
Identifying Helpful Learnwares Without Examining
the Whole Market

Yi Xiea, Zhi-Hao Tana, Yuan Jianga and Zhi-Hua Zhoua

aNational Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{xiey, tanzh, jiangy, zhouzh}@lamda.nju.edu.cn

Abstract. The learnware paradigm aims to construct a market of
numerous well-performing machine learning models, which enables
users to leverage these models to accomplish specific tasks without
having to build models from scratch. Each learnware in the market is
a model associated with a specification, representing the model’s util-
ity and enabling it to be identified according to future users’ require-
ments. In the learnware paradigm, due to the vast and ever-increasing
number of models in the market, a significant challenge is to identify
helpful learnwares efficiently for a specific user task without leaking
data privacy. However, existing identification methods require exam-
ining the whole market, which is computationally unaffordable in a
large market. In this paper, we propose a new framework for identify-
ing helpful learnwares without examining the whole market. Specif-
ically, using the Reduced Kernel Mean Embedding (RKME) speci-
fication, we derive a novel learnware scoring criterion for assessing
the helpfulness of a learnware, based on which we design an anchor-
based framework to identify helpful learnwares by examining only a
small portion of learnwares in the market. Theoretical analyses are
provided for both the criterion and the anchor-based method. Empir-
ical studies on market containing thousands of learnwares from real-
world datasets confirm the effectiveness of our proposed approach.

1 Introduction

Nowadays machine learning has achieved great success and be-
come a crucial part of various industries. However, training a well-
performing machine learning model from scratch can be a com-
plex, time-consuming, and expensive process; numerous data, mas-
sive computing resources, and expertise are usually indispensable.
As a result, building high-quality models can be a heavy burden for
ordinary users who lack the necessary resources and training skills.
Furthermore, data privacy concerns, catastrophic forgetting are seri-
ous issues when reusing or adapting a trained model among different
users. To deal with these challenges simultaneously, the learnware
paradigm [26, 27] proposes to build a learnware market that manages
thousands or millions of well-performing models, allowing users to
leverage these models to accomplish specific tasks without having to
build models from scratch.

In this paradigm, each learnware in the market is a well-trained
machine learning model associated with a specification that repre-
sents its functionality and enables it to be identified according to the
requirements of future users [27]. Expert developers can submit their
high-quality models into the learnware market spontaneously, and

the market will assign a specification to each model and incorporate
it into the market. When a new user needs to tackle her own learning
tasks, the market can identify helpful learnwares based on the speci-
fications, and the user can easily deploy these learnwares to solve her
tasks instead of starting from scratch. Note that due to data privacy
concerns, the learnware market has no access to either the original
training data of developers or the raw task data of users.

A key challenge of the learnware paradigm is how to identify help-
ful models for a specific user task efficiently without leaking user
data privacy. To address this, the specification plays a crucial role.
Recently the Reduced Kernel Mean Embedding (RKME) specifica-
tion [27] is proposed, which calculates a reduced set of Kernel Mean
Embeddings (KMEs), preserving the ability to characterize distribu-
tion with a concise representation while not exposing the original
data. Based on the RKME specification, several methods for identify-
ing helpful learnwares have been proposed. The most basic approach
is to match the RKMEs of the user and models, selecting the clos-
est one or finding a weighted combination of models [21]. Further-
more, Zhang et al. [22] and Tan et al. [18, 19] have extended these
methods to handle unseen jobs and heterogeneous feature spaces.
However, these algorithms require examining all learnwares in the
market, which can be computationally unaffordable due to the vast
and ever-increasing number of models in the market. Moreover, these
algorithms impose strict restrictions on the market, such as the re-
quirement that all learnwares in a specification space share the same
ground-truth labeling function. Therefore, it is highly desirable to
design a more efficient and flexible algorithm for identifying helpful
learnwares.

In this paper, we focus on identifying helpful learnwares with-
out examining the whole market and leaking user data privacy. To
achieve this, we must answer two key questions:

1. Given a user task, how can we determine whether a specific learn-
ware is potentially helpful?

2. To solve a user task, how can we identify helpful learnwares by ex-
amining only a small portion of the market? This involves select-
ing which learnwares should be examined and identifying which
of them are considered helpful.

To address the first question, using the RKME specification, we de-
rive a learnware scoring criterion for instance-recurrent model reuse.
For the second question, we further propose an anchor-based frame-
work. Specifically, we organize learnwares structurally by perform-
ing learnware clustering using a novel distance metric, and choose

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Please check ArXiv or contact the authors for any appendices or supplementary material mentioned in the paper.

doi:10.3233/FAIA230585

2752



the cluster medoids as anchor learnwares. Then we design an effi-
cient identification process by requesting users to test anchor learn-
wares and return scores, which gives us an in-depth understanding
of user tasks. Thus we can identify helpful learnwares efficiently by
only examining a small portion of learnwares in the market. Addi-
tionally, we provide theoretical analyses for both the criterion and
the anchor-based framework. Empirical studies on real-world data
confirm the effectiveness of our proposed method.

The remainder of this paper is organized as follows: Section 2 pro-
vides a background review. Section 3 and 4 address the two questions
mentioned earlier and introduce a detailed procedure for identifying
helpful learnwares without examining the whole market. Section 5
presents experimental results, Section 6 discusses related work, and
Section 7 concludes the paper.

