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Abstract. Federated Learning allows collaborative training with-
out data sharing in settings where participants do not trust the cen-
tral server and one another. Privacy can be further improved by en-
suring that communication between the participants and the server
is anonymized through a shuffle; decoupling the participant identity
from their data. This paper seeks to examine whether such a defense
is adequate to guarantee anonymity, by proposing a novel fingerprint-
ing attack over gradients sent by the participants to the server. We
show that clustering of gradients can easily break the anonymization
in an empirical study of learning federated language models on two
language corpora. We then show that training with differential pri-
vacy can provide a practical defense against our fingerprint attack.

1 Introduction

Federated Learning (FL) is a machine learning paradigm that en-
ables collaborative distributed model training without the need to
share training data [26]. Federated learning usually involves a central
server (analyzer) which coordinates training by i) collecting gradient
updates from local clients, ii) aggregating the updates; and iii) syn-
chronizing the latest model parameters and sending them back to the
clients. In such a way, the data from clients never leaves their sys-
tem, and thus less of their sensitive information is available to the
potentially untrusted parties, including the server and other clients.

Although the training data does not leave clients’ local devices,
they are still required to communicate to the server key information
about the model, namely gradients over their local data from clients
to the server. The implicit information in model parameters and their
updates have been shown to leak private information through attacks
such as membership inference [27] and data reconstruction [15].

Linking data from the same client enables the adversary to perform
stronger attacks such as i) combining additional information, e.g.,
user name, home address, and phone numbers that appeared in dif-
ferent batches; and ii) boosting the attack performance by employing
multiple gradients from the same source. Anonymizing client iden-
tity is believed to defend against such linkage attacks and amplify
the privacy guarantees in distributed and federated learning settings,
as data of an individual client is “concealed” among the data of other
clients [21, 11, 3]. Random data shuffling, performed by a third party
other than the server or clients, can be seen as a simple method to
anonymize the identities of clients and, hence, enhance privacy in
FL, as illustrated in Figure 1. A trusted shuffler is placed between
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Figure 1: Framework of Federated Learning equipped with Encoder,
Shuffler and Analyzer (ESA) [3], which are correlated to Server,
Anonymizer and Clients. The data collected from clients are gradi-
ents of the (language) model indicated by the colored arrows.

clients and the server and operates as follows i) it collects the data
packages with model gradients from clients, ii) it removes identities
thus anonymizing the providers’ identity, and iii) it shuffles data and
sends them to the central server. By delinking data from the same
client the Shuffle module provides a defense against attacks that use
multiple gradients over time. Intuitively, shuffling in FL limits the
effectiveness of many attacks, as the server can only exploit single
gradients rather than a full sequence of client updates from a training
run.

Our work attempts to challenge the anonymization guarantees in
the Shuffle-FL algorithm through a novel fingerprinting attack. In
fingerprinting attack, a curious-but-honest1 service provider records
the gradients from all clients in the training process. We posit that the
gradients from a client contain substantial information that is unique
to that client, and thus provides a unique fingerprint. We propose an
attack based on clustering and greedy match algorithms over pairs
of gradients, in order to recover which data updates came from the
same clients. We evaluate the effectiveness of our fingerprinting at-

1 The server honestly follows the FL protocol but it is curious to learn the
composition of the clients’ datasets.
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tack through extensive experiments on FL language modeling, show-
ing substantially above-chance performance, and in some settings,
perfect linking. As a defense, we apply differential privacy on the
gradients before they are collected by the shuffler or analyzer. Our
study shows that deferentially private gradients reduce the perfor-
mance of fingerprinting attacks, although at a cost to model utility
and training efficiency.

We summarize our contributions as follows:

• To the best of our knowledge, we are the first to propose a finger-
printing attack against the shuffler in the federated learning set-
ting. The shuffled gradients could be grouped by greedy matching
and clustering algorithms and thus traced to the same clients.

• We empirically demonstrate the feasibility of fingerprinting at-
tacks on federated training when training a language model.

• We explore differential privacy as a defense and empirically show
its effectiveness in defending against fingerprint attack, while pro-
viding a privacy-utility trade-off.

