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Abstract. Task-incremental person re-identification aims to train
a model with consecutively available cross-camera annotated data
in the current task and a small number of saved data in preceding
tasks, which may lead to individual privacy disclosure due to data
storage and annotation. In this work, we investigate a more realistic
online privacy preservation scenario for camera-incremental person
re-identification, where data storage in preceding cameras is not al-
lowed, while data in the current camera are intra-camera annotated
online by a pedestrian tracking algorithm without cross-camera an-
notation. In this setup, the missing data of previous cameras not only
results in catastrophic forgetting as task-incremental learning, but
also makes the cross-camera association infeasible, which further
leads to the incapability of person matching across cameras due to
the camera-wise domain gap. To solve these problems, we propose an
Online Privacy Preservation (OPP) framework based on the gener-
ated exemplars of previous cameras by DeepInversion, where gener-
ated exemplars used as supplements to alleviate forgetting and enable
cross-camera association to be feasible for camera-wise domain shift
mitigation, meanwhile further improving the cross-camera matching
capability. Specifically, we propose to mine underlying cross-camera
positive pairs between samples of the current camera and exemplars
of previous cameras by similarity cues. Furthermore, we introduce a
mixup learning strategy to handle the domain gap with mixed sam-
ples and labels. Finally, intra-camera incremental learning and cross-
camera incremental learning are aggregated into the OPP framework.
Extensive experiments on Re-ID benchmarks validate the superiority
of the OPP framework as compared with state-of-the-art methods.

1 Introduction

Person re-identification (Re-ID) is to match query images across a set
of gallery images from non-overlapping camera views [36, 39, 9, 8].
Thanks to the large-scale cross-camera labelled datasets [42, 29],
supervised person Re-ID methods have achieved excellent perfor-
mance. However, this strong supervision across multiple camera
views from surveillance data is costly and time-consuming, mean-
while results in privacy disclosure due to manual annotation. Though
this supervision is not necessary in unsupervised person Re-ID, most
unsupervised methods still have a big performance margin compared
with supervised counterparts in the absence of supervision [15, 5].
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Figure 1. Comparison between traditional task-incremental learning (Top)

and camera-incremental learning (Bottom) for person Re-ID.

Currently, some representative works for person Re-ID turn to ex-
ploit the offline intra-camera supervised learning strategy to avoid
the costly cross-camera annotation [10, 43].

In vision surveillance cameras, large-scale data usually becomes
available gradually over time [11, 17, 37]. This often results in a
high re-training cost when new online data becomes available, mak-
ing them poorly scalable for the above methods when they perceive
data sequentially. Recently, task-based lifelong learning and contin-
ual learning in the case of person Re-ID exhibited their scalable su-
periority [32, 9, 23]. However, as illustrated in Figure 1, these con-
ventional Re-ID methods focus on training with strong supervision
across camera views and relies on the memory bank for the storage
of representative samples [9], which may lead to the possibility of in-
dividual privacy disclosure during the offline data storage and cross-
camera annotation [1, 31]. The solution of cross-camera manual an-
notation for continually-generated data is thus unrealistic. However,
pedestrians in each single camera can be readily detected and iden-
tified by human tracking algorithm [12, 7, 6]. As shown in Figure 2,
the pedestrians within the i-th camera view can be inartificially de-
tected and identified with each other without human intervention and
annotation [30, 24, 22]. Therefore, the tracking algorithm can readily
determine the intra-camera annotation within a camera view without
privacy disclosure. By this way, online data with the intra-camera an-
notation in the i-th camera view can be arranged as the i-th data set
and sequentially perceived by the learning machine, which we refer
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Figure 2. Diagram of the OPP framework, where the online Re-ID model continually perceive intra-camera labeled data without storing old data. Here, a
flow of online camera-wise data sets are non-repetitively perceived by the student model, while the teacher model takes charge of retrospecting or dreaming
those exemplars by DeepInversion in preceding camera views. The union of the previous exemplar sets and current image set is used as input to the student

model for intra-camera incremental learning in Subsection 3.2 and cross-camera incremental learning in Subsection 3.3. The three-stage optimization
procedure are tagged by the sequential numbers (1 → 2 → 3 → 1).