2 Preliminary

This section reviews the RKME specification and the learnware
paradigm, which are closely related to our methods.

RKME specification The RKME specification [27] is based on
the assumption that each learnware model is well-trained on its own
training data. Thus, identifying a suitable model can be approached
by identifying a model whose original training data distribution is
close to the distribution of the user task. Suppose a developer submits
a model trained on her private dataset {(xn, yn)}Nn=1,xn ∈ X , yn ∈
Y , then the market will generate the reduced set representation (β, z)
by minimizing the distance between the Kernel Mean Embeddings
(KMEs) [17] of the reduced set and the raw data measured by the
RKHS norm, as

min
β,z

∥∥∥∥∥ 1

N

N∑
n=1

k(xn, ·)−
M∑

m=1

βmk(zm, ·)
∥∥∥∥∥
2

H
, (1)

where k(·, ·) is the kernel function corresponding to the RKHS H,
βm ∈ R is the coefficient, zm ∈ X is the newly constructed reduced
sample and different from the raw samples, and the size M � N .
The RKME μ̃P =

∑M
m=1 βmk(zm, ·) is a point in the RKHS H. It’s

chosen as the specification because it offers a concise representation
of original data distribution P while protecting data privacy. See the
Appendix for a more detailed introduction.

The learnware paradigm The learnware paradigm consists of the
submitting stage and the deploying stage.

In the submitting stage, developers can spontaneously submit their
trained models to the market. Then the market assigns a specification
to each model and accommodates it in the market. Formally, sup-
pose there are C developers in total. The i-th developer has a trained
model f̂i to solve her task Ti = (Pi, fi), i ∈ [C] = {1, 2, · · · , C},
where Pi is a distribution on the same input space X and fi : X → Y
is a optimal labeling function. The developer trained her model on a
private dataset Di = {(xin, yin)}Ni

n=1 sampled i.i.d from Pi. We fo-
cus on the homogeneous case that all the tasks share the same input
and label space. For simplicity, we assume Ni = N . The develop-
ers uploads their models in turn, and for each model f̂i, the market
computes the RKME μ̃i =

∑M
m=1 βimk(zim, ·) as the specification

by solving the RKME optimization problem in (1). In practice, the
RKME μ̃i is stored as a reduced set {(βim, zim)}Mm=1, with no leak-
age of raw data in Di. Then the market is constructed with learnwares
{(f̂i, μ̃i)}i∈[C].

In the deploying stage, a user wants to solve her task Tt =
(Pt, ft). Specifically, the user attempts to learn a good model f̂t
which minimize L(Pt, ft, f̂t) � Ex∼Pt [L(f̂t(x), ft(x))] with the
help of the learnware market. The user can submit her requirements
to the market, and the market will identify some helpful learnwares
through specifications and return them to the user. Then the user
could deploy these learnwares to solve her tasks instead of training a
model from scratch.

3 Whether is a Learnware Helpful?

In this section, we answer the first question: how to examine whether
a specific learnware is potentially helpful for a given user task? This
question serves as the basis for identifying helpful learnwares.

3.1 Analyses of helpful learnware identification

To begin, we conduct an analysis of helpful learnware identification.
Our focus is on identifying learnwares that can help with a specific
user task. A learnware that performs well on the user task is undoubt-
edly helpful. To identify such learnwares, a straightforward and ef-
fective approach is to use the user’s labeled dataset as a validation
set, run the models on it, and choose those models with small vali-
dation errors. Then the best model can be directly deployed, or these
models can be ensembled through voting, which may perform better
than a single model. We refer to this method as task-recurrent
reuse methods because it typically requires the task of at least one
learnware to be similar with that of the user.

However, there are cases where no single learnware can tackle the
user task as a whole, but multiple learnwares can each tackle a part of
the user task separately. In such cases, a selector can be trained to as-
sign each instance of the user to one or several chosen models, solv-
ing the user task in a divide-and-conquer way [25]. We refer to this
approach as instance-recurrent reuse methods. For instance-
recurrent reuse methods, simply using the user’s labeled dataset as a
validation set and choosing models with small errors may not work.
A learnware that performs poorly on some parts of the user task but
excels at others may be overlooked, yet it may be a critical compo-
nent in instance-recurrent model reuse.

In this paper, we propose a learnware identification framework
specifically designed for instance-recurrent reuse. There are several
reasons for this. First, task-recurrent methods require some models
to perform well on the user’s whole task, which may be rare in real-
world scenarios. Second, instance-recurrent methods can reuse mod-
els for tasks beyond their original purposes, which is one of the core
objectives of the learnware paradigm. Third, learnware identification
for task-recurrent reuse methods can be viewed as a special case of
instance-recurrent methods, since a learnware that can tackle the user
task as a whole can certainly solve part of the user task. Therefore,
we focus on instance-recurrent model reuse, which is a more chal-
lenging, more common, and more meaningful case.

3.2 The proposed scoring criterion

In this section, we introduce the problem setup and the assumption,
and then propose a scoring criterion to examine whether a learnware
is helpful for a specific user task.