2 Related Work

Federated Learning Federated learning is a framework for col-
laboratively training machine learning models [16, 26, 17]. The gen-
eral federated learning framework is composed of i) clients, who
train local models using their data and periodically communicate
the parameter updates to the server, and ii) a server, which aggre-
gates received model updates and synchronizes the new parameters
among the clients across several rounds of training. Federated learn-
ing has many applications [26] including those where (1) training
of advanced deep neural network (DNN) requires a high volume of
data [39, 14] that is unlikely to be owned by a single party; (2) the
data cannot leave client’s devices, for example, when training a diag-
nostic model across multiple institutions to predict clinical outcomes
in patients with COVID-19 while maintaining data anonymity [8].
Language modeling is one of the fundamental tasks in Natural Lan-
guage Processing and FL for language modeling recently attracted
attention in academia and industry [29, 37, 6].

Attacks and Defenses in FL Several security and privacy chal-
lenges have been identified in adapting federated learning.

The first concern is the impact of malicious participants on the
model learning who can backdoor the model to have a specific pre-
diction when a trigger is given in the input [2]. A series of strategies
are proposed to eliminate the confounding contributions from mali-
cious clients, such as certifiably robust models against backdoor in
FL [38] and Krum [4] against Byzantine generals problem [19].

A second critical concern is membership inference [35] that the
attackers can determine if data was utilized in the federated model
training or not [27]. A second critical concern is whether the client’s
local data will be disclosed to other parties in training. More ambi-
tious are data reconstruction attacks, which aim to recover samples
used in training. Methods for inverting gradients were proposed to re-
construct the exact training image from the first linear layer of deep
neural models [12]. The following work recovered the private texts
by first identifying the set of used words and then directly recon-
structing sentences based on beam search [15]. These attacks utilize
the model parameters and their recent updates to infer the training
data.

Common methods of defense are to perturb the parameters or
model updates using differential privacy [1, 23]. Shuffle models were

proposed to enhance the privacy protection in FL [13, 21], as individ-
ual data items are shuffled and thus anonymously hidden in a larger
batch of data which increases the difficulty of discriminating their
usage [3].

Our work belongs to the second challenge and the proposed fin-
gerprinting attack serves as a new threat to FL, specifically aiming at
disabling the privacy amplification of the shuffle module.

3 Fingerprinting Attack

In this section, we first formulate the federated learning framework
with a shuffle module. Then, we describe our proposed fingerprinting
attack.

3.1 Preliminaries

Federated Learning. Federated Learning (FL) trains a machine
learning model f(x; Θ) using data of multiple clients or silos. For
each iteration t ∈ �1..T �, the participating clients k ∈ �1..K� calcu-
late the gradients of the model based on subset samples of their own
data {xk

t },
θkt ← ∇L(xk

t ; Θt) (1)

which often involves performing several iterations of mini-batch
SGD locally on the client. Then, the server aggregates the gradients
by averaging the updates from the clients,

Θt+1 ← Θt − λ · Avg({θkt }). (2)

The procedures for averaging parameters can vary, and we primarily
use FedAvg [25]. The updated parameters are then distributed to the
clients, and the process is repeated for several epochs, until conver-
gence.

Shuffle Module. Encode, Shuffle and Analyze (ESA) [3] is a
framework proposed for amplifying privacy protection by adding a
shuffle module as an anonymizer between client-server communica-
tion. Shuffle module was also proved to provide a better privacy guar-
antee in the federated learning setting when combined with differen-
tial privacy [21]. The shuffle model S anonymizes the client identities
by permuting the data for analysis, i.e., gradients sent from clients to
the server in our case:

S(〈θk〉) = 〈θp(k)〉, (3)

where 〈·〉 is an ordered sequence and p(·) indicates a permutation
function on �1..K�. The shuffle breaks the link between individual
clients and their data. Moreover, the data is mixed with data from
other clients. Accordingly, the server should no longer be able to
exploit the information that several gradients come from the same
source, and their link to the individual client.

The shuffle has no effect on the ‘honest’ computation of the server,
i.e., the server can still perform the aggregated update in Equation 2
based on the shuffled results,

Θt+1 ← Θt − λ · Avg({θp(k)t }) (4)

to produce an identical result as permutation does not affect the av-
erage value of a set,

Avg({θp(k)t }) = Avg({θkt }). (5)
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3.2 Fingerprinting Attack against Anonymization

We hypothesize that the linear layer gradients from the same clients
should be “similar” to each other as i) each client possesses data in
specific domains which decides the distribution of hidden representa-
tion, and ii) these vectors are the main factors in gradient calculation
of corresponding linear layers. If that is the case, the attacker can use
gradients to group data that comes from the same client. In this sec-
tion, we first provide an analysis on the intuition of fingerprinting at-
tacks. Then, we describe our fingerprinting attack methods, based on
standard clustering techniques and a simple greedy match algorithm.
We note that though clustering methods have been used to enhance
the training of FL[7, 34], we use clustering as an adversarial tool to
perform fingerprinting attacks.

