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Abstract. Multi-agent reinforcement learning commonly uses a
global team reward signal to represent overall collaborative perfor-
mance. Value decomposition breaks this global reward into esti-
mated individual value functions per agent, enabling efficient train-
ing. However, in sparse reward environments, agents struggle to as-
sess if their actions achieve the team goal, slowing convergence. This
impedes the algorithm’s convergence rate and overall efficacy. We
present IPERS, an Individual Prioritized Experience Replay algo-
rithm with Subgoals for Sparse Reward Multi-Agent Reinforcement
Learning. IPERS integrates joint action decomposition and priori-
tized experience replay, maintaining invariance between global and
individual loss gradients. Subgoals serve as intermediate goals that
break down complex tasks into simpler steps with dense feedback
and provide helpful intrinsic rewards that guide agents. This facili-
tates learning coordinated policies in challenging collaborative envi-
ronments with sparse rewards. Experimental evaluations of IPERS in
both the SMAC and GRF environments demonstrate rapid adaptation
to diverse multi-agent tasks and significant improvements in win rate
and convergence performance relative to state-of-the-art algorithms.

1 Introduction

Multi-agent reinforcement learning (MARL) constitutes a transfor-
mative development in artificial intelligence, involving multiple au-
tonomous agents who cooperate and learn within a shared environ-
ment to fulfill a common goal while simultaneously receiving collec-
tive rewards. It has captivated the interest of myriad researchers [8].
However, integrating reinforcement learning principles into multi-
agent systems (MAS) presents several challenges. In a cooperative
MAS [20], agents collaborate to realize a common goal, emphasiz-
ing group rewards over individual ones. Individual rewards gauge an
agent’s solitary contribution to the environment, while group rewards
assess the entire team’s success in accomplishing the given task. In
MARL, centralized training with decentralized execution (CTDE)
[19] has been the most prevalent paradigm. However, due to the lack
of a central controller during the execution phase, an agent cannot
ascertain its contribution to global task completion. During training,
agents may struggle to learn and acquire optimal strategies effec-
tively when reward signals are deferred until the event’s conclusion
and sparse rewards are granted upon task completion.
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Reward sparsity is often a pervasive challenge [18] in multi-agent
systems. Consequently, investigating techniques to ensure the sta-
bility or enhancement of algorithmic performance in such environ-
ments becomes essential for addressing real-world tasks [4, 33, 30].
The trial-and-error reward model in reinforcement learning typically
involves substantial overhead costs during strategy revisions. As a
result, optimizing learning in practical MARL implementations re-
lies on augmenting the training convergence, bolstering experience
sampling efficiency, and effectively capitalizing on experience. In-
trinsic rewards [26, 5, 32, 14] based on goal-oriented value functions
have been used to address sparse rewards in reinforcement learning.
These intrinsic rewards can be utilized to train value networks by
sampling experiences from a replay buffer. Furthermore, in multi-
agent reinforcement learning, the global team reward represents the
overall performance of the entire team of agents. Individual rewards
for each agent can be estimated from a shared team reward signal
[12]. However, there is a trade-off between optimizing the global
team reward and optimizing individual rewards, representing indi-
vidual agents’ performance. In addition to intrinsic rewards, past ex-
periences may hold significant value. Agents can leverage their past
experiences to enhance the state transition of the current model. Even
in environments where rewards are sparse, agents can acquire effec-
tive behavioral strategies. However, not all prior experiences hold
equal significance for agents [25, 21]. Thus, it is beneficial to de-
velop non-uniform sampling methods in lieu of uniform sampling.

This study proposes a novel multi-agent reinforcement learn-
ing approach, named Individual Prioritized Experience Replay with
Subgoals for Sparse Reward Multi-Agent Reinforcement Learning
(IPERS), to address the problem of diminished training efficiency in
multi-agent systems due to sparse rewards. IPERS utilizes prioritized
experience replay to select valuable individual agent transitions from
shared experiences. It identifies subgoals for each agent by consid-
ering both local and global Q-values to guide exploration. Intrinsic
rewards are incorporated alongside sparse environmental rewards to
mitigate the impact of sparse external signals. Our contributions can
be summarized as follows:

• We propose decoupling the joint observation and action data into
individual transitions for each agent, allowing for the isolation of
their respective attributes. Furthermore, we identify state transi-
tions characterized by substantial TD-errors using prioritized ex-
perience replay to select the most useful experiences for training
each agent’s policy. This helps to speed up the learning process

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230586

2760



and concurrently enhance the convergence.
• We introduce decentralized training on individual experiences that

employs intrinsic rewards based on a learned goal-conditioned
value function. This facilitates off-policy learning tailored to each
agent using their own experiences. Subgoals are utilized to shape
the intrinsic rewards for individual experiences that can promote
exploration and accelerate learning.