Problem setup A user wants to solve a classification or regres-
sion task Tt = (Pt, ft) with the help of learnware market. Suppose
the user has a limited labeled dataset Dt = {(xtn, ytn)}Nt

n=1, where

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market 2753



Learnware 1 helpfulUser’s dataset

Learnware 2 unhelpful

Learnware 3 unhelpful

Positive samples

Negative samples

Unconsidered samples

Mislabeled samples

User Learnwares Judge

Figure 1. A simplified example for our scoring criterion.

samples {xtn}Nt
n=1 are sampled i.i.d. from distribution Pt and labels

{ytn}Nt
n=1 satisfy a labeling function ft, i.e. ∀n ∈ [Nt], ft(xtn) =

ytn. The dataset is too small to train a good model but can help iden-
tify helpful learnwares from the market. Now the user attempts to
examine whether a learnware (f̂i, μ̃i) is helpful for her task Tt. It’s
worth mentioning that we do not place the global labeling function
restriction on the market as the previous work. Besides, the models
in the market can be any type, e.g., neural networks, forests, etc; we
assume these models are all black boxes and the details are unknown.

Instance-recurrent assumption Now we give the formal defini-
tion of instance-recurrent assumption. Intuitively, we assume that
there exist multiple learnwares in the market that each tackles one
part of the user task separately. Formally,

• The user’s distribution should be a mixture of multiple learnwares’
distributions,

Pt =
∑
i∈[C]

wiPi.

Especially, learnwares with wi > w are called key learnwares,
where w > 0 is a small constant.

• Each key learnware performs well in the corresponding mixture
component, i.e., the difference between the user’s ground-truth la-
beling function and the model’s prediction in this mixture compo-
nent should be small,

∀i ∈ [C], wi > w =⇒ L(Pi, f̂i, ft) < ε.

where L is the loss function, ε is a small constant and
L(Pi, f̂i, ft) � Ex∼PiL(f̂i(x), ft(x)).

These key learnwares are exactly what we aim to find in helpful
learnware identification.

Our approach Our scoring criterion consists of two parts, exactly
corresponding to the instance-recurrent assumption:

• How far is the learnware task’s distribution Pi from a potential
mixture component of the current user task’s distribution Pt?

• How well does the learnware model perform on the current user
task in this mixture component?

We use a simplified example to show our main idea in Figure 1.
There are several learnwares to be judged according to the user’s
dataset. Two different colors and shapes correspond to two classes,
and each learnware’s distribution is a uniform distribution over the
colored area. First, we select part of the user’s samples to simulate
learnware’s distribution. The samples with dotted outlines are out of
learnware’s distribution and thus unconsidered. Then we check the
prediction results of the left samples. The first learnware is judged
as helpful, the second as unhelpful due to a mislabeled sample, and
the third as unhelpful because its distribution is far from a potential
mixture component of the user’s distribution.

The details of our scoring criterion are shown below, which is a
formalized version of what we have done in the example above. First,
we seek the closest potential mixture component of the user’s distri-
bution Pt to the learnware’s distribution Pi. Here user’s distribution
Pt is portrayed by her dataset Dt, while learnware’s distribution Pi

is represented by RKME μ̃i. So we reweight the samples in Dt to
simulate μ̃i in RKHS,

min
ηi

∥∥∥∥∥
Nt∑
n=1

ηink(xtn, ·)− μ̃i

∥∥∥∥∥
2

H
,

s.t.
∑Nt

n=1 ηin = 1,
ηin ≥ 0, ∀n ∈ [Nt],

(2)

where {ηin}Nt
n=1 is the weights of samples in Dt. This prob-

lem can be solved by quadratic programming. Because the size of
RKME’s reduced set and the user’s labeled dataset are both small,
the quadratic programming is relatively fast.

Now we get the weighted dataset {ηin, (xtn, ytn)}Nt
n=1, which is

the most suitable potential mixture component for the learnware. For
simplicity, we represent the distribution of this dataset in RKHS as

μ̂t→i �
Nt∑
n=1

ηink(xtn, ·). (3)

Then we calculate the two terms in our scoring criterion: first,
the distance between the learnware distribution Pi and this weighted
dataset in RKHS; second, the loss of the learnware model f̂i on this
weighted dataset. Our scoring criterion adds two terms together:

hi � U · ‖μ̃i − μ̂t→i‖H +

Nt∑
n=1

ηin · L
(
f̂i(xtn), ytn

)
, (4)

where U is a constant that bounds the loss Li ∈ H. The smaller
the score, the more helpful the learnware is. Therefore, we can set
a threshold θ, and consider learnware with hi < θ helpful while
hi ≥ θ as unhelpful.

Intuitively, our scoring criterion matches the two points in the
instance-recurrent assumption. If the learnware distribution is far
from a potential mixture component of the user’s distribution, the
first term will be large because the reweighting cannot simulate Pi.
If the learnware model doesn’t match the user’s weighted dataset, the
second term will be large. In these cases, the learnware is unhelpful.

3.3 The theoretical guarantee

What are we estimating? In truth, our scoring criterion is the
upper bound of the empirical error

L(μ̃i, f̂i, ft) �
M∑

m=1

βimL(f̂i(zim), ft(zim)),

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market2754



which is the RKME version of L(Pi, f̂i, ft) mentioned in instance-
recurrent assumption. It estimates the difference between the learn-
ware model’s prediction with user’s ground-truth labels under the
distribution of the learnware task, thus an important measure for
helpfulness. Moreover, when the learnware distribution is exactly a
potential mixture component, the estimation is tight; otherwise, the
first term of the criterion will be large, and then the learnware will be
considered unhelpful reasonably.