3.2.1 Attack Intuition

Inspired by a data reconstruction attack [12], we note that the gra-
dients with respect to the parameters of a linear layer in a neural
network can be used to recover the inputs to that layer.

Definition 1 Given a linear layer,

y = Wx+ b, (6)

where W ∈ R
M×N , x = (x1, · · · , xN )� and y = (y1, · · · , yM )�

are the weight matrix, the inputs and the outputs respectively. The
gradient of W with regard to loss L is defined as

ΔW � ∂L
∂W

. (7)

Proposition 1 The gradient ΔW of a linear layer is associated with
its input x,

∂L
∂W

=
∂L
∂b
· x�. (8)

The proposition is derived by the chain rule of derivation and the fact
that

∂L
∂y

=
∂L
∂b

. (9)

Due to the connection between ΔW and x, we hypothesize that the
gradients ΔW from the same clients are similar to each other, given
that their training data possesses similar textual patterns, e.g., topics
or writing styles. We will show how to measure the similarity of the
gradients in the following discussion.

3.2.2 Distance Measurement

We rely on a distance metric D(θ, θ′) to capture the relation between
the model gradients θ and θ′. Note that gradients from linear layers
ΔW are a subset of overall gradients θ. Inspired by Gradient In-
version [12], we consider the linear layers to conduct fingerprinting
attacks. As the Transformer [36] is the current dominant model ar-
chitecture in NLP, we focus our experiments on this architecture, for
FL fine-tuning of the GPT-2 [31] language model. All parameters are
concatenated into a vector and then normalized. Euclidean distance
is considered in clustering algorithms and negative cosine similarity
is utilized in Greedy Match. The rationality of negative cosine simi-
larity is that it is proportional to the Euclidean distance between the
normalized vectors.

3.2.3 Naive Clustering

The inputs to the clustering are the complete collection of K×T gra-
dient vectors as computed by K clients performing FL for T epochs.
We use gradients of linear layers ΔW k as a subset of θk to construct
the features. Clustering aims to assign the close vectors to the same
group. To verify our design, we consider two representative cluster-
ing methods, K-means Clustering (K-means) [22] and Spectral Clus-
tering (Spectral) [28]. K-means finds cluster centers that minimize
the intra-class variance, which is iteratively optimized by calculating
cluster centroids and data assignments to clusters. Spectral performs
dimensionality reduction on the similarity matrix of the data before
clustering.

3.2.4 Step-wise Greedy Match

Intuitively, gradients from the nearest steps possess the most signal,
as the model has fewer parameter updates between neighboring steps.
We propose to trace the alignments of t ∈ �1..T � training steps with
t+1 steps to group the data from clients. For two neighboring epochs
in the training sequence, we find the optimal alignment between the
K clients’ data from step t and step t + 1. The similarity between
the client gradients from two steps θ(t) and θ(t+1) is measured by
the distance matrix D ∈ R

K×K , Dij = D(θ
(t)
i , θ

(t+1)
j ) where

i, j ∈ �1..K� are party identifiers. Greedy selection attempts to find
the best pairings, by minimizing the distance for each adjacent time
step. This formulation can be solved over the time series of param-
eter vectors to find a step-wise globally optimal alignment through
solving a Linear Sum Assignment Problem using the Hungarian al-
gorithm [18], where M is a matrix with each value Mi,j indicating
a 0-1 assignment between gradients i and j.

min
M

∑
i

∑
j

Di,jMi,j (10)

s.t. ∀i,
∑
j

Mi,j = 1; ∀j,
∑
i

Mi,j = 1;

∀i, j,Mi,j ∈ {0, 1}.
The distance is defined as the negative cosine similarity of two vec-
tors,

Di,j = 1− Sim(θ
(t)
i , θ

(t+1)
j ), (11)

which is proportional to the Euclidean distance between two normal-
ized gradients.

4 Attack Experiments

We conduct experiments on language modeling to show the effect of
fingerprinting attacks.2

4.1 Experimental Settings

Datasets. We evaluate the fingerprinting attack on the language
modeling task using two datasets: 20NewsGroup (News) [20] and
EmpatheticDialogue (Dial) [33]. These datasets are most com-
monly used for text classification, rather than language modeling,
but we use them here as they contain natural data divisions that are
a good match for typical FL scenarios. For News, we distributed the
data to 20 clients, where each client accesses text samples in a sin-
gle topic. For Dial, we include the 70 speakers with more than 288

2 The code and its guideline are available at https://github.com/xuqiongkai/
FingerprintAttack_on_FL.
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utterances from the original dataset, with each speaker comprising a
client. The statistics of the datasets are shown in Table 1.