• We evaluate the proposed IPERS algorithm on different MAS
tasks, including both dense and sparse reward settings, using the
SMAC and Google research football environments. Sparse-reward
settings are particularly challenging, requiring agents to coordi-
nate actions for extended periods before receiving any rewards.
Experimental results show that the IPERS algorithm consistently
outperforms four state-of-the-art methods in terms of convergence
speed and success rate across all scenarios.

2 Related work

Multi-agent reinforcement learning is a dynamic field dedicated to
developing agents capable of interacting and collaborating in com-
plex environments. Value decomposition methods [29] play a crucial
role in this pursuit by breaking down the global value function into
individual value functions tailored to each agent. Sunehag et al. [29]
propose the Value Decomposition Network (VDN) algorithm that de-
composes the joint action value function into the sum of each agent’s
action value function. However, the VDN algorithm assumes that all
agents contribute equally to the global value, making the linear de-
composition method impractical for complex tasks. To overcome this
limitation, Rashid et al. [24] proposed QMIX, extending to nonlinear
integrals and allowing varied agent contributions, despite potential
limitations in fitting the value function accurately. Notable progress
has been made with other algorithms like QTRAN [27] and Qatten
[34]. However, value decomposition algorithms may struggle with
sparse rewards and delayed reward signals, resulting in credit assign-
ment problems and action-reward association difficulties. Therefore,
it is crucial to exercise caution in using value decomposition algo-
rithms to ensure optimal decision-making.

The adoption of experience replay [35] in reinforcement learning
can offer a solution to the issues of convergence speed and poor per-
formance that stem from the absence of reward signals. Experience
replay involves reusing past transformation data to update the present
strategy. It aims to enhance data utilization, accelerate learning effi-
ciency, and avert long-term exploration by agents in the environment,
all of which can significantly compromise algorithmic performance.
Uniform sampling was the preferred sampling method in early expe-
rience replay, but it fails to account for the variations in each transfor-
mation. Intuitively, transitions with higher learning values should be
sampled with greater frequency. Several replay strategies have been
developed in single-agent reinforcement learning [28, 13, 25], yet
prioritized experience replay (PER) [25] remains the most success-
ful approach. PER uses TD-error to measure state transitions’ sig-
nificance, calculates priorities, and replays more critical state transi-
tions at higher frequencies. However, in MAS, agents receive joint
rewards from the environment, and it can be difficult to discern their
contributions to these joint rewards. Overcoming the credit assign-
ment problem and comprehending individual agents’ contributions
to joint rewards are crucial. Distributed prioritized experience re-
play [10] extends PER to allow decentralized agents to indepen-
dently collect and prioritize transitions based on TD error for focused
sampling. Importance sampling weights, which correct bias in mini-
batch training, are used in this process. However, this approach re-

quires increased communication for global experience sharing and
may lack flexibility for global optimization. Remember and forget
for experience replay [22] utilizes the PER method, tailored explic-
itly for multi-agent RL algorithms. Nevertheless, the results suggest
that these approaches could be suboptimal, indicating that further
improvements can be useful for experience replay in multi-agent re-
inforcement learning.

On the other hand, the efficacy of an agent’s exploration can be sig-
nificantly enhanced by allocating suitable subgoals [31, 17, 3, 2, 14].
Wang et al. [31] adopted a hierarchical approach, classifying the
learning strategies of agents into high-level and low-level types. The
former assigns pertinent subgoals to the agent, while the latter guides
the agent in executing goal-related actions autonomously. Chen et
al. [3] view the allocation of subgoals as a task allocation problem
with limited resources in linear programming. The resulting solution
assigns agents to subgoals, after which a universal multi-agent re-
inforcement learning algorithm completes the subgoals. Therefore,
appropriate and effective subgoal allocation can significantly im-
prove algorithm performance and accelerate convergence. Jeon et al.
[14] address sparse reward by utilizing intrinsic rewards based on a
learned goal-conditioned value function to train individual value net-
works by sampling experiences from a shared replay buffer. Liang
et al. [17] introduced a two-layer decision-making scheme, where
the high-level strategy solves the problem of goal allocation, and
the low-level strategy facilitates agent collaboration in the pursuit of
completing tasks. Specifically, agents are assigned to modules with
akin subgoals, optimizing subgoal completion through collaboration.

