughly divided
into two categories, i) node embedding-based approaches employ a
score function as decoder to evaluate a link by its two adjacent nodes’
representations, such as Variational Graph Auto-Encoders [16],
ARGVA [24], and GIC [19]; ii) Subgraph classification-based ap-
proaches extract a subgraph with respect to the target link and pre-
dict probability of the link with subgraph classification, such as
SEAL [39] and WalkPooling [23], where WalkPooling achieves the
state-of-the-art performance on multiple benchmarks.

In this paper, we focus on enhancing the model’s performance
in the following aspects. i) Compared with subgraph classification-
based approaches, e.g., [39, 23], we employ contrastive learning
along with graph autoencoder, which allows the GNN model to learn
more discriminating representations for link prediction. ii) More-
over, our approach avoids the efforts to extract subgraph around the
focal link and perform subgraph classification, such as performed
in [39, 23]. iii) Compared with node embedding-based approaches,
e.g., [16, 1, 24], we observe that with the proposed augmenting tech-
nique, Self-discriminating Augmentation (SDA), which modifies the
easier examples by the decoder, we are able to achieve much better
performance.
Contrastive Representation Learning. Unsupervised representa-

tion learning attracts much research attention recently, in which
contrastive learning [7, 41, 13] gains unprecedented popularity and
achieves the state-of-the-art performance in self-supervised learning.
The intuition of contrastive learning is to capture the underlying in-
formation between data and its augmented view by contrasting the
positive and negative samples. The objective can be viewed as max-
imizing the lower bound of mutual information of input and learned
representation [3, 22, 11]. In addition, various contrastive learning
approaches adopt different contrastive or data augmentation strate-
gies to boost the performance, such as Deep Graph Infomax [33],
MVGRL [10], SelfGNN [14], and GCA [42].

However, unlike the other methods, we aim to utilize the GNN
itself, an autoencoder-based model, to serve as the data augmenter
to generate the contrastive view for the original graph, based on the
accuracy of the predicted probability and trained end-to-end. Fur-
thermore, we aim to integrate the contrastive term along with the au-
toencoder’s generative loss, altogether as the optimization objective,
in order to enhance the overall performance of our link prediction
model.

3 Problem Formulation and Analysis

Problem formulation – Link Prediction. We denote the undirected
input graph as G = (V, E), in which V denotes the node set with
size N , i.e., |V| = N , and E ⊆ V × V denotes the edge set.
We let X ∈ R

N×F be the input feature matrix where xi is the
input node feature vector of vi with dimension F . We further de-
note the adjacency matrix as A ∈ {0, 1}N×N , in which ai,j = 1
if and only if (vi, vj) ∈ E . In the following, we denote our en-
coder as f and the learned output embedding from encoder as Z =

f(X,A) ∈ R
N×F ′

, where F ′ is the output dimension of encoder f .
Since there are two different graph views, we denote the augmented
view’s adjacency matrix and learned embedding as A′ ∈ {0, 1}N×N

and U = f(X,A′) ∈ R
N×F ′

, respectively. Lastly, we denote
N (i) = {j|(vi, vj) ∈ E}, as the index set of vi’s neighbors, i.e.,
adjacent nodes.

The link prediction problem is defined as follows. Given a graph
G = (V, Eideal), where Eideal is the ideal edge set, which is com-
posed of all the existing links on G. However, we can only observe an
incomplete set of Eideal, denoted as E . To solve the link prediction
problem, we aim at finding a predictive function F that takes V, E ,
and X as input and outputs its predicted edge set EF , such that EF is
as close to the ideal edge set, Eideal, as possible.
Preliminary analysis. As discussed earlier, one of the two major
weaknesses of the previous contrastive learning-based approaches is
random augmentation. We argue that such a random approach may
not be the best strategy for the link prediction task, and this motivates
us to take a closer look at different edge augmentation strategies.