as camera-incremental learning person re-identification.
To protect privacy, all perceived data are deleted online when next

training data arrives. Without available data of previous cameras,
training the model exhibits three challenges. First, the model trends
to forget previous knowledge acquired from previous camera views;
Second, the absence of cross-camera positive pairs leads to the dif-
ficulty of the cross-camera association which is the key to endow
the cross-camera matching capability of the Re-ID model. Third, the
camera-wise domain shift cannot be explicitly mitigated which dam-
ages the online Re-ID performance.

To address these issues, we propose an Online Privacy
Preservation (OPP) framework, which online dreams exemplars
of previous camera views by DeepInversion [38]. Based on these
dreamed exemplars, the old knowledge can be renewed and the cross-
camera association becomes feasible. We propose a cross-camera
correlation loss, which can mine underlying cross-camera positive
pairs by similarity cues to alleviate domain gap. To further mitigate
the gap, we introduce a mixup learning loss, which mix samples
of current camera and exemplars of previous camera for camera-
invariant representation learning. Finally, we combine intra-camera
incremental learning, cross-camera incremental learning and knowl-
edge distillation in our framework to address all issues discussed
above. The main contributions of our work are summarized as fol-
lows:

• We introduce a more practical camera-incremental learning set-
ting for person Re-ID, where storing the data of previous cam-
eras is not permitted and cross-camera annotation is not available
due to privacy pretection. To supplement the missing, we apply
an exemplar-based method to online dream identity-specific ex-
emplars.

• To address the incapability of cross-camera matching induced by
the camera-wise domain gap, we incrementally exploit the simi-
larity cues to associate potential cross-camera positive pairs and
mix the generated exemplars with current samples to guide the

camera-invariance representation learning.
• By using knowledge distillation, we exploit the teacher-student

framework with exponential moving average (EMA) strategy to
maintain the memory consistency and mitigate catastrophic for-
getting when the model continually perceives data in camera-
incremental person re-identification.

2 Related Work

2.1 Intra-Camera Person Re-identification

Most supervised person Re-ID methods require precise annotation
of accurately finding those identities matched across camera views
[20, 10, 24, 9]. However, the Re-ID pedestrian data are usually gen-
erated online and captured by video footage of public surveillance
cameras, which could easily disclose individual confidential infor-
mation such as personal activities or daily individual whereabouts
due to the artificial annotation. The unauthorized collection of on-
line pedestrian data for the person Re-ID task exists some risk of
privacy leakage due to the storage of all data [40]. Therefore, numer-
ous supervised Re-ID methods [35, 18, 28] mostly focus on boosting
their performance on public Re-ID datasets while neglecting privacy
protection in the data storage and annotation. Although offline unsu-
pervised learning methods have been proposed recently without any
supervision to learn person Re-ID models [34, 14, 33], full data col-
lection into a storage device in the unsupervised setup still incurs the
possible privacy leakage and inferior performance due to the absence
of clear annotation.

To overcome these fundamental limitations, some representative
works for person Re-ID turn to exploit the intra-camera supervised
learning strategy, which is able to associate the underlying cross-
camera positive pairs to avoid the privacy disclosure and efforts dur-
ing annotation [43, 10, 16, 33]. However, high re-training cost is
needed for these supervised, unsupervised, and/or intra-camera su-
pervised methods above when new online data becomes available,
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disclosing their poorly scalability for the scenario where they per-
ceive data sequentially. It is unrealistic to make the individual exten-
sion for these person Re-ID methods in a more practical and chal-
lenging scenario, where online continually-generated surveillance
data lead to the data storage cost and privacy leakage.