To improve convergence performance in the absence of reward sig-
nals, the prioritized experience replay method with subgoals can be
employed. Notably, prioritized experience replay and subgoals have
shown promise [13, 25, 1, 31, 3] in enhancing the performance of re-
inforcement learning algorithms, and further investigation is needed
to apply these methods in multi-agent settings effectively.

3 Background

Decentralized Partially Observable Markov Decision Process: A
cooperative multi-agent task with N agents can be represented as
a decentralized partially observable Markov decision process (Dec-
POMDP) [23], wherein each agent individually selects actions based
on its local observations. We describe the Dec-POMDP using tuple
G = 〈S,A, P,R,Ω, O, γ,N〉. Here, S is the state space, A is the
action space, P is the transition probability function, R is the reward
function, Ω is the set of observations made by agents, O is the condi-
tional observation probability, γ is the discount factor, and N is the
number of agents. At each time step, each agent i ∈ [1, N ] selects an
action ai ∈ A. This choice leads to an environmental transition prob-
ability P (s′|s, a), representing the likelihood of transitioning from
the current global state s to the next global state s′. Due to partial
observability, agent i makes an observation oi ∈ Ω following the
conditional observation probability O(o|s′, a) at each time step.

The action ai
t of agent i is determined by its policy πi(a

i
t|oit),

where oit is the local observation of agent i at time t. The policies
of all agents collectively form a joint policy π = (π1, ..., πN ). The
objective is to maximize the expected global reward E

[∑∞
t=0 γ

trt
]

by optimizing the joint policy π. Here,
[∑∞

t=0 γ
trt

]
denotes the dis-

counted return, and rt is the global reward at time step t based on
the reward function R(s, a) shared by agents. The discount factor,
γ, decides if an agent prefers immediate rewards (γ = 0) or values
long-term gains more (γ = 1). The value of a future reward dimin-
ishes based on γ and the time until it is received.
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4 Methodology

We propose Individual Prioritized Experience Replay with Subgoals
for Sparse Reward Multi-Agent Reinforcement Learning (IPERS),
which utilizes individual prioritized experience replay and subgoal-
oriented intrinsic rewards to address the reward sparsity issue in
multi-agent reinforcement learning. Figure 1 illustrates the diagram-
matic representation of the IPERS architecture.

Figure 1. The overall process of the IPERS Method.

There are three modules in the IPERS scheme. The Individual
Prioritized Experience Replay module starts by sampling training
episodes (Episodem) from the Replay Buffer using a normal distribu-
tion. Each episode contains the joint observation and action informa-
tion from timestep 1 to t, denoted by {χ1, . . . , χt}. The joint infor-
mation, χt, can be decomposed into distinct observation and action
data relevant to the individual agent, where χi contains the individ-
ual observation and action information, {oi, ai}, for agent i over all
timestep. Then, we incorporate a prioritized experience replay based
on individual agents’ χi. The prioritized experience replay assigns
a priority to each state transition. This approach allows for a focus
on the most beneficial experiences of each agent, thereby improv-
ing sample efficiency. The internal structure of each agent is a GRU
network that processes the observation and action information, as
shown in Fig. 1. Upon receiving the Qi

t, these values are sent to the
Mixing network, which enforces consistency constraints to ensure
each agent’s action contributes to the overall task. These mandatory
consistency constraints are:

∂Qtot

∂Qi
≥ 0, ∀i ∈ (1, 2, ..., N) (1)

where Qtot represents the joint action-value function, and Qi repre-
sents the action-value function of agent i, for i ∈ [1, N ]. Equation (1)
ensures that global and individual rewards are non-negative. Finally,
we obtain the global Q value, Qtot, through the Mixing network.

In the Individual Subgoals module, agent i first leverages the in-
dividual Q and global Qtot to identify the timestep that maximizes
the Q value. The observation information oig corresponding to this
maximizing timestep is established as the target subgoal observation
for the agent.

In the Action-Oriented State Representations module, we integrate
a representation network within each agent to efficiently progress
each agent toward its designated subgoal observation oig . This mod-
ule inputs the current observation oit and the target subgoal observa-
tion oig . It then evaluates the actionable distance between the agent’s
current and goal state encodings to define an intrinsic reward that

facilitates faster convergence to the goal observation state oig . The
intrinsic rewards provide learning signals to aid agents in reaching
subgoals that maximize long-term team performance in a sparse re-
wards environment.