Table 1: Statistic of 20NewsGroup (News) and EmpatheticDia-

logue (Dial), with number of samples in train and valid sets. The
total number of used samples equals to (#Train+#Valid)×#Clients.

Dataset #Train #Valid #Clients Total

News 512 64 20 11,520
Dial 256 32 70 20,160

Federated Learning. We simulate Federated Learning on an
Nvidia A100 server based on FLSim3. All language models are ini-
tialized by loading a pre-trained GPT-2 model, the learning rate of the
server is selected based on preliminary experiments, and the learning
rate of clients’ local training is set to 0.1 in all our experiments. We
set the maximum sentence length to 40 tokens due to the limitation
of our computational resources. Please see Appendices A and B for
further details. We use stochastic gradient descent (SGD) optimizer
without momentum to update the model parameters for each client.4

Language Model. As the Transformer [36] is the current domi-
nant model architecture in NLP, we focus our experiments on this ar-
chitecture, for FL fine-tuning of the GPT-2 [31] language model. We
customized a smaller GPT model with 4 Transformer layers and pre-
trained it on WikiText101. Please see more details about the model
in Appendix A. Our experiments, focus on the linear layers in feed-
forward modules, which are denoted as fully connected layers (FC)
and projection layers (Proj). All parameters are concatenated into a
vector and then normalized.

Evaluation. We evaluate the attack performance using standard
evaluation metrics for clustering [24].

• Purity Score (Pur.) [24] measures the proportion of the dominant
class over all clusters.

• Rand Index (RI) [32] measures the percentage of the correct de-
cision pairs between all data points.

• Mutual Information (MI) [30] is a measurement of the informa-
tion shared between a clustering result and the ground truth.

4.2 Results

Comparison of fingerprint attack methods. We run 10 epochs
of federated learning of language model on 20NewsGroup and Em-

patheticDialogue, involving all 20 and 70 clients respectively. We
report the performance of fingerprinting attacks in Tables 2 and 3.
The proposed fingerprinting attacks achieve better clustering results
than random baselines. Spectral consistently works better than K-

means on both datasets, confirming the utility of its additional di-
mensionality reduction step. Greedy works the best among all our
methods, achieving perfect grouping results on 20NewsGroup. We
attribute this to its explicit formulation enforcing a balanced parti-
tioning of the data. With more clients in FL, the fingerprinting attack
becomes more difficult as the attacker needs to consider more combi-
nations of potential client-gradient mappings. This is reflected by the

3 https://github.com/facebookresearch/FLSim
4 Momentum or other gradient smoothing methods would necessitate special

treatment in the attack, and would otherwise cause false positive matches.

decrease in clustering performance with the growth of client num-
bers. Nonetheless, Spectral and Greedy still maintain high attack
performance on both datasets.

Impact of the number of training epochs. During training, the
parameters of the language model are continuously updated and syn-
chronized for each epoch. We investigate the influence of the model
dynamic by varying the training epochs in our FL experiments. The
fingerprinting attack performance on News and Dial is illustrated in
Figure 2. There is a clear trend of the attack becoming more difficult
with the increasing number of epochs. We note that larger epoch gaps
mean more difference in model states by the same client; this lead to
more divergent intermediate representations x given as inputs to the
attacked linear layer. The 20NewsGroup dataset shows a clear differ-
ence in efficacy of the methods, with the random performance from
K-means and perfect performance for Greedy, uniformly across all
experiment sizes.

Comparison of feature construction. We are interested in the
impact of feature construction on the success of the fingerprinting
attack. We compare ΔW from the feedforward modules in Trans-
former, using the fully connected layers (FC) and the projection lay-
ers (Proj). All the variations of feature combination and selection of
layers are effective in our attack. Combining both features achieves
the best performance, as demonstrated in Table 4. The results for
layer selection are reported in Table 5. We have not found a layer
that outperforms others by a significant margin; accordingly we use
only the first layer in our primary experiments.

5 Defense on Fingerprinting Attack

In this section, we investigate differential privacy on gradients as a
defense method against fingerprinting attacks. Specifically, we dis-
cuss client-side differential privacy in federated learning.

5.1 Differential Privacy

Differential Privacy (DP) is a framework for capturing privacy-
preserving properties of a mechanism [9].