Data augmentation is a component of crucial importance with re-
spect to contrastive learning. We argue that a proper augmentation
strategy shall retain the important structure and feature informa-
tion that is critical to model learning. However, the previous con-
trastive learning works usually adopt a random modification strat-
egy [38, 13, 41], which might accidentally corrupt the inherent graph
topological information and leads to inferior performance. On the
other hand, Zhu et al. [42] propose to modify the graph by first iden-
tifying those important edges and node attributes via calculating the
centrality of the nodes. After that, unimportant edges and attributes
are given higher probability to be dropped. Zhu et al. claim that trun-
cating those pieces of unimportant information forces the model to
learn the embedding that is insensitive to corruption on less important
nodes and edges. However, calculating the centrality values of nodes
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requires excessive computation overhead, which limits its scalability.
On the contrary, we aim at generating an augmented graph via

a more systematical and automatic way by employing the GNN-
encoder as a data augmenter as well, which automatically determines
the edges to be modified. To allow the GNN-encoder to determine the
suitable edges to be modified, one important research question arises:
RQ 1. To improve the model performance, what edges should be
modified in the graph augmentation step?

Previous answers to this research question include random modifi-
cation [38, 13, 41] and centrality-based metric [42], which measure
the centrality to determine the importance of the edges. However, we
argue that there might still be room for improvement, and thus we
conduct a preliminary analysis.

We observe that, among all the training edges, some edges can be
easily predicted by the link prediction model (called easy examples
or easy edges hereafter), while some are much more difficult ones
(called hard examples or hard edges). For the easy edges, the predic-
tion model shall confidently determine the probability of its existence
or absence (with probability clinging to zero or one). However, for
those hard examples, the model might fail to accurately predict its
existence or even take the wrong side. Therefore, in addition to the
notions of easy and hard edges, we further propose the notion of
prediction disparity, to quantify how easy (or hard) an edge is. The
prediction disparity πi,j represents the absolute difference of the ex-
istence probability of an edge (vi, vj) on the original input graph
G and the prediction result of the same edge from the model, i.e.,
πi,j = |Apred

i,j − Ai,j |, where Apred
i,j is the prediction output of the

edge existence probability of edge (vi, vj). A larger πi,j indicates
a more significant prediction disparity, i.e., the prediction output is
further from the ground truth, considered as a harder edge.

Table 1. The performance of various augmentation strategies, where gain
is the difference against modifying harder edges.

Easier

Edges

Easy

Edges

Hard

Edges

Harder

Edges
Random Centrality

AUC on Cora (%) 96.44 96.17 95.60 95.04 95.91 95.27
AUC gain (%) +1.40 +1.13 +0.56 0.00 +0.87 +0.23
AUC on Wisconsin (%) 85.07 84.50 79.96 81.90 79.21 78.07
AUC gain (%) +3.17 +2.60 -1.94 0.00 -2.69 -3.83
AUC on LastFMAsia (%) 96.63 96.63 96.53 96.32 96.52 96.24
AUC gain (%) +0.31 +0.31 +0.21 0.00 +0.20 -0.08

With the notion of prediction disparity in hand, now we com-
pare various strategies to identify the set of edges to be modi-
fied on the Cora, Wisconsin, and LastFMAsia datasets [27, 25, 9],
which are benchmark datasets widely adopted for evaluating link
prediction approaches. The compared strategies include: i) Random,
which modifies the edges randomly, as in previous contrastive learn-
ing approaches [38, 13, 41]; ii) Centrality, which selects the
edges to modify based on the calculated centrality [42]; In addi-
tion, we also propose and compare four augmentation strategies:
iii) Easier Edges, which modifies the edges with prediction
disparity in [0.0, 0.2]; iv) Easy Edges, which picks the edges
with prediction disparity in [0.0, 0.5]; v) Hard Edges and vi)
Harder Edges, which modify the edges with prediction dispar-
ity in [0.5, 1.0] and [0.8, 1.0], respectively.

We present the Area Under Curve (AUC) [6] of the above six
strategies in Table 1 (the Average Precision (AP) of them shows sim-
ilar results and thus are omitted). The AUC gain is calculated based
on Harder Edges. The results indicate that Easier Edges
leads to the most significant performance gain, i.e., +1.4% in Cora,
+3.17% in Wisconsin, and +0.31% in LastFMAsia, outperform-
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Figure 1. Model overview.

ing Easy Edges, Hard Edges, Harder Edges, as well as the
widely adopted Random [38, 13, 41] and the centrality-based ap-
proach, Centrality [42]. We present more detailed comparisons
in Fig. 2 in Sec. 5. From the results, we observe that modifying the
easier edges, i.e., the edges with the smallest prediction disparity,
brings the largest performance gain in link prediction. According to
the idea of curriculum learning [4, 34], we conjecture that if we mod-
ify the hard or harder edges, the model fails to recognize its demerits
and tends to confidently make extreme prediction. On the contrary,
by adjusting the edges with tiny prediction disparity, the overall pre-
diction difficulty for the model is higher as the easy ones is distracted
for itself. Consequently, the model can thus learn more general and
robust embedding, leading to superior performance for link predic-
tion.