4.1 Individual Prioritized Experience Replay

Figure 2 depicts the Individual Prioritized Experience Replay pro-
cess, where agents receive a shared global reward after joint transi-
tions. We decompose the joint rewards among individual agents and
then derive a series of state transitions from the joint state transitions.
Each state transition’s TD error is calculated to evaluate its impor-
tance. A state transition with a high TD error implies that learning
from the current model would be valuable, making it more likely
to be chosen during training. However, the agents receive a shared

Figure 2. The process of decomposing joint actions and using individual
prioritized experience replay.

global reward after joint transitions, making it challenging to dis-
tinguish the usefulness of each agent’s individual experiences, espe-
cially when each agent plays a different role or has different responsi-
bilities within the system [11]. To tackle this challenge, we employ a
local utility network for each agent to get Qi, an estimate drawn from
the agent’s observational data. But each agent’s individual Q value
is an estimate based on their behavior and may not truly depict the
outcome of the team’s actions. We employ the Invariance of Gradient
to optimize agent networks using decomposed personal experiences
and corresponding losses Li for each agent i, as proposed in [12].
Therefore, our method utilizes experience decomposition using in-
dividual samples while preserving the original optimization goal, as
given by:

∂Ltot

∂θp
=

N∑
i=1

∂Li

∂θp
, (2)

where θp represents the parameters of the local network, Ltot is the
loss of Qtot defined as

Ltot(θ) = [Rtot
t + γ ·max

a′ Qtot(st+1, a
′|θ−)−Qtot(st, at|θ)]2,

(3)
where γ is the discount factor, Qtot(st, at|θ) represents
the global Q-value for state st with joint action at, and
maxa′ Qtot(st+1, a

′|θ−) is the maximum target global Q-value at
the next state st+1 over all joint actions a′. Rtot

t denotes the shared
global reward at time step t. Additionally, due to the sparsity of the
testing environment, we propose incorporating an intrinsic reward
for each agent to the global reward. The definition of Rtot

t can be
give by

Rtot
t = rex,t +

N∑
i=1

riin,t,
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where t denotes the timestep, rex,t is the external rewards from the
environment, riin,t is the intrinsic rewards as defined by

riin,t = −λ ·
∥∥∥φi(o

i
t)− φi(o

i
g)
∥∥∥
2
, (4)

where λ is a hyperparameter and λ ∈ [0, 1), φi, represents the rep-
resentation model explained in Section 4.3, and its parameters are
optimized based on the actionable distances. Here, oit denotes the
current observation information of agent i at timestep t, while oig is
the goal observation information. The network of agent i is updated
using the individual TD-loss, Li, defined as follows:

Li(θp) = [rit + riin,t + γ ·max
a′i

Qi(sit+1, a
′i|θ−p )−Qi(sit, a

i
t|θp)]2,

(5)
where rit is the estimated individual reward for agent i, Qi(sit, a

i
t|θp)

is the individual Q-value for agent i’s state sit and action ai
t, and

maxa′i Qi(sit+1, a
′i|θ−p ) is the Maximum target individual Q-value

at agent’s next state sit+1 over actions a′i.
By applying partial derivatives to θp from Eq. (3), we enable the

transmission of team loss gradients through the mixing network to
the agent’s parameters. This process can be given by:

∂Ltot

∂θp
=

∂Ltot

∂Qtot
·

N∑
i=1

(
∂Qtot

∂Qi
· ∂Q

i

∂θp

)

= 2(Rtot
t + γ ·max

a′i
Qtot −Qtot) ·

N∑
i=1

(
∂Qtot

∂Qi
· ∂Q

i

∂θp

)
.

(6)
Similarly, we employ Eq. (5) to compute the partial derivatives of θp:

N∑
i=1

∂Li

∂θp
=

N∑
i=1

∂Li

∂Qi
· ∂Q

i

∂θp

=
N∑
i=1

2(rit + riin,t + γ ·max
a′i

Qi −Qi) · ∂Q
i

∂θp
.

(7)

By substituting (6) and (7) into (2) and rearrange terms, we obtain:

rit+riin,t = (Rtot
t +γ ·max

a′ Qtot
t −Qtot

t )· ∂Q
tot
t

∂Qi
t

−γ ·max
a′ Qi

t+Qi
t.

(8)
Equation (8) illustrates that by estimating rti + riin,t in this manner,
the global experience can be decomposed into individual experiences
whilst preserving parity with the initial optimization goal.