Proposition 1 The scoring criterion hi is an upper bound of the loss
L(μ̃i, f̂i, ft).

Errors of our scoring criterion Further, we prove that the errors
of our scoring criterion are small.

Theorem 1 Let k(x,x) ≤ 1 for all x ∈ X and the loss Li ∈ H
be bounded by a constant U . There exists a good threshold θ, with a
high probability that:

• All key learnwares are considered helpful (hi ≤ θ).
• And all learnwares considered helpful can solve the user task over

its own distribution Pi,

L(Pi, f̂i, ft) ≤ ε+O

(√
1

N
+

√
1

M
+

√
1

Ntw

)

This theorem tells us that the two types of errors for our scoring
criterion are both controlled. It seldom treats key learnwares as un-
helpful, and all learnwares considered helpful are truly helpful to
some extent. Besides, this theorem depicts the relation between the
errors and the number of samples, and the most important factor is
the size of the user’s dataset. Futhermore, we proof that the simple
way of traversing and scoring all learnwares in the market can obtain
a small generalization error after reuse. See the Appendix for details
and proofs.

4 Anchor-based Method for Helpful Learnware
Identification

In the previous section, we have presented a scoring criterion for de-
termining the helpfulness of a specific learnware. In this section, we
address the most critical problem in this article: how to identify help-
ful learnwares by examining only a small portion of the learnwares
in the market.

The key to solving this problem is to construct anchor learnwares.
The market can provide several anchor learnwares, request the user
to test them and return some scores, and then identify potentially
helpful learnwares based on these scores. The criterion hi introduced
in Section 3 is a suitable scoring function for this task. It is worth
noting that the concept of anchor learnwares was first proposed by
Zhou et al. [27], and in this paper, we further realize this idea.

The selection of anchors The first question is which learnwares
should be selected as anchors. To answer this question, we need to
explore the relationships between the learnwares, because a good an-
chor should represent a group of learnwares. In other words, if the
anchor is helpful for a specific user task, then all the learnwares it
represents are likely to be helpful for that task as well. It is impor-
tant to note that the selection of anchor learnwares is completed in
the submitting stage, independent of the user tasks, as the market has
no knowledge of specific user tasks at that time. This requires the

selection of anchor learnwares to be general enough to work for any
possible user task.

Our approach to addressing this issue involves utilizing learnware
clustering. By implementing clustering, we can identify medoids for
each cluster, which serve as effective representatives for a cluster
of learnwares. These medoids can be chosen as anchors to facilitate
further decision-making.

In order to implement clustering, we should first define a dissim-
ilarity metric for learnwares. Specifically, we define the learnware
divergence from learnware i to learnware j:

dij � d((f̂i, μ̃i), (f̂j , μ̃j))

= U‖μ̃i − ũj‖H +min
{
L(μ̂i, f̂i, f̂j),L(μ̂j , f̂i, f̂j)

}
, (5)

where L(μ̂i, f̂i, f̂j) �
∑M

m=1 βimL(f̂i(zim), f̂j(zim)) is the dif-
ference between model f̂i and f̂j over the empirical distribution of
μ̂i; L(μ̂j , f̂i, f̂j) is defined similarly. Intuitively, dij is the RKME
version of U · d(Pi, Pj) + min{L(Pi, f̂i, f̂j),L(Pj , f̂i, f̂j)}. Note
that it satisfies nonnegativity, identity, and symmetry, but doesn’t sat-
isfy the triangle inequality, thus not a strictly-defined distance.

Then we cluster all learnwares using Partitioning Around Medoids
(PAM) [14, 15], which is a kind of k-medoids clustering algo-
rithms. Mathematically, we seek for a set of k medoids M =
{m1, · · · ,mk} ⊂ [C] to minimize the overall dissimilarity of points
to their closest medoids:

C∑
i=1

min
m∈M

d((f̂m, μ̃m), (f̂i, μ̃i)) (6)

Note that the dissimilarity function in k-medoids doesn’t have to be
a distance measure [10, 20], so our learnware divergence can be ap-
plied here. Besides, there exist many fast PAM implementations; for
example, Kuzborskij et al. [10] accelerate PAM to O(k) order.

The cluster structure is maintained in the submitting stage. When
the market is built, initial learnwares are clustered using PAM algo-
rithm. As a new learnware comes to the market, it is assigned to the
closest existing cluster or added as a new cluster if no close anchor
exists. Then the clusters are updated iteratively using the PAM algo-
rithm to minimize the overall dissimilarity, as defined in Eq. 6. For
efficiency, cluster updates can be performed periodically instead of
in real-time. This approach is scalable and efficient, as the market
does not need to recompute all learnware divergences and clustering
from scratch. The pseudocode is shown in Appendix.

The utilization of anchors Once all the learnwares are repre-
sented by several anchors, examining all the anchors gives us a rough
knowledge of the helpfulness of all learnwares.

In the deploying stage, the user first downloads all the anchors.
The user scores them using the scoring criterion in section 3 and
uploads the scores to the market. Then the market finds the help-
ful anchors according to these scores and marks the corresponding
clusters as helpful clusters. The user downloads the candidate learn-
wares in all helpful clusters and filters them more carefully using the
same scoring criterion. The learnwares left are considered helpful.
The pseudocode is also shown in Appendix.