Furthermore, Easier Edges significantly outperforms
Random. One reason is that the important topological information
might be accidentally corrupted by Random, leading to inferior
performance; In addition, Easier Edges also outperforms
Centrality, because Centrality determines the importance
of edges by the degree of its two adjacent nodes. Although this
strategy retains edges from highly connected nodes, it might still
corrupt the structural information in the sparser region.
Our answer to RQ 1. Based on the above analysis, instead of modi-
fying the edges based on centrality [42] or randomly [38, 13, 41], we
argue that modifying the edges with small prediction disparity would
be more promising for link prediction tasks.

4 Algorithm Design

Current state-of-the-art link prediction algorithm [39, 23] solve
link prediction by subgraph classification. Despite the significant
performance they achieved, calculating information matrix [39] or
walkprofiles [23] is still required. Therefore, to avoid the burden of
constructing subgraph and extracting heuristic information, we pro-
pose SECRET that incorporates a novel data augmentation scheme,
SDA, and structure-aware contrastive term, SCL. Our proposed model
does not make prediction via subgraph classification; instead, it is an
efficient dot-product decoder that reconstructs the whole edge set di-
rectly.

The proposed SECRET addresses the two major weaknesses iden-
tified above as follows. To deal with the random augmentation

problem, our proposed SDA generates an augmented view of orig-
inal input graph via the auto-encoder itself by distinguishing those
edge instances with lower prediction disparity, providing an auto-
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matic yet systematical augmentation strategy; On the other hand, to
cope with the issue of single positive sample contrasting in pre-
vious node classification-based graph contrastive learning schemes,
our proposed SCL takes the ego network of each anchor node as its
positive samples, making nodes in the neighborhood structure attain
representations that stay closer in the embedding space, and encodes
topological information the ego network to achieve superior perfor-
mance in link prediction.

The advantage of our proposed model are four-fold. i) Compared
with aforementioned link prediction algorithms, we do not make pre-
diction via subgraph classification but by an efficient dot-product
decoder instead. ii) Our proposed model does not extract heuristic
information but employs a GNN-based encoder to aggregate infor-
mation. iii) Our data augmentation scheme is systematical yet sim-
ple, saving us from random modification or calculating importance
scores, but encouraging our model to learn from harder instance to
produce robust embedding. iv) We adopt a contrastive term that con-
siders the neighborhood structure between different graph views. By
maximizing the agreement of positive samples, we capture the struc-
tural information.

4.1 Overall pipeline of SECRET
To have a better picture of SECRET, we illustrate the overall pipeline
in Fig. 1, and the details of the proposed data augmentation scheme,
SDA, is shown in Appendix A in [37]. Specifically, in step one, i.e.,
SDA, we generate an augmented graph once in t training epochs,
where t is considered as a hyperparameter in our framework. That
is to say, we treat the data augmenter as a clone of the prediction
model that updates its parameters with prediction model’s parame-
ters every t epochs. By adopting t as an augmentation interval, we
are able to stabilize the training procedure without deteriorating the
performance, as will be shown in the experiments. During the aug-
mentation, the encoder always takes the original graph G as its input,
and a dot-product decoder then reconstructs all the edge instances on
the graph based on the output representations. Once we acquire the
predicted results from the decoder, we leverage the proposed mod-
ification disparity bound b and modification ratio k along with the
prediction disparity (as mentioned in previous section) to identify a
set of edges to be modified. By flipping these edge instances in the
set, we generate an augmented view of the original graph to be fur-
ther used in the upcoming steps.