Moreover, we integrate the decentralized prioritized experience re-
play [10] for each agent as a means to enhance the experience replay
process. Each agent interacts independently with the environment
and stores transitions in a local replay buffer. Transitions are priori-
tized based on the TD error derived from the rewards as follows:

ξi = (rit + riin,t) + γ ·max
a′ Qi

t −Qi
t,

where ξi is the TD error for the state transitions of agent i. The tran-
sition is sampled with a probability denoted by P (χi

j), which can be
expressed as:

P (χi
j) =

(pij)
σ∑

k (p
i
k)

σ , (9)

where χi
j refers to the j-th experience transition for agent i, and pij

is the priority of transition j and pij = |ξij | + ε with ε as a small
constant to avoid zero TD-error. σ in Eq. (9) is a hyperparameter
controlling the degree of prioritization. When the degree of priority

σ = 0, it degenerates into a uniform sampling case. To correct bias,
importance sampling weights [25], ωi

j are used and is defined as

ωi
j = N

{
(N · P (χi,j))

−β
}
,

where N{·} is the normalization to its maximum value operation,
and N is the size of the agent’s replay buffer. The hyperparameter
β is the exponent that controls the amount of importance sampling
correction applied and is set to 0.6 in this study.

Subsets of transitions with priorities are shared across agents pe-
riodically. Received transitions are added to the local replay buffer
of each agent with updated priorities. Agents then sample from a
diverse shared memory, despite decentralized interaction. The ex-
change period determines the level of decentralization, with frequent
exchanges resembling centralized replay and infrequent ones main-
taining decentralization. Prioritized experience replay allows each
agent, with its unique experiences, to sample key experiences for
policy updates. TD error from each experience determines the sam-
pling priority, shaping a prioritization sampling distribution based on
the agent’s unique experiences. This approach streamlines training
individual agents’ networks, drawing exclusively from each agent’s
experience buffer to focus on the most beneficial encounters.

4.2 Individual Subgoals based on Q-Learning

Subgoals have become a popular and effective technique [1] in rein-
forcement learning due to their utility in decomposing complex tasks
into simpler steps. Subgoals offer more frequent reward signals by
providing intermediate goals, accelerating learning more effectively
than sparse episode completion rewards. IPERS selects multiple ef-
fective subgoals for agents from experience episodes by considering
their local and global Q-values. The subgoals are generated using
intrinsic network models, where models are learned to predict states
with high intrinsic motivation and select these as subgoals. Figure 3
illustrates the allocation process of subgoals.

Replay Buffer
Episode1

Episode2

Episodem

Episodem+1

Episodem+2

Agent1

Agent2

Agent3

AgentN

Local Utility 

Network 1Local Utility 

Network 2Local Utility 

Network 3
Local Utility 

Network N

Mixing 

Network

Agent1

Agent2

Agent3

AgentN

Agent1

Agent2

Agent3

AgentN

(oi,ai)

Qi

Generate 

Subgoals

Subgoal of 

individual agent

Qtot
GRU1

GRU2

GRU3

GRU4

Q11 Q12 Q13 Q1t-1 Q1t

Figure 3. Subgoal Generation in the IPERS Algorithm

Upon randomly selecting training episodes for agents from the re-
play buffer, each agent’s local observations and actions are input to
its individual Q network, generating the local Q-value Qi

t for each
timestep t. Subsequently, the Mixing network receives the Q-values
Qi

t for the N agents and outputs the global Q-value Qtot
t for each

timestep. Ultimately, the local and global Q-values are considered to
generate the subgoals for each agent throughout the episode. The ob-
jective is to predict the timestep ti that maximizes the weighted sum
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of both Qi
t and Qtot

t . We introduce a policy network π(t|Q; θ) that
selects subgoals by sampling from a learned distribution over poten-
tial subgoals conditioned on the current state. The policy is trained
via gradients to maximize the expected return of the sampled sub-
goals according to the goal-conditioned value function. Let π(t|Q; θ)
be a policy model parameterized by θ. This model is implemented as
a GRU network that encodes the sequences of Q-values. The objec-
tive is to maximize the expected return J(π):

J(π) = Et∼π[α ·Qi(oit) + (1− α) ·Qtot(ot)],

where the return for timestep t is the weighted sum of local and
global Q-values by the parameter α and can be optimized using the
policy gradient:

∇θJ(π) = Et∼π[(J(t)− b)∇θ log π(t|Q; θ)],

where b is a baseline value to reduce gradient variance, J(t) is the re-
turn for timestep t, and ∇θ log π(t|Q; θ) is the gradient of the policy
model. Once the subgoal state g∗ is selected, the next step is produc-
ing the corresponding subgoal observation oig∗ from the perspective
of the agent. we can derive the goal state oig∗ achieved by the agent
upon completing the subgoal.

Training the policy with gradients allows stochastically explor-
ing diverse subgoals, adapting to changing environments, and learn-
ing complex multi-modal selection strategies tailored to the task.
By predicting subgoals that maximize local Q-value from Q-value
sequences, we can generate personalized subgoals tailored to each
agent’s learning progress.