After getting helpful learnwares, the user combines them to get a
final predictor. The model reuse method here can be any instance-
recurrent model reuse method [21, 22], which usually assigns differ-
ent samples of the users to different learnware models. An example
of the new deploying stage is shown in Figure 2.

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market 2755



Market

5

1
3

4
6

8

Cluster 2

2

7
Cluster 3

Cluster 1

User
download
anchors

judge criterionupload
scores

download
learnwares

model reuse

Anchor Learnwares

Other Learnwares

1-9 Learnware ID

9

Anchors: 1 5 7

Scores: low, high, low 

Learnware Candidates

17 32

Helpful Learnwares
17 2

Final Predictor

7

2

1

Figure 2. An example of the deploying stage.

Analysis First we prove that the chosen anchors are representative.

Proposition 2 For each learnware (f̂i, μ̃i), assume it be-
longs to the cluster with anchor (f̂m, μ̃m), where m =
argminm′∈M d((f̂m′ , μ̃m′), (f̂i, μ̃i)). Then we have

L(μ̂m, f̂m, ft)− dim ≤ L(μ̂i, f̂i, ft) ≤ L(μ̂m, f̂m, ft) + dim.

In section 3, we mentioned that L(μ̂i, f̂i, ft) is an important mea-
sure for helpfulness. So this proposition tells us the helpfulness of
each learnware is closed to that of its anchor, and the difference is
measured by the distance to the anchor dim. If the learnwares are
well-clustered, the sumation of dim is minimized, then the estima-
tion is tight. Besides, we’ve proved that for each anchor, hm is the
upper bound of L(μ̂m, f̂m, ft), so for each learnware, hm + dim is
an upper bound of L(μ̂i, f̂i, ft).

Then we illustrate why anchors can improve the efficiency of help-
ful learnware identification. The core is that by examining the an-
chors, we exclude many learnwares without access. Each learnware
whose corresponding anchor is considered unhelpful will be directly
omitted and no further examination is needed. Consider a simplified
example, if all the C learnwares in the market are divided into

√
C

clusters that each has
√
C learnwares. After checking these

√
C an-

chors, we find k of them helpful; then we carefully check these k
clusters to make the final selection. Here the anchor learnwares have
been scored so only

√
C − 1 learnwares should be checked in each

helpful cluster. In a large and open market, usually only a tiny portion
of learnwares are helpful to a specific user task, so k is small w.r.t. C.
In the two phases, we check

√
C+k(

√
C−1) ≈ O(

√
C) learnwares

in total, much less than the O(C) traversal. Besides, using only help-
ful anchors could also results in a not bad reuse performance, so if
the user is very concerned about efficiency, the second stage can be
omitted and only

√
C learnwares will be examined in total. What’s

more, If C is extremely large, multi-level clustering is available for
use. Learnwares could be clustered in a tree structure, i.e. in each
cluster, if it’s still large, a more fine-grained clustering will be con-
ducted. When identifying helpful learnwares, once an anchor at any
level is judged as unhelpful, the examination in this subtree breaks
up. An example is shown in Appendix.

Identifying one learnware Additionally, the anchor-based
method we have described can also be adapted to select one most
helpful learnware instead of a group of learnwares with a few minor

modifications in the deploying phase. Specifically, we need to change
the scoring criterion in the second step to the error rate on the user’s
labeled data and select the best anchor/learnware instead of filtering
by a threshold θ in the third and fourth steps. The clustering structure
remains the same, allowing our framework to work for both select-
ing a single model and a group of models. The theoretical analysis
presented earlier is still applicable.

5 Experiments

In this section, we thoroughly assess our technique against other
methods on a toy example and several real-world datasets.

5.1 A toy example

We created a toy example to demonstrate the functionality of our
method, using the traditional handwritten digit recognition dataset,
‘Digits’ [3]. To begin, we divided the dataset into 10 parts, each
containing the figures of two continuous numbers (e.g., digits 0 and
1), and trained 10 different models on each part (including Logistic
Regression and LightGBM models with various hyper-parameters).
Then we got a market of 100 learnwares. In the submission stage, the
market used our algorithm to group the learnwares into 10 clusters.
Our algorithm perfectly placed all models trained for the same task
into the same cluster; for example, the first cluster contained all the
10 models trained for recgonizing digits ’0’ and ’1’.

Table 1. The toy example: results of clustering and the evaluation of
anchors. For example, the first column indicates that the first cluster

contained all the models for recognizing digits 0 and 1. The score of its
anchor (learnware 1-1) was 11.37, the smallest, showing that it was helpful.

Cluster 1 2 3 4 5 6 7 8 9 10
Task 0&1 1&2 2&3 3&4 4&5 5&6 6&7 7&8 8&9 9&0

Anchor 1-1 2-7 3-7 4-1 5-1 6-5 7-2 8-4 9-7 10-6
Score 11.37 12.67 27.03 34.5 40.5 42.09 41.39 36.5 36.51 25.3

Next, we considered a user who needs to identify the numbers
0, 1, and 2. Since the market had no knowledge of the user task,
it provided all the anchors to the user. The user then scored these
anchors using our criterion and found that the anchor 0 and 1 had
significantly better scores than the others (as shown in table 1). The

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market2756



anchor 1 corresponded to the cluster that recognized the numbers 0
and 1, while the anchor 2 corresponded to recognizing 1 and 2. The
market then provided the models in these two clusters, and the user
selected them more carefully using our criterion. Finally, the user
selected model 1-1 (the first model for task 1) and 2-3. Using the
instance-recurrent reuse algorithm, the final predictor achieved an
accuracy of 93.06%. It is worth mentioning that none of the models
in the market could deal with the numbers 0, 1, and 2 at the same
time, yet our method achieved a remarkable result in this task by
reusing two of them. Besides, our method only examined 28 models
among the 100 ones in the market.