In step two, i.e., encoding, the original graph G and the previously
generated augmented view graph G′ are input into our GNN-based
encoder and generate node embedding Z and U , respectively. In step
three, i.e., decoding, we leverage a dot-product decoder that recon-
structs all the edge instances on the original graph view and aug-
mented graph view based on Z and U , and obtain two predicted
graphs Gpred and G′

pred, respectively. In step four, i.e., SCL, we lever-
age the proposed intra-view and inter-view contrastive scheme on the
two graph views and incorporate a reconstruction loss along with the
contrastive loss to optimize the GNN-based encoder. For the detailed
pseudo code of the overall pipeline, please refer to Algorithm 1 in
Appendix B in [37].

4.2 Algorithm Description
Step 1. Self-discriminating Data Augmentation (SDA). Previous
works of contrastive learning on graphs usually adopt a uniform
modification strategy. In our approach, according to the observation
in the preliminary analysis, we propose to generate the augmented
view via self-discriminating data augmentation that tends to retain
those edges with larger prediction disparity while modifying those

edges which can be easily and correctly predicted. The overall aug-
mentation scheme is shown in Appendix A in [37]. Specifically, the
augmentation pipeline is composed of the following steps.

i) We input the original graph into our encoder f to generate the
latent representation Z for decoder. Note that the model is freezed
during data augmentation, i.e.,

Z = ffreezed
θ (X,A). (1)

ii) The dot-product decoder d takes the latent representation Z as
input and generates a reconstructed adjacency matrix Apred, where
apredi,j ∈ Apred is the predicted probability of edge existence be-
tween node i and node j.

iii) In the augmentation module, we calculate the absolute differ-
ence of the reconstructed adjacency matrix and the original graph.
That is, π = abs(Apred − A), where abs(·) denotes the function
that returns a matrix composed of element-wise absolute value of its
input. Here, the N × N matrix π is the prediction disparity matrix
where the element πi,j represents the prediction disparity of edge
connecting nodes i and j.

To determine the modified edges, we utilize two thresholds, i.e.,
the modification ratio k and modification disparity bound b. The
modification ratio k is the upper bound for the ratio of modified edges
to all the edges, and the modification disparity bound b is the upper
bound for prediction disparity of modified edges. We first employ
the modification disparity bound b to extract a set of candidate edges
denoted as S by

S = {(vi, vj) | πi,j ≤ b, i �= j}, (2)

where all elements in S has prediction disparity less than b. Noted that
we do not consider self-edges in S. We then use the modification ratio
k to determine the maximum number of modified edge instances m
by m = �k × N × (N-1)�.

iv) Finally, with the maximum number of modified edge instances
m, we sort the set S by the edge prediction disparity in ascending or-
der and obtain a sorted list of edge instances, Ssorted = [e1, e2, ...],
where ei is the edge instance with i-th smallest prediction dispar-
ity in S. We take the first m edges in the sorted list Ssorted as our
modified edge instances.

modified edges = {ei | i ≤ m, ei ∈ Ssorted}. (3)

Steps 2 and 3 – Encoding and decoding. We aim to reconstruct the
edge set EF to be as similar to the ideal edge set, Eideal, as possible.
Here, we consider all positive and negative edges; therefore, we aim
at directly reconstructing an adjacency matrix AF ∈ {0, 1}N×N by
our prediction model F . Similar to VGAE [16], we assume that all
the edges are reconstructed by some process with an unobservable
continuous random variable Z. From the perspective of coding the-
ory, as stated in VAE [15], the random variable Z can be viewed as
a latent variable that generates edges A. Therefore, we refer to an
inference model q(Z|X,A) as our probabilistic encoder f parame-
terized by θ with two-layer GNN gθ followed by an MLP with batch
normalization using as a projection head (denoted as pθ), as defined
below.

q(Z|X,A) =
N∏

i=1

q(zi|X,A), (4)

where zi denotes the latent variable corresponding to node i and here,
as in VGAE and VAE [16, 15], we let the distribution q(zi|X,A) be
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a multivariate normal distribution with diagonal covariance,

q(zi|X,A) ∼ N (μi, diag(σ
2
i )), (5)

where μ is the mean matrix from the encoder’s output and σ is the
standard deviation matrix output from fθ .