Definition 2 (Differential Privacy) A mechanism M : D → R
with range R and domain D satisfies (ε, δ) differentially privacy,
if for any two neighboring datasets d, d′ ∈ D and for any subsets
S ⊆ D it holds that

P[(M(d) ∈ S)] ≤ eε · P[(M(d′) ∈ S)] + δ (12)

Informally, the definition captures that changes in a dataset (e.g.,
presence or absence of an individual) do not significantly change the
output of a DP mechanism, and the changes are bounded by parame-
ters ε and δ [10].5

We adopt Differential Privacy for Stochastic Gradient Decent (DP-
SGD) [1] at every client. That is each client performs DP-SGD lo-
cally on their dataset. The algorithm includes two main steps:
1) Clipping the gradients:

θ̄(si)← θ(si)/max
(
1,
‖θ(si)‖
C

)
(13)

5 Parameter δ is preferably smaller than 1/|D|, where |D| indicates the size
of the dataset. In the experiments we set δ to 10−4.
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Table 2: The comparison of fingerprint attack on federated learning with various number of clients (# Clients) on 20NewsGroup based on
purity, rand-index and mutual information (higher means better attack success).

Random K-means Spectral Greedy

# Clients Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

3 0.458 / 0.563 / 0.074 0.667 / 0.699 / 0.547 1.000 / 1.000 / 1.099 1.000 / 1.000 / 1.099

5 0.351 / 0.689 / 0.192 0.400 / 0.481 / 0.500 0.960 / 0.971 / 1.501 1.000 / 1.000 / 1.609

10 0.260 / 0.827 / 0.484 0.200 / 0.264 / 0.325 0.850 / 0.960 / 2.031 1.000 / 1.000 / 2.303

20 0.206 / 0.909 / 0.933 0.100 / 0.138 / 0.199 0.245 / 0.785 / 0.766 1.000 / 1.000 / 2.996

Table 3: The comparison of fingerprint attack on federated learning with various number of clients (# Clients) on EmpatheticDialogue based
on Pur./RI/MI. The number of clients is between 5 to 70.

Random K-means Spectral Greedy

# Clients Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

3 0.458 / 0.563 / 0.074 0.400 / 0.359 / 0.074 0.633 / 0.607 / 0.342 0.500 / 0.600 / 0.181

5 0.351 / 0.689 / 0.192 0.280 / 0.282 / 0.132 0.400 / 0.676 / 0.341 0.580 / 0.770 / 0.584

10 0.260 / 0.827 / 0.484 0.300 / 0.528 / 0.503 0.500 / 0.853 / 1.121 0.510 / 0.881 / 1.123

20 0.206 / 0.909 / 0.933 0.305 / 0.776 / 0.976 0.450 / 0.911 / 1.592 0.500 / 0.939 / 1.761

40 0.170 / 0.954 / 1.486 0.280 / 0.875 / 1.382 0.425 / 0.959 / 2.143 0.445 / 0.967 / 2.305

70 0.148 / 0.973 / 1.984 0.250 / 0.903 / 1.728 0.449 / 0.976 / 2.745 0.497 / 0.983 / 2.983

Table 4: The comparison of features for fingerprinting attacks on
20NewsGroup and EmpatheticDialogue.

Spectral Greedy

Feature Pur./ RI/ MI Pur./ RI/ MI

FC 0.270 / 0.905 / 1.102 1.000 / 1.000 / 2.996
Proj 0.245 / 0.795 / 0.699 1.000 / 1.000 / 2.996

Both 0.275 / 0.900 / 1.034 1.000 / 1.000 / 2.996

(a) 20NewsGroup

Spectral Greedy

Feature Pur./ RI/ MI Pur./ RI/ MI

FC 0.390 / 0.916 / 1.469 0.465 / 0.935 / 1.690
Proj 0.405 / 0.917 / 1.504 0.445 / 0.935 / 1.698

Both 0.465 / 0.912 / 1.610 0.500 / 0.939 / 1.761

(b) EmpatheticDialogue

Table 5: The comparison of fingerprinting attacks on different layers
{1, 2, 3, 4} in transformer models. Both gradients of the connected
layer (FC) and projection layer (Proj) are used. Purity (Pur.), Rand
Index (RI) and Mutual Information (MI) are reported.