5.2 Real-world tasks

Then we demonstrate the effectiveness of our method on large mar-
kets containing thousands of learnwares from 4 real-world datasets.

Datasets To evaluate our approach, we selected four real-world
datasets: M5 [9], PFS [8], PPG-DaLiA [16], and Covtype [2]. M5
and PFS are time-series datasets comprising daily sales data, pro-
vided by 1C Company in Russia and Walmart Inc. in the USA, re-
spectively. PPG-DaLiA is a UCI dataset for heart rate estimation dur-
ing daily life activities. Covtype is a UCI multi-class dataset that con-
tains information about the forest cover type based on cartographic
variables. Covtype is a classification task while the others are all re-
gression tasks.

Table 2. Information of data sets, including the introduction of raw
datasets and corresponding learnware markets.

Dataset Task #Instance Split Criterion #Models #Users
M5 Regression 46M Department 1050 10
PFS Regression 9M Shop 795 17

PPG-DaLiA Regression 517K Activity 675 22
Covtype Classification 581K Soil 450 10

We selected these datasets because of their significant size and
natural divisibility. M5 and PFS datasets can be divided into subsets
based on Shop/Department, with each subset representing the daily
sales data of one Shop/Department. Similarly, PPG-DaLiA and Cov-
type can be partitioned based on Activity/Soil type.

Settings Initially, we constructed learnware markets for these
datasets by training 15 models on each sub-dataset, including lin-
ear models, LightGBM, and neural networks with different hyper-
parameters. This diversity of partitions and models ensured that the
market contained a broad range of tasks and models. Next, we ex-
tracted a portion of data as user tasks, comprising 50-120 labeled
data and an unlabeled dataset to predict, which did not appear in
the training data of any learnware, and none of the user tasks share
the same distribution as any of the learnware tasks. These users ap-
proached the market to identify helpful learnwares for their tasks.
See more information in table 2 about the datasets and markets.

Methods We compared the following methods in our experiments:

• From-scratch is a baseline that the user train a new model
from scratch without any assistance from the learnware market.

• Random randomly selects a learnware from the market. Its ex-
pected performance is the average performance of all learnwares.

• RKME-task [21] chooses one best learnware using RKME.
• RKME-instance [21] utilize all learnwares using weighted es-

timation by RKME, without an explicit learnware search.
• Validate treats the user’s labeled dataset as a validation set and

selects several learnwares with small losses.
• Ours-anchor is our method which uses anchors to identify

helpful learnwares and avoids examining the whole market.
• Ours-traversal is a simplified version for comparison,

which uses no anchors thus examining the whole market.

Table 3. Comparison of different methods.

Methods #Learnwares
examined

#Learnwares
selected

Need
RKME

Need
labels

From-scratch None None No Yes
Random All One No No

RKME-task All One Yes No
RKME-instance All “All” Yes No

Validate All Several No Yes
Ours-traversal All Several Yes Yes
Ours-anchor Several Several Yes Yes

A comparison of these methods is shown in Figure 3. We unified the
model reuse methods to see which identification method above is bet-
ter: for those methods that select one learnware, the user directly de-
ployed this model; for those selecting multiple learnwares, the same
instance-recurrent reuse method is used. It’s worth mentioning that
Ours-anchor is the only one that does not require examining the
whole market.

Measures We used the following measures to compare the perfor-
mance of these methods. The first measure is the loss, which is MSE
or RMSE for regression and error rate for classification. However, the
loss of model search and reuse is strongly influenced by the quality
of the models in the market. Therefore, we used a more informative
indicator: the performance improvement percentage, which is calcu-
lated as the relative improvement over Random. Besides, consider-
ing the objective of this paper, the runing time and the percentage of
learnwares examined is a very important indicator.

Results The results in Table 4 and Figure 3 show the mean
performance of these methods. The results indicate that, as the
only method that does not require examining the whole market,
Ours-anchor examined only a small portion of the learnwares
(11.8%, 14.9%, 21.42%, 19.91%, respectively) in the deployment
stage, such has a relatively small running time; and its performance
is comparable to its traversal version Ours-traversal and is
superior to other methods. The methods RKME-task that choose
only one learnware was also fast but obtained relatively low per-
formance, showing the importance of choosing a group of mod-
els. RKME-instance select too many learnwares, resulting in the
slowest speed and a negative effect in reuse. These findings demon-
strate that our approach has successfully achieved the goal of iden-
tifying helpful learnwares without examining the whole market. See
the Appendix for more details and all codes are provided.

6 Related Work

The learnware paradigm [26, 27] aims to systematically reuse small
models to do things that may even be beyond their original pur-

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market 2757



Table 4. Average performances. For different methods, we calculate the average of three performance measures over all users. Here Imp. is short for the
performance improvement percentage, while Time means the time (seconds) of identifying helpful learnwares. Because Random and From-scratch do not

examine helpful learnwares, the time is omitted. For RKME-task, we show the time of weight calculation as contrast.