Then, we refer to the generative model p(A|Z) as our probability
decoder, d, since we produce a probability distribution of A given
latent Z. Formally, we define the generative model as follows,

p(A|Z) =
N∏

i=1

N∏

j=1

p(Aij |zi, zj), (6)

where Aij is the element of A in the i-th row and the j-th column.
The generative model is a dot-product followed by a logistic sigmoid
function with respect to the corresponding latent variable zi and zj ,
denoted as p(Aij |zi, zj) = sigmoid(zi · zj).

Finally, we optimize the parameter θ in order to maximize the like-
lihood p(A) by maximizing the variational lower bound [16], i.e.,
minimizing Lrecon, as follows.

Lrecon = −Eq(Z|X,A)[log p(A|Z)] +KL[ q(Z|X,A)‖ p(Z) ], (7)

where KL[q(·)‖p(·)] is the Kullback-Leibler divergence between
two distributions.
Step 4. Structure-aware Contrastive Learning (SCL). In each
training iteration, after getting the output embedding Z and U from
two different graph views in previous steps, we employ our proposed
Structure-aware Contrastive Loss, which includes two terms, Intra-
view Contrastive Loss and Inter-view Contrastive Loss, to enforce the
model to encode the structural information as well as to maximize the
representation agreement of positive samples between views.

It is worth noting that, we employ two split terms of contrastive
loss, intra-view and inter-view, instead of blending all the positive
and negative samples within the same graph view or different graph
views altogether. This modularization helps us distinguish nodes rep-
resentations on the same graph in Intra-view Contrastive loss. In ad-
dition, we can take nodes on the ego network of each anchor node
to be the positive samples of it in another split-out contrastive view,
i.e., Inter-view Contrastive Loss, individually dealing with the rela-
tion between original and augmented graphs’ latent representations.
Intra-view Contrastive Loss. The Intra-view Contrastive Loss fo-
cuses on distinguishing the node representations on a single graph
as we only consider to contrast the representations within one sin-
gle graph view. For any focal (anchor) node, vi ∈ V , in the original
graph view, we contrast its representation zi with all the other nodes’
representations, zj , with vj ∈ V \ {vi}. The contrastive loss with
respect to vi ∈ V is formulated as follows,

Lori
intra(vi) = − log

eθ(zi,zi)/τ
∑N

j=1 e
θ(zi,zj)/τ

, (8)

where τ is a temperature hyperparameter used in previous works [7,
41], and θ(·, ·) is the function that calculates the cosine similarity of
input embeddings, θ: RF ′×R

F ′ → R. For vi ∈ V on the augmented
graph view with embedding U , the Intra-view Contrastive Loss is
similarly formulated as

Laug
intra(vi) = − log

eθ(ui,ui)/τ

∑N
j=1 e

θ(ui,uj)/τ
. (9)

Finally, the overall Intra-view Contrastive Loss takes the average
among all the N nodes in V and is formulated as

Lintra =
1

N

N∑

i=1

(Lori
intra(vi) + δLaug

intra(vi)), (10)

where δ is the weight parameter for augmented graph.
Inter-view Contrastive Loss. The inter-view contrastive loss fo-
cuses on the contrasting representations between the original and
augmented graphs. We further consider the relation between con-
nected nodes by taking the neighborhood structure around the fo-
cal node into account. More specifically, for vi ∈ V , the positive
samples for zi are defined to be not only the corresponding node rep-
resentation ui on augmented graph but also the representations of
vi’s neighbors, i.e., vj ∈ N (i). Taking these neighbor nodes as posi-
tive samples, we further encode the structural information around the
focal node, and the Inter-view Contrastive Loss is formulated as

Linter(vi) = − log

∑j∈i∪N (i)
j eθ(zi,uj)/τ

∑N
j=1 e

θ(zi,uj)/τ
. (11)

Finally, we take the average among all the N nodes in V and present
the overall Inter-view Contrastive Loss:

Linter =
1

N

N∑

i=1

Linter(vi). (12)

Overall Contrastive Loss. With Intra-view Contrastive Loss and
Inter-view Contrastive Loss defined in Eqs. 10 and 12, respectively,
the overall contrastive loss for SCL is defined as