Spectral Greedy

Layer Pur./ RI/ MI Pur./ RI/ MI

1 0.275 / 0.900 / 1.034 1.000 / 1.000 / 2.996
2 0.280 / 0.883 / 0.908 1.000 / 1.000 / 2.996
3 0.255 / 0.874 / 0.881 1.000 / 1.000 / 2.996
4 0.285 / 0.881 / 0.962 1.000 / 1.000 / 2.996

(a) 20NewsGroup

Spectral Greedy

Layer Pur./ RI/ MI Pur./ RI/ MI

1 0.465 / 0.912 / 1.610 0.500 / 0.939 / 1.761
2 0.465 / 0.922 / 1.588 0.535 / 0.941 / 1.813
3 0.465 / 0.927 / 1.628 0.520 / 0.942 / 1.869
4 0.445 / 0.928 / 1.583 0.490 / 0.939 / 1.777

(b) EmpatheticDialogue
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(a) News (Pur.) (b) News (RI) (c) News (MI)

(d) Dial (Pur.) (e) Dial (RI) (f) Dial (MI)

Figure 2: The comparison of fingerprinting methods (K-means, Spectral, and Greedy) with 4 to 16 epochs on News and Dial using Purity
(Pur.). Rand Index (RI) and Mutual Information (MI).

Table 6: Clustering performance (Pur./RI/MI) on gradients with DP-SGD on 20NewsGroup, using different clipping bounds C and noise
multipliers σ. Target delta δ = 10−4 and corresponding ε are used to demonstrate the DP budget. We highlight the results according to the
attack performance. The baseline performance of FL without DP-SGD (No-DP) is reported in the captions of sub-tables.

σ = 0.5 σ = 1.0 σ = 1.5
C (10.87, 10−4)-DP (2.216, 10−4)-DP (0.935, 10−4)-DP

50 0.685/0.959/2.283 0.220/0.915/1.033 0.205/0.913/0.930
100 0.215/0.914/0.990 0.225/0.914/1.007 0.210/0.914/0.988
200 0.210/0.914/0.971 0.245/0.916/1.087 0.245/0.915/1.054

(a) Greedy w. No-DP: 1.000 / 1.000 / 2.996

σ = 0.5 σ = 1.0 σ = 1.5
C (10.87, 10−4)-DP (2.216, 10−4)-DP (0.935, 10−4)-DP

50 0.235/0.879/0.816 0.190/0.876/0.846 0.190/0.883/0.733
100 0.180/0.887/0.775 0.200/0.874/0.784 0.205/0.864/0.818
200 0.215/0.858/0.822 0.200/0.876/0.802 0.180/0.879/0.835

(b) Spectral w. No-DP: 0.245 / 0.785 / 0.766

2) Adding noise to gradients:

θ̄ ← 1

L

∑
i

θ̄(si) +N (0, σ2C2I) (14)

where clipping bound C and noise multiplier σ can be chosen to bal-
ance the extent of privacy conferred versus the efficacy of the trained
model. The overall parameters of DP-SGD are calculated according

to [1]. Note that the DP-SGD step is performed at each client after
performing iterative local updates. Clipped and noisy gradients are
then communicated to the server or the anonymizer. Note that since
the server is not trusted, differential privacy is performed at the client.
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5.2 Defense Experiments

We study the effects of DP on gradients by varying the noise mul-
tiplier σ and clipping bound C. The target δ is set to 10−4. The
main results on News are reported in Table 6 and full results on
both datasets are provided in Appendix C. We vary the parameters
of DP, up to the strongest setting ε = 0.935 which corresponds to
noise multiplier σ = 1.5. As expected, the clustering performance of
both Spectral and Greedy is negatively correlated with the privacy
budget, indicating the strong correlation between the extent of differ-
ential privacy and the capability of preventing fingerprinting attacks
on federated learning.

Figure 3: The comparison of various defense methods including
clipping-only (σ = 0), DP-SGD (with varying noise parameters
σ) and the baseline, No-DP FL, based on federated language model
training on 20NewsGroup. The loss on a holdout validation set is
reported.

We further investigate the consequence of using DP-SGD in fed-
erated learning of language models. We study the vanilla FL (No-DP
FL) and various DP-SGD settings on FL by comparing the model
losses (log perplexity) on validation sets, as illustrated in Figure 3.
We observe that some of these models have low utility, particularly
the model with the strongest DP guarantee with σ = 1.5, which be-
gins to diverge after 500 epochs. In the setting where only clipping
is used and no noise is added, σ = 0.0, the model achieves a similar
loss to the No-DP model, albeit with no DP guarantees. Increasing σ
to 0.5 or 1.0 results in about 3 times slower convergence iterations
and 4 times slower running speed for each epoch, but still attains
reasonable generalization performance.