4.3 Learning Action-Oriented State Representations

Learning action-oriented state representations [7, 14] is well-
motivated for reinforcement learning as they can simplify state and
action spaces, thereby enhancing learning efficiency. We aim to
extend action-oriented state representations to decentralized multi-
agent reinforcement learning. These representations can simplify
complex joint state and action representations and capture essential
dynamics and dependencies for collaborative behavior. Taking in-
spiration from [7], we define the actionable distance as the function
of the Q value of individual observations and actions. Q-values are
ideally suited for representation learning in multi-agent reinforce-
ment learning due to their action-centric signal. Available during the
multi-agent learning process, Q-values are a ready, computation-free
signal, improving over time to provide a progressively useful learn-
ing signal. Our actionable distance, Dact, is defined as:

Dact

(
Qi

t, Q
i
g∗
)
= e−1−ρ,

where ρ is the correlation coefficient [6] that can be calculated as:

ρ =
cov(Qi

t, Q
i
g∗)

σ(Qi
t) · σ(Qi

g∗)
,

where cov(·) denotes the covariance function, and σ(·) denotes the
standard deviation of the random variable over all possible actions.
Dact provides a supervised training signal to optimize the represen-
tation model φi(o

i
t), where oit denotes the observation for agent i

at time t, and distances in φi(o
i
t) reflect functional similarity. This

enables using φi(o
i
t) for intrinsic rewards based on the distance. The

loss function LD(φi) is defined to optimize the representation model
φi(o

i
t) by matching distances in the representation space to the ac-

tionable distances Dact, and it is defined as follows:

LD(φi) = Eoit

[∥∥∥φi(o
i
t)− φi(o

i
g)
∥∥∥
2
−Dact(o

i
t; o

i
g)
]2

, (10)

where the representation model φi(o
i
t) is trained to capture an

action-oriented representation of the observation factors for decision-
making.

The correlation between Q-value distributions for subgoal obser-
vations provides a statistical relationship capturing the subgoal de-
pendencies, serving as a valuable measure for representation learn-
ing. Since the representation distances are optimized to match the
actionable distances, the intrinsic reward correlates to the underlying
reachability and functional similarity between observations in terms
of required actions. Our intrinsic reward is given as in Eq. (4) based
on the representation model φi(o

i
t). This reward would incentivize

the agent to take actions that bring it closer to the goal, helping to
guide its learning process and potentially speeding up the overall
training process.

4.4 Overall Training and Evaluation

We integrate three methods to execute the overall training. Firstly,
experiences are sampled from the replay buffer to optimize the team
loss and update the parameters of the mixing network. The loss func-
tion, L(θ, φi), is defined by integrating Eq.(3) and (10):

L(θ, φi) = Ltot(θ) +
N∑
i=1

λD · LD(φi)

=
[
Rtot

t + γ ·maxQtot
t (st+1, a

′)−Qtot
t (st, at)

]2

+
N∑
i=1

λD · Eoit

[∥∥∥φi(o
i
t)− φi(o

i
g)
∥∥∥
2
−Dact(o

i
t, o

i
g)
]2

,

where L(θ, φi) serves to refine the prediction of Qtot using the shared
global reward, while λD acts as a hyperparameter that regulates the
weight of the reconstruction loss, typically a small value preventing
the collapse of representations.

Next, the joint experiences are decomposed into individual expe-
riences. The TD error from each experience determines the sampling
priority, thereby shaping a priority sampling distribution based on the
agent’s unique experiences. Consequently, the algorithm optimizes
each agent’s network parameters through Lind(θp), as defined by

Lind(θp)

=
∑
j

ωi
j ·

[
rij + riin,j + γmaxQi

j(sj+1, a
′)−Qi

j(sj , a)
]2

,

where j is the index of the agent’s experience transition. This loss
function allows each agent to learn state transitions that benefit its
model and improve the convergence performance. During training,
we utilize Qi

t in conjunction with the global Qtot value to identify
subgoals. Once each agent’s subgoal is determined, we employ the
actionable distance representation φi to generate the intrinsic rewards
riin,t for each agent, guiding the agent’s behavior and learning, even
in sparse reward environments.