LSCL = βLintra + γLinter, (13)

where β and γ are hyperparameters for the weights of Intra-view
Contrastive and Inter-view Contrastive losses, respectively. Note that
we denote the term contrastive objective, JSCL, as our target to max-
imize in terms of SCL. In contrast, LSCL is the contrastive loss to
be minimized during model optimization with respect to SCL.
Model training. We train our prediction model jointly with the
above-mentioned reconstruction loss, Intra-view Contrastive Loss,
and Inter-view Contrastive Loss to learn node latent representation
for link prediction. Specifically, the overall optimized loss function
can be formulated as

L = α(Lori
recon + δLaug

recon) + LSCL, (14)

where α is a hyperparameter that controls the balance between re-
construction loss and SCL loss, and δ is the weight parameter for the
augmented graph.

5 Experimental Results

The codes, models, and other reproducibility materials could be
found at [37].

5.1 Settings
Datasets. We conduct experiments on 11 benchmark datasets with
node attributes, including four citation networks: Cora, Cora_ML,
Citeseer, PubMed [27, 5]; Three webpage datasets: Cornell, Texas,
and Wisconsin [25]; One Wikipedia network Squirrel [26, 20]; Two
co-purchase network Amazon Photo and Amazon Computers [28];
One music website LastFMAsia [9]. The statistics of the datasets are
summarized in Appendix C in [37].
Training setting. For data splits, we follow the experimental proto-
col as in [16, 23], which splits the positive edges into three parts,
10% for testing, 5% for validation, and the rest for training. We per-
form 10 random splits on each dataset and report the average and
standard deviation of the performance. We implement our model via
Pytorch 1.11.0, employ Adam as our optimizer, and set the learning
rate as 0.001 with 1000 training epochs. We adopt APPNP [17] as
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Table 2. Link prediction accuracy evaluated by AUC (%) on 11 datasets. Best results are in bold, and runner-ups are underlined.

Cora Citeseer PubMed Cora_ML Cornell Texas Wisconsin Squirrel Amazon Photo Amazon Com. LastFMAsia

GCA (WWW’21) 91.72±1.37 80.50±5.23 94.46±0.75 83.98±2.70 57.19±21.35 65.78±13.79 71.82±8.52 94.84±0.25 90.90±1.02 91.84±1.18 93.04±0.88
VGAE (NIPS’16) 91.98±0.54 91.21±1.14 96.51±0.14 94.08±0.47 70.59±9.03 73.71±9.29 75.05±6.88 97.54±0.05 96.35±0.89 96.39±0.18 94.56±1.13
VGNAE (CIKM’21) 95.37±0.11 96.30±0.34 97.63±0.03 95.57±0.56 34.81±3.39 61.37±5.33 81.80±1.36 96.32±0.01 96.70±0.02 95.81±0.10 94.41±0.24
ARGVA (IJCAI’18) 92.45±1.11 91.71±1.38 96.62±0.12 95.24±0.48 81.73±4.82 68.05±8.29 75.69±7.91 97.12±0.20 97.21±0.17 96.49±0.14 94.65±0.36
GIC (TechRep’20) 93.68±0.59 95.03±0.65 93.00±0.36 94.04±0.74 63.32±7.47 65.43±10.39 74.74±6.28 94.15±0.27 95.09±0.35 93.65±0.26 94.03±0.29
SEAL (NIPS’18) 79.49±0.74 78.98±1.33 90.21±0.90 85.18±0.89 73.49±5.56 81.05±2.92 76.71±2.50 98.03±0.07 97.73±0.09 97.09±0.10 90.61±0.49
WP-only (ICLR’22) 93.29±0.88 88.42±1.28 97.21±0.23 93.39±0.90 78.72±8.03 74.02±6.39 77.94±10.15 97.02±0.06 96.79±0.22 96.03±0.24 94.98±0.70
GIC+WP (ICLR’22) 95.90±0.50 95.94±0.53 98.72±0.10 94.99±0.70 80.69±7.25 74.49±6.85 82.27±6.27 97.98±0.04 96.74±0.19 96.48±0.35 95.42±0.57