2.2 Lifelong Person Re-identification

To tackle the scalability of a Re-ID model, lifelong learning is a
learning strategy capable of continually upgrading a system with a
flow of new data stream [9, 32, 4, 2]. A key challenge in lifelong
learning lies in minimising catastrophic forgetting, which means that
the model leverages new information for its upgrades while preserv-
ing old knowledge learned in the previous tasks. Many approaches
have been developed to address knowledge forgetting for common
vision tasks such as object detection [27] and segmentation [21].
Recently, there were rare works tackling the problem of camera-
wise continual learning in the case of person Re-ID, which requires
a Re-ID model to be incrementally generalised without forgetting
knowledge already learned in previous camera views. However, life-
long learning methods recently emerge in the case of person Re-ID
through a cross-domain learning way. For example, supervised aug-
mented geometric distillation (AGD) framework proposed in [19]
keeps evolving to train on a sequence of Re-ID domain tasks, where
the model still used cross-camera supervision, which could damage
the confidentiality of online data. Huang et al. [13] addresses an un-
supervised scenario where stored images from previous domain tasks
were allowed. We consider the above compromise case between su-
pervised and unsupervised lifelong learning, where pedestrian im-
ages can be detected and identified by the object detector to form
the intra-camera annotation without any privacy leakage, and stored
intra-camera images from previous camera views is not permitted.

3 The Proposed Approach

In this section, we formally introduce the framework of the online
privacy preservation (OPP). Section 3.1 introduces the problem for-
mulation. Section 3.2 introduces the intra-camera incremental learn-
ing which aims to improve the intra-camera discriminative ability
by identity loss with the gradually-perceived data. Section 3.3 in-
troduces cross-camera incremental learning to further guarantee the
cross-camera matching capability and alleviate forgetting. In this sec-
tion, we first employ DeepInversion technology to online dream ex-
emplars to supplement the missing samples of previous camera views
in Subsection 3.3.1. Based on these exemplars and the real samples
of current camera view, we propose cross-camera correlation loss in
Subsection 3.3.2 to associate underlying cross-camera positive pairs
by similarity cues and mix learning strategy in Subsection 3.3.3 to
alleviate the camera-wise domain shift.

3.1 Problem Formulation

As illustrated in Figure 2, we assume an online Re-ID model non-
repetitive inspects from n cameras, and is currently perceiving the
i-th (1 ≤ i ≤ n) camera data set Xi in which the intra-camera an-
notation Yi was created by a human tracking algorithm without any
human-induced privacy leakage. The online Re-ID model consists
of a student model and a teacher model as illustrated in Figure 2,
in which both the teacher and student model contain a feature ex-
tractor φθ , contrastive module ϕϑ and incremental module ψω with
parameters θ, ϑ and ω, respectively. The EMA upgrade strategy is

used in the teacher-student framework to maintain the memory con-
sistency between them. We define a set to online collect all intra-
camera labeled data in R = ∪n

i=1{(Xi,Yi)}, in which the observed
camera data can not be assessed twice and will be deleted online.
Let Ci be the number of captured identities in the i-th camera and
Si =

∑i
k=1 Ck denotes those perceived identities covered from the

1st to the i-th camera view. Note that identities in different cameras
may be overlapping, i.e., the same identities could appear in multiple
cameras. By using the cues of the cross-camera identity overlapping,
our goal is to incrementally uncover the potential cross-camera iden-
tity similarity and use it to online train a robust feature representation
network φθ . We define the descriptor of the k-th sample xi

k ∈ Xi by
f i

k = φθ(x
i
k).