In the evaluation phase, every agent i independently employs its
learned policy, sourced from its network parameters. This facilitates
decentralized execution, where the agents determine actions solely
based on their local observations and respective policies.
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5 Experiments

To assess the effectiveness of the proposed approach, we have con-
ducted experiments using the Starcraft II multi-agent environment
(SMAC) [15] and Google research football (GRF) environment [16].
We evaluate our method in SMAC across four maps with vari-
ous difficulties: 3m (easy), 3s_vs_3z (normal), MMM (normal),
and 10m_vs_11m (hard). We employ both dense and sparse re-
ward settings in these scenarios. We also examine IPERS in two
distinct GRF scenarios: a 3_vs_1 setup with a goalkeeper and
a challenging counterattack scenario. In this case, only SCOR-
ING rewards are applied to simulate a sparse reward situation. To
benchmark the performance of our proposed algorithm, we com-
pare our IPERS against four state-of-the-art multi-agent reinforce-
ment learning algorithms, including PER [25], QMIX [24], MASER
[14], and DIFFER [12]. The codes of IPERS for SMAC and GRF
are also available at https://github.com/zyfdesign/IPERS-SMAC and
https://github.com/zyfdesign/IPERS-GRF.

5.1 Experimental settings

Table 1 summarizes the reward settings for SMAC. Both the dense
and sparse reward scenarios allocate a positive reward of 200 points
to the agent when all enemy units are defeated. In the dense reward

Table 1. SMAC Reward Settings
Dense reward Sparse reward

Defeat all enemies +200 +200
Defeat an enemy +10 0
One teammate died −5 0
Enemy’s Health -Enemy’s Health 0
Teammate’s Health +Teammate’s Health 0

scenario, the agent obtains an additional 10 points for each enemy
unit it defeats and is penalized by 5 points when a teammate falls.
In the end, the agent’s reward is adjusted based on the remaining
health of enemies and teammates. The agent’s reward is decreased
by the enemy’s remaining health points and increased by the remain-
ing health of its teammates. On the other hand, in the sparse reward
setting, the agent is not rewarded or penalized for defeating individ-
ual enemy units or losing teammates. Furthermore, the final reward
calculation disregards the health statuses of both allies and enemies.
Under these conditions, the agent can only earn rewards by elim-
inating all enemy units, thereby securing a total of 200 points. The
parameter α is initialized to 0.5 for an equal blend of local and global
Q-values, enabling the policy gradient to learn the task-specific bal-
ance during training. The parameter λ is set to 0.03 and λD is 0.001.
Proper balancing through an ablation study grid-searching λ and λD
have been evaluated for the impact on overall training efficiency and
final performance.

In GRF environments, there are two reward types: SCORING and
CHECKPOINT. SCORING gives a -1 reward for scoring a goal and
a negative reward when the other team scores. Its effects may not
be apparent in early training stages due to the need for a long se-
quence of events. CHECKPOINT tackles the sparsity issue by pro-
viding dense, incremental rewards to reinforce key sub-goals. How-
ever, it is deactivated in our experiments to simulate a sparse rewards
environment.

5.2 Experimental results

The results for two different reward settings are depicted in this sec-
tion. We repeated experiments five times for each map to maintain

reliability and consistency. The solid line shows the average value of
all trials, while the upper and lower boundaries signify the maximum
and minimum values from the five experiments.

5.2.1 The performance in SMAC tasks

Results in the dense reward setting: Fig. 4 compares IPERS with
four state-of-the-art MARL algorithms on SMAC maps of vary-
ing difficulty levels. IPERS exhibits rapid convergence during early
stages of rising complexity. While all algorithms show similar suc-
cess rates on simpler maps, IPERS excels on more challenging ones.
On the Easy 3m map, IPERS reaches convergence at half a mil-
lion steps with an average win rate of around 95%, outperforming
MASER and PER with a 90% win rate at the same point. QMIX
and DIFFER take one million timesteps to achieve an average 90%
win rate. For the Normal 3s_vs_3z and MMM maps, IPERS achieves
an average win rate of over 98% after one million steps, surpassing
MASER and QMIX with their 90% average win rates at convergence.
DIFFER converges after 1.5 million steps, while PER takes up to 2
million timesteps. On the Hard 10m_vs_11m map, IPERS maintains
superior convergence speed and average win rate compared to other
algorithms. After 1.5 million timesteps, IPERS achieves a 75% win
rate, while MASER, QMIX, and PER reach around 60%. DIFFER
performs the worst with an average win rate under 40%.