6 Conclusion

In this paper, we evaluate privacy guarantees provided by a shuffle
module if deployed in Federated Learning setting. To this end, we
design a new fingerprinting attack that can link shuffled data updates
across training epochs back to the same user. Our experimental re-
sults show the feasibility of our attack when training language mod-
els on shuffled gradients. DP on gradients is examined to show its
effectiveness in defending against the new fingerprinting attack.

Limitations

Our work proposes an attack technique on the Shuffle module in Fed-
erated Learning, which could be used for malicious purposes. How-
ever, the main purpose of our work is to expose the threat to the re-
search community. We have also discussed DP as a possible defense
method against the new attack. Though differential privacy can alle-
viate the fingerprinting attack, it decreases the performance of feder-
ated learning. Finding methods with a better privacy-utility trade-off
is still an open question. Methods based on Multi-Party Computa-
tion (MPC) [5] can also be seen as defense mechanisms against fin-
gerprinting attacks since clients send their updates in an encrypted
form. However, these methods require other considerations in prac-
tice such as computational costs and participants strictly following
the protocol.

Subsampling is also a widely used technology in federated learn-
ing. It may diminish the performance of Greedy as the one-to-
one alignment constraint does not hold in this case. However, the
clustering-based attacks, i.e., K-means and Spectral, will have less
of an effect, as they do not impose the requirement of an equal num-
ber of participants for each round.

The fingerprinting attack requires the attacker to record all gradi-
ent updates of all clients, which can lead to significant storage costs.
The cost can be reduced with a few efforts: i) using Step-wise Greedy
Match, which only requires storing gradients from the recent two
epochs, and ii) using a single transformer layer instead of all layers
or even a part of a layer, i.e., FC and Proj layers, as demonstrated in
Tables 4 and 5.
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A Pre-trained Language Model Settings

We pre-train a local language model using WikiText101 for 20 epochs. A 4×V100 server is used for pre-training the language model for 8 hr
23 minutes, achieving a final evaluation loss of 4.03. The detailed model and training settings are provided in Table 7 and 8.

Table 7: Hyper-parameters for pre-training.

Optimizer AdamW

Learning Rate 5e-05
Batch Size 24
Adam Beta1 0.9
Adam Beta2 0.999
Adam Epsilon 1e-08

Table 8: Hyper-parameters for language model.

Model Type GPT-2

Embedding Dimension 192
Number of Heads 12
Number of Layer 4
Attention Dropout Rate 0.1
Embedding Dropout Rate 0.1

B Ablation Study on Federated Learning Settings

We compare the fingerprinting attack on federated learning with various learning rates (γ) for server training. All client learning rates are set
to 0.1 in all our experiments. We involve 20 clients and train 10 epochs for both datasets. Although the gradients in Dial are noisier than News,
the overall fingerprinting attack performance is consistently effective. A lower learning rate indicates a higher risk to the fingerprinting attack
on both Dial and News, which means the risk of FL could increase towards the end of training when the learning rate is decayed to a very
small value at this stage. The selected settings in our paper are highlighted with double daggers (‡).

Table 9: The comparison of fingerprint attacks, K-means, Spectral, and Greedy, on Federated Learning with various learning rate (γ). Purity
(Pur.), Rand Index (RI) and Mutual Information (MI) are reported. * indicates K-means does not converge in the experiment.

K-means Spectral Greedy

γ Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

1e-4 0.105 / 0.180 / 0.233 0.235 / 0.871 / 0.815 0.530 / 0.946 / 2.138
1e-5 N/A∗ 0.235 / 0.870 / 0.885 0.840 / 0.974 / 2.500
1e-6‡ 0.100 / 0.138 / 0.199 0.270 / 0.896 / 0.958 1.000 / 1.000 / 2.996

(a) 20NewsGroup

K-means Spectral Greedy

γ Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

1e-5 0.190 / 0.650 / 0.568 0.290 / 0.879 / 1.120 0.330 / 0.921 / 1.299
1e-6 0.185 / 0.606 / 0.514 0.260 / 0.906 / 1.083 0.295 / 0.919 / 1.202
1e-7‡ 0.305 / 0.776 / 0.976 0.450 / 0.911 / 1.592 0.500 / 0.939 / 1.761

(b) EmpatheticDialogue
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C Ablation Study on Differential Privacy Settings

We compare the effect of varying settings of DP-SGD on fingerprinting attack performance. We choose clipping value C ∈ {50, 100, 200}
and noise multiplier σ ∈ {0, 0.5, 1.0, 1.5}.