Ours 96.18±0.27 97.53±0.17 98.31±0.34 96.80±0.18 87.51±2.34 83.13±4.71 85.37±2.51 98.26±0.07 98.34±0.11 97.67±0.08 96.59±0.17

our GNN backbone. The weight decay is set to 5×10−4 and dropout
rate is set to 0.3. Generally, the hidden dimension for representation
is set to 256 and the output dimension of encoder is set to 64 across
all datasets. However, the hidden dimension for webpage datasets
(Cornell, Texas, and Wisconsin) are adjusted to be smaller due to the
smaller scale of these datasets.
Baselines and settings. We compare our model with 8 state-of-
the-art baselines, including: i) GCA [42], a contrastive representa-
tion learning approach; four unsupervised GNN-based models: ii)
VGAE [16], iii) VGNAE [1], iv) ARGVA [24], v) GIC [19]; two link
prediction models based on subgraph classification: vi) SEAL [39],
vii) WalkPooling [23], where we adopt two variations of it, which are
the combination of GIC and WalkPooling (GIC+WP) and WalkPool-
ing itself (WP-only). The detailed descriptions of the baselines and
experiment settings can be found in Appendix C in [37].
Performance metrics. We follow previous works and measure the
Area Under Curve (AUC) [6]. A higher value of AUC indicates better
performance.

5.2 Performance Evaluation

Link prediction performance. Table 2 presents the AUC of all the
approaches. Numbers marked in bold indicate the best performance
among all 9 approaches. From Table 2, the results indicate that by
leveraging our proposed modules, Self-discriminating Augmentation
(SDA) and Structure-aware Contrastive Learning (SCL), our pro-
posed method achieves promising performance on link prediction
among various datasets. Compared to another contrastive representa-
tion learning method, GCA, our method is more stable and achieves
superior performance across all 11 datasets in both AUC.This indi-
cates that our Self-discriminating Augmentation works effectively on
link prediction tasks, and our proposed Structure-aware Contrastive
Learning jointly trained with reconstruction loss indeed enhances the
performance.

Compared with autoencoder-based methods, i.e., VGAE, VGNAE,
and ARGVA, our approach also achieves better performance in most
benchmark datasets. Compared with GIC, the clustering-based un-
supervised representation learning baseline, our performance out-
performs GIC on all 11 datasets in both AUC. Compared with the
state-of-the-art link prediction baselines, i.e., subgraph classification-
based methods, SEAL, WP and WalkPooling equipped with GIC,
GIC+WP, we are also able to achieve better performance.
Ablation Study. To show the effectiveness of the proposed SDA and
SCL, we conduct an ablation study on the Cora dataset, and the re-
sults are presented in Table 3. The term w/o SDA denotes not using
SDA but a random edge modification. The term w/o SCL-intra
denotes not using the Intra-view Contrastive Loss Lintra, while w/o
SCL-inter denotes not using the Inter-view Contrastive Loss
Linter , and w/o SCL denotes not using both. The improvements

on AUC by equipping these modules indicate the effectiveness of
the proposed SDA and SCL in link prediction. Specifically, if both
SDA and SCL are equipped, the performance increases by 1.39% in
AUC.When both Intra-view and Inter-view Contrastive Losses are
employed, the performance of our model boosts by 1.26% in AUC.
Sensitivity tests – k and b. We aim to investigate the relations be-
tween our augmentation strategy and the overall performance. Here,
k is the modification ratio and b is the modification disparity bound.
Note that we take the modification disparity bound b as an interval
(i.e., 0.1 stands for modifying edges with disparity in [0.0, 0.1), 0.2
stands for modifying edges with disparity in [0.1, 0.2), etc.) here in-
stead of an upper bound to prevent modifying the whole graph when
b is set to 1.0. This is also because we aim at observing the perfor-
mance change when edges with different intervals of disparity are
modified.

The results are shown in Fig. 2. As we claimed in the prelimi-
nary analysis, we observe a performance drop when increasing b,
i.e., comparing to modifying those hard edges, modifying those easy
edges obtains a higher prediction accuracy. We thus claim that our
proposed model can discriminate the hard samples and easy samples
and focus on harder ones as the simpler ones are distracted by our
augmentation scheme. Also, it is worth noting that the influence of
k is reduced when b is set smaller (modifying easy/easier edges) as
the performance retains high with various k, indicating that modify-
ing more easy samples does not rapidly corrupt the original graph’s
inherent information.