Results in the sparse reward setting: The performance of all an-
alyzed algorithms is affected by reward sparsity. In the Easy 3m map,
we observe that PER and QMIX undergo the most considerable per-
formance reduction compared to the dense reward setting. Despite
MASER’s utilization of subgoals to partially counteract the impact
of reward sparsity, it still experiences a performance degradation of
approximately 30%. Our IPERS algorithm remains the least affected,
with only a 5% decrease in the average win rate. Even in the Hard
10m_vs_11m map, where IPERS achieves an average win rate of
50%, it continues to outperform the compared algorithms. As the
complexity of the Normal maps (3s_vs_3z and MMM) increases, the
convergence speed of all algorithms is significantly hampered during
the initial phases. However, our IPERS algorithm maintains its lead-
ing position in convergence rate, stabilizing at an average win rate
of 95% after 1.5 million timesteps and effectively addressing the im-
pact of reward sparsity on its performance. In the Hard 10m_vs_11m
map, the average win rate of all algorithms suffers considerably.
PER and QMIX achieve a win rate of merely 40% after 3 million
timesteps, indicating their struggle to handle the Hard difficulty level.
Although MASER and DIFFER algorithms exhibit superior conver-
gence rates, they still lag 5% to 10% behind our IPERS algorithm.
Notably, IPERS exhibits rapid improvements in win rate during early
convergence and maintains an unmatched high average win rate upon
convergence after 1.5 million timesteps across all map variations.

Fig. 4 and Fig. 5 highlight how reward sparsity negatively affects
the convergence speed and average win rate of multi-agent algo-
rithms. Value decomposition algorithms may function well in dense
reward environments but falter when reward signals are scarce, re-
sulting in low average win rates during the early stages of train-
ing, especially on Normal and Hard maps. While MASER somewhat
counters the impact of sparse rewards by assigning subgoals using Q
values, it grapples with the issue of inadequate reward signals upon
fulfilling subgoals. DIFFER and PER, both using the experience re-
play mechanism to handle dense rewards, face considerably slower
convergence speeds in sparse reward conditions during early training
phases. Our IPERS algorithm integrates the advantages of subgoals
and prioritized experience replay techniques. This fusion expedites
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Figure 4. Experimental results of SMAC in dense reward settings

Figure 5. Experimental results of SMAC in sparse reward settings

the exploration of successful strategies and enhances the model by
learning from significant state transitions. As anticipated, our pro-
posed IPERS method excels in terms of convergence speed and is less
affected by sparse reward information at convergence, thereby out-
performing the four leading-edge algorithms we compared it against.

5.2.2 The performance in GRF tasks

We also evaluate IPERS and other algorithms in two
Google Research Football (GRF) [16] academic scenarios:
3_vs_1_with_keeper and counterattack_hard. We manage the
players on the left team, with the exception of the goalkeeper. The
right team players are operated by built-in, rule-based bots. The
agents are required to coordinate their positions to stage attacks, and
rewards are exclusively given for scoring. The observations can be
broken down into five parts: ball information, left team data, right
team data, details of the controlled player, and the match state. We
employ settings similar to those used in [9], where agents can choose
from 19 discrete actions, including running, sliding, shooting, and
passing. We evaluate five different random seeds and average the
results for presentation.

Figure 6. Experimental results of Google Research Football

Figure 6 shows the experimental results of our IPERS method
compared to four algorithms: PER, QMIX, MASER, and DIFFER.

IPERS achieves the highest average win rate and the fastest conver-
gence speed during early training stages. In the 3_vs_1_with_keeper
scenario, IPERS converges at 2 million timesteps with the high-
est average win rate. QMIX has a similar convergence speed but
a slightly lower average win rate. MASER and DIFFER converge
slower, around 4 million timesteps, with significantly lower average
win rates. PER’s average win rate remains around 30% at 5 million
timesteps. In the counterattack_hard scenario, IPERS outperforms
other algorithms in both convergence performance and average win
rate. MASER and DIFFER lag behind IPERS, and QMIX and PER
struggle to achieve commendable results. In conclusion, our pro-
posed IPERS method excels in the GRF challenges, displaying su-
periority in both average win rate and convergence performance.

6 Conclusions

This work presents Individual Prioritized Experience Replay with
Subgoals for Sparse Reward Multi-Agent Reinforcement Learning
(IPERS). IPERS addresses reward sparsity by combining joint action
decomposition and prioritized experience replay, thereby facilitating
efficient decentralized training from a shared global reward signal.
Personalized subgoals are generated for each agent by predicting the
timestep that maximizes weighted local and global Q-values. These
subgoals provide helpful intermediate rewards to guide exploration.
In addition, IPERS also employs learning of goal-oriented state rep-
resentations to simplify the observation space, extract meaningful
features, and offer an efficient intrinsic reward to guide agents. Ex-
periments conducted using the StarCraft II Multi-Agent Challenge
and Google Research Football academic scenarios demonstrate that
IPERS significantly outperforms four leading algorithms, demon-
strating improved convergence speed and overall win rate perfor-
mance in sparse reward environments.
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