M5 PFS PPG-DaLiA Covtype
RMSE Imp. Time RMSE Imp. Time MSE Imp. Time Error Imp. Time

From-scratch 4.142 1.85% - 3.081 13.79% - 19.83 45.43% - 0.334 50.60% -
Random 4.085 0.00% - 3.297 0.00% - 36.62 0.00% - 0.683 0.00% -

RKME-task 3.389 18.27% 7.77 2.798 25.42% 2.35 24.53 33.64% 0.73 0.380 44.05% 0.30

RKME-instance 3.586 13.72% 137.57 2.931 14.56% 277.10 22.40 38.51% 201.42 0.240 65.00% 21.33
Validate 3.266 21.12% 4.09 2.671 29.46% 3.34 14.70 59.87% 10.07 0.245 64.01% 2.43

Ours-traversal 3.154 23.80% 10.61 2.609 32.48% 8.27 13.29 63.71% 11.35 0.222 67.67% 4.94
Ours-anchor 3.148 23.80% 1.13 2.616 32.07% 1.37 14.03 61.71% 2.57 0.244 64.45% 1.12

Figure 3. Average performance improvement percentage of different
methods. Random is the baseline thus is always 0%, omitted in this figure.

poses, so that users need not build their machine learning models
from scratch. The learnware paradigm assigns a specification to each
model, which represents its functionality and enables it to be iden-
tified according to future users’ requirement. Based on the RKME
specification, Wu et al. [21] propose an algorithm that matches the
distributions of the user and models by matching their RKMEs, and
selects the closest one or finds a weighted combination of model.
Building upon this work, Zhang et al. [22] consider the existence of
unseen jobs that any learnware cannot cover, and their method iden-
tifies samples from the unseen parts and assigns the rest to proper
learnwares. Tan et al. [18, 19] extend this framework to handle het-
erogeneous feature spaces. However, our method differs from these
works in that our approach could work in a very large market because
we does not require examining the whole market. Also, we relax the
restriction of ground-truth labeling function.

The learnware paradigm shows a fundamentally different way
compared to model pools that merely collect and store models. For
example, the learnware paradigm aims to systematically reuse mod-
els for specific tasks beyond their original purposes by associating
each model with a specification that describes its utility. Addition-
ally, the learnware paradigm prioritizes data privacy for both devel-
opers and users by identifying helpful models without exposing their
data. Lastly, the specifications allow for the structural organization
of models, enabling the identification of helpful models without ex-
amining the whole market.

There are several other fields aiming to reuse other’s efforts to
solve a new task. Domain adaptation [1] and transfer learning [13]
aim to help improve the learning of the target domain using the
knowledge in the source domain. However, they usually directly

access the raw data of the source domain to train a new model
for the target domain. Besides, domain adaptation with multiple
sources [11, 7, 4] and model reuse [23, 10, 6, 5] use the trained mod-
els of the source domains to derive a predictor for the target domain.
But they require that all the source models are helpful for the target
task, so they don’t consider the identification of helpful models. In
the learnware paradigm, there may be only a tiny portion of learn-
wares helpful for the current user task, so identifying helpful learn-
wares is indispensable.

Federated learning [12, 24] focuses on the case that the training
data for some specific task is distributed among multiple parties and
sharing is forbidden due to privacy. The challenge is to define safe
communication protocols for data owners to jointly train a model
without leaking data privacy. However, in the learnware paradigm,
the market collects and accommodates thousands of well-trained
models, and utilizes these models to solve various new tasks. The dif-
ficulty is identifying helpful models among the numerous models in
the market and assembling them in an appropriate way for different
user’s tasks. Besides, though federated learning and the learnware
paradigm both concern data privacy, their aims are fundamentally
different. The learnware paradigm mainly considers the relationship
between developers, market and users, while federated learning focus
on task originators and collaborators.

7 Conclusion

This paper focus on identifying helpful learnwares for a specific task
without examining the whole market and leaking user data privacy.
Specifically, we propose a novel learnware scoring criterion based
on the RKME specification to assess the potential helpfulness of a
learnware. Using this criterion, we design an anchor-based frame-
work to achieve efficient learnware identification by examining only
a small portion of learnwares in the market. We provide theoretical
guarantees for both the criterion and the anchor-based method. Our
experimental results demonstrate the effectiveness and efficiency of
our proposed approach. It is worth emphasizing the vital importance
of organizing and storing learnwares structurally using anchors, par-
ticularly in a large market. This can not only accelerate the process
of identifying helpful learnwares but also facilitate the extraction of
valuable information about the models, which could serve as a basis
for future research directions. Moreover, extending our method to ef-
ficiently identify helpful learnwares in heterogeneous feature spaces
could open up interesting avenues for exploration.

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market2758



Acknowledgements

This research was supported by NSFC (62250069). Zhi-Hao Tan is
also supported by Postgraduate Research & Practice Innovation Pro-
gram of Jiangsu Province. The authors would like to thank Jian-Dong
Liu and Peng Tan for helpful discussions. We are also grateful for the
anonymous reviewers for their valuable comments.