K-means Spectral Greedy

Clip C Noise σ (ε, δ)-DP Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

No-DP 0.100 / 0.138 / 0.199 0.245 / 0.785 / 0.766 1.000/ 1.000 / 2.996

50 0.0 (∞, 10−4) 0.100 / 0.138 / 0.199 0.280 / 0.875 / 0.937 1.000 / 1.000 / 2.996
50 0.5 (10.87, 10−4) 0.145 / 0.211 / 0.293 0.235 / 0.879 / 0.816 0.685 / 0.959 / 2.283
50 1.0 (2.216, 10−4) 0.145 / 0.210 / 0.289 0.190 / 0.876 / 0.846 0.220 / 0.915 / 1.033
50 1.5 (0.935, 10−4) 0.160 / 0.578 / 0.326 0.190 / 0.883 / 0.733 0.205 / 0.913 / 0.930

100 0.0 (∞, 10−4) 0.100 / 0.138 / 0.199 0.265 / 0.864 / 0.943 1.000 / 1.000 / 2.996
100 0.5 (10.87, 10−4) 0.145 / 0.210 / 0.289 0.180 / 0.887 / 0.775 0.215 / 0.914 / 0.990
100 1.0 (2.216, 10−4) 0.145 / 0.210 / 0.288 0.200 / 0.874 / 0.784 0.225 / 0.914 / 1.007
100 1.5 (0.935, 10−4) 0.170 / 0.538 / 0.359 0.205 / 0.864 / 0.818 0.210 / 0.914 / 0.988

200 0.0 (∞, 10−4) 0.100 / 0.138 / 0.199 0.265 / 0.877 / 0.964 1.000 / 1.000 / 2.996
200 0.5 (10.87, 10−4) 0.145 / 0.210 / 0.289 0.215 / 0.858 / 0.822 0.210 / 0.914 / 0.971
200 1.0 (2.216, 10−4) 0.175 / 0.470 / 0.383 0.200 / 0.876 / 0.802 0.245 / 0.916 / 1.087
200 1.5 (0.935, 10−4) 0.165 / 0.584 / 0.373 0.180 / 0.879 / 0.835 0.245 / 0.915 / 1.054

Table 10: The comparison of various DP-SGD with No-DP on 20NewsGroup.

K-means Spectral Greedy

Clip C Noise σ (ε, δ)-DP Pur./ RI/ MI Pur./ RI/ MI Pur./ RI/ MI

No-DP 0.305 / 0.776 / 0.976 0.450 / 0.911 / 1.592 0.500 / 0.939 / 1.761

50 0.0 (∞, 10−4) 1.000 / 1.000 / 2.996 1.000 / 1.000 / 2.996 1.000 / 1.000 / 2.996
50 0.5 (12.67, 10−4) 1.000 / 1.000 / 2.996 1.000 / 1.000 / 2.996 1.000 / 1.000 / 2.996
50 1.0 (3.095, 10−4) 0.325 / 0.793 / 1.144 0.740 / 0.940 / 2.239 0.910 / 0.987 / 2.812
50 1.5 (1.426, 10−4) 0.175 / 0.483 / 0.425 0.290 / 0.896 / 1.087 0.295 / 0.919 / 1.238

100 0.0 (∞, 10−4) 0.950 / 0.993 / 2.913 0.510 / 0.860 / 1.972 1.000 / 1.000 / 2.996
100 0.5 (12.67, 10−4) 0.645 / 0.935 / 2.067 0.860 / 0.973 / 2.586 0.980 / 0.997 / 2.946
100 1.0 (3.095, 10−4) 0.150 / 0.235 / 0.315 0.205 / 0.895 / 0.854 0.240 / 0.915 / 1.054
100 1.5 (1.426, 10−4) 0.170 / 0.577 / 0.357 0.205 / 0.896 / 0.876 0.225 / 0.915 / 1.047

200 0.0 (∞, 10−4) 0.715 / 0.940 / 2.457 0.795 / 0.961 / 2.632 0.950 / 0.995 / 2.926
200 0.5 (12.67, 10−4) 0.190 / 0.568 / 0.499 0.230 / 0.898 / 0.958 0.250 / 0.916 / 1.057
200 1.0 (3.095, 10−4) 0.190 / 0.638 / 0.561 0.225 / 0.889 / 0.934 0.255 / 0.916 / 1.097
200 1.5 (1.426, 10−4) 0.210 / 0.624 / 0.628 0.280 / 0.905 / 1.097 0.295 / 0.919 / 1.193

Table 11: The comparison of various DP-SGD with No-DP on EmpatheticDialogue.
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