Furthermore, if we modify a bunch of hard/harder edges, the per-
formance arrives at its valley bottom as observed when k and b are
set higher with values around 1.0. On the other hand, we observe a
steep rise in AUC when adjusting b from 0.0 to 0.1, apparently indi-
cating the effectiveness of our augmentation scheme; However, if the
modification ratio k is not bounded and gradually increases, the per-
formance would experience another steep drop, indicating that mod-
ifying too many edges will corrupt the original graph’s structural in-
formation and thus there shall be a budget for numbers modification
edges.

Table 3. Ablation study with or without SDA and SCL on Cora.

AUC (%) AUC Gain (%)
SECRET w/o SDA & SCL 94.89 0.00
SECRET w/o SCL 95.02 +0.13
SECRET w/o SCL-intra 95.65 +0.76
SECRET w/o SCL-inter 95.77 +0.88
SECRET w/o SDA 95.91 +1.02
SECRET 96.28 +1.39

Sensitivity tests – δ, α, and t. The parameter δ is the weight param-
eter for the augmented graph’s loss. The results are shown in Fig.
3(a). The performance ascends as δ increases in both AUC, indicat-
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(a) AUC on Cora. (b) AUC on Wisconsin. (c) AUC on LastFMAsia.

Figure 2. Performance of adjusting k and b.

(a) Varying δ. (b) Varying α. (c) Varying t.

Figure 3. Performance of adjusting δ, α, and t.

ing that considering an augmented along with the original graph in-
deed improves the prediction accuracy. As the value of δ reaches 1.0,
the performance begins to stabilize and achieves optimal accuracy at
around 3.0.

The parameter α is the weight parameter for reconstruction loss.
Here, we vary its value in range [0.0, 1.0] with a step size of 0.1 to
show the importance of reconstruction loss to the overall optimiza-
tion scheme. The result is shown in Fig. 3(b). We observe that the
reconstruction loss Lrecon is of crucial importance to the whole op-
timization scheme as both AUC and AP experience a steep drop to
around 80% when α decreases. On the other hand, the performance
gain become unnoticeable gradually when α is set to around 0.5.

The augmentation period t is the period for re-generating a new
augmented graph, i.e., update the augmented graph. Here, we vary
its value in the range [1, 100] with a step size of 5 epochs. The results
are shown in Fig. 3(c). Unlike the previous two parameters δ and α,
the influence of the augmentation period is inconspicuous when the
augmented graph is re-generated in various period and the prediction
performance steadily achieves 96.0% in AUC. and 96.4% in AP.
Efficiency tests. We also compare the efficiency in terms of space
and time with other baselines on Cora and employ the same pa-
rameters reported in the experiment setting section. The results
are presented in Table 4. The host memory usage for two sub-
graph classification-based methods, WP-only, GIC+WP, is gen-
erally higher than representation decoder-based methods, where
WP-only requires around 8,000 MiB in host memory and around
2,300 MiB in GPU memory, GIC+WP requires around 4,950 MiB
in host memory and around 2,393 MiB in GPU. In summary, our
approach achieves the best prediction performance (i.e., an 96.18%
AUC) agasint all these compared approaches while requiring much

less run time compared to WP-only and GIC+WP.

Table 4. Efficiency tests on Cora.

Run
Time (Sec) AUC (%) GPU Mem.

Usage (MiB)
Host Mem.

Usage (MiB)
GCA 41.15 91.72 1,519 3,273
VGAE 36.54 91.98 2,107 4,911
VGNAE 11.69 95.37 1,905 4,355
ARGVA 38.07 92.45 1,903 4,346
GIC 12.72 93.68 2,067 4,692
SEAL 223.41 79.49 1,213 3,765
WP-only 932.40 93.29 2,313 8,174
GIC+WP 939.05 95.90 2,393 4,950
Ours 56.95 96.18 2,056 4,783

6 Conclusion

In this paper, we propose SECRET that adopts SDA for augmenta-
tion by discriminating modified edges based on prediction dispar-
ity and trains the model jointly with a neighborhood structure-aware
contrastive scheme, SCL. Experimental results show that SECRET
outperforms other state-of-the-art baselines in multiple benchmark
datasets. In our future work, we plan to explore the diversity of the
augmented graphs to improve the overall model performance.
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