References

[1] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira,
‘Analysis of representations for domain adaptation’, in Advances in
Neural Information Processing Systems, pp. 137–144, (2006).

[2] Jock A. Blackard and Denis J. Dean, ‘Comparative accuracies of ar-
tificial neural networks and discriminant analysis in predicting forest
cover types from cartographic variables’, Computers and Electronics
in Agriculture, 24(3), 131–151, (1999).

[3] MGJBG Candela, DDJGP Grother, S Janet, and C Wilson, ‘Nist form-
based handprint recognition system’, Technical report, National Insti-
tute of Standards and Technology, (1994).

[4] Corinna Cortes, Mehryar Mohri, Ananda Theertha Suresh, and Ning-
shan Zhang, ‘A discriminative technique for multiple-source adapta-
tion’, in International Conference on Machine Learning, volume 139,
pp. 2132–2143, (2021).

[5] Yao-Xiang Ding, Xi-Zhu Wu, Kun Zhou, and Zhi-Hua Zhou, ‘Pre-
trained model reusability evaluation for small-data transfer learning’, in
Advances in Neural Information Processing Systems, pp. 37389–37400,
(2022).

[6] Yao-Xiang Ding and Zhi-Hua Zhou, ‘Boosting-based reliable model
reuse’, in Asian Conference on Machine Learning, volume 129, pp.
145–160, (2020).

[7] Judy Hoffman, Mehryar Mohri, and Ningshan Zhang, ‘Algorithms and
theory for multiple-source adaptation’, in Advances in Neural Informa-
tion Processing Systems, pp. 8256–8266, (2018).

[8] Kaggle. Predict future sales. https://www.kaggle.com/competitions/
competitive-data-science-predict-future-sales/overview, 2018.

[9] Kaggle. M5 forecasting. https://www.kaggle.com/competitions/
m5-forecasting-accuracy/overview, 2020.

[10] Ilja Kuzborskij and Francesco Orabona, ‘Fast rates by transferring from
auxiliary hypotheses’, Maching Learning, 106(2), 171–195, (2017).

[11] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh, ‘Domain
adaptation with multiple sources’, in Advances in Neural Information
Processing Systems, pp. 1041–1048, (2008).

[12] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh, ‘Agnostic
federated learning’, in International Conference on Machine Learning,
volume 97, pp. 4615–4625, (2019).

[13] Sinno Jialin Pan and Qiang Yang, ‘A survey on transfer learning’, IEEE
Transactions on Knowledge and Data Engineering, 22(10), 1345–1359,
(2010).

[14] LKPJ Rdusseeun and P Kaufman, ‘Clustering by means of medoids’,
in Statistical Data Analysis Based on the L1-Norm Conference, vol-
ume 31, (1987).

[15] LKPJ Rdusseeun and P Kaufman, ‘Partitioning around medoids (pro-
gram pam)’, in Finding groups in data: an introduction to cluster anal-
ysis, chapter 2, 68–125, John Wiley & Sons, Ltd, (1990).

[16] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laer-
hoven, ‘Deep ppg: Large-scale heart rate estimation with convolutional
neural networks’, MDPI Sensors, 19(14), (2019).

[17] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf, ‘A
hilbert space embedding for distributions’, in International Conference
on Algorithmic Learning Theory, pp. 13–31, (2007).

[18] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou, ‘Towards
enabling learnware to handle heterogeneous feature spaces’, Machine
Learning, (2022). doi: https://doi.org/10.1007/s10994-022-06245-1.

[19] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou, ‘Handling
learnwares developed from heterogeneous feature spaces without aux-
iliary data’, in International Joint Conference on Artificial Intelligence,
(2023).

[20] Mo Tiwari, Martin J Zhang, James Mayclin, Sebastian Thrun, Chris
Piech, and Ilan Shomorony, ‘Banditpam: Almost linear time k-medoids
clustering via multi-armed bandits’, in Advances in Neural Information
Processing Systems, pp. 10211–10222, (2020).

[21] Xi-Zhu Wu, Wen-Kai Xu, Song Liu, and Zhi-Hua Zhou, ‘Model reuse
with reduced kernel mean embedding specification’, IEEE Transactions
on Knowledge and Data Engineering, 35(1), 699–710, (2023).

[22] Yu-Jie Zhang, Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou, ‘Towards
enabling learnware to handle unseen jobs’, in AAAI Conference on Ar-
tificial Intelligence, volume 35(12), pp. 10964–10972, (2021).

[23] Peng Zhao, Le-Wen Cai, and Zhi-Hua Zhou, ‘Handling concept drift
via model reuse’, Machine Learning, 109(3), 533–568, (2020).

[24] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra, ‘Federated learning with non-iid data’,
arXiv:1806.00582, (2018).

[25] Zhi-Hua Zhou, Ensemble methods: foundations and algorithms, 184,
CRC press, 2012.

[26] Zhi-Hua Zhou, ‘Learnware: on the future of machine learning’, Fron-
tiers of Computer Science, 10(4), 589–590, (2016).

[27] Zhi-Hua Zhou and Zhi-Hao Tan, ‘Learnware: Small mod-
els do big’, Science China Information Sciences, (2023).
doi:https://doi.org/10.1007/s11432-023-3823-6.

Y. Xie et al. / Identifying Helpful Learnwares Without Examining the Whole Market 2759