3.2 Intra-Camera Incremental Learning

Given the feature extractor φs
θ and incremental module ψs

ω in the stu-
dent network, along with the continual inspection of camera views,
we optimize the camera-specific parameter ωi for the current learn-
ing task of the i-th camera view by the cross-entropy loss as below:

Lce(ωi) =
−1

|Bi|
∑

(xi,yi)∈Bi

1{y = yi} log(ψs
ωi
(φs

θ(x
i))) (1)

where Bi is a batch of current data in the i-th camera view, and
(xi,yi) denotes an arbitrary input-to-target pair from the batch Bi.
The number of parameters and output dimension of the incremental
module will increase along with the continual inspection to fit the
new added classes.

To further boost the discriminative ability of the model, we em-
ploy the contrastive loss within the i-th camera view. Specifically,
Given arbitrary sample pairs xi

p,x
i
q ∈ Xi with intra-camera annota-

tion yi
p,y

i
q ∈ Yi and feature representations f i

p and f i
q , The con-

trastive loss for the i-th currently inspected camera view is described
as below:

Lcon(ϕ
s
ϑ, φ

s
θ)

=
1

2|Xi|
∑

p,q,p �=q

(
1{yi

p = yi
q}‖ϕs

ϑ(f
i
p)− ϕs

ϑ(f
i
q)‖22 (2)

+ 1{yi
p �= yi

q}max
(
0,m− ‖ϕs

ϑ(f
i
p)− ϕs

ϑ(f
i
q)‖22

))
,

where ϕs
ϑ is a contrastive module in the student network for intra-

camera contrastive learning and m denotes the margin. Finally, the
intra-camera incremental learning loss is formulated by:

LICI = Lce + Lcon (3)

The intra-camera incremental learning above fails to consider the
catastrophic forgetting and cross-camera matching capability with
camera-wise domain shift. To address these problems, we present a
cross-camera incremental learning scheme in the ensuing subsection.

3.3 Cross-Camera Incremental Learning

3.3.1 Dreaming Exemplars by DeepInversion

In view of the data privacy preservation in the online Re-ID setup, the
storage of images from the 1st to the (i−1)-th camera view is not per-
mitted. However, the samples in previous cameras are necessary for
mitigating forgetting and alleviating the camera-wise domain shift.
So we adopt the DeepInversion technology to online dream exem-
plars in the previous camera views as a supplement of missing data.

S. Wu et al. / Online Privacy Preservation for Camera-Incremental Person Re-Identification2698



As shown in the exemplar sets of Figure 2, the randomly initialized
exemplar x̂ in these sets as the optimizable variables are feed to the
teacher network to output the identity label ŷ for the retrospection of
those identities from previous inspected camera views. More specif-
ically, the identity-specific exemplar x̂ is generated by the following
DeepInversion loss:

LDI(x̂) (4)

= −
∑

(x̂,ŷ)∈B
1{y = ŷ} log(ψt

ω(φ
t
θ(x̂))) +RDI(x̂),

where B is a batch of optimizable inputs and RDI(x̂) is the Deep-
Inversion loss [38] to facilitate x̂ to retrospect the identity-specific
knowledge in previous camera views. We assume the exemplar gen-
eration per identity is p, and thus there are total pSi−1 exemplars
generated by the teacher network, with which we aim at mitigating
forgetting and alleviating domain shift.

3.3.2 Cross-Camera Correlation by Similarity Cues

With dreamed exemplars, matching the same identity across cam-
eras becomes feasible when the online Re-ID model continually per-
ceives the sequential union of camera data sets. The main challenge is
how to associate potential cross-camera positive pairs without avail-
able cross-camera annotation. To handle this problem, we leverage
the similarity cues between exemplars in preceding cameras and real
samples in the current camera for cross-camera correlation.

More specifically, we correlate the feature representation fp of a
real image in the current camera and the averaged counterpart fq of
generated exemplars sharing the same identity in previous cameras
according to the feature similarity computed as below:

sp,q = exp
(− ‖fp − fq‖22/σ2), (5)

if fp ∈ Nk(fq) ∧ fq ∈ Nk(fp) and 0 otherwise, where Nk(·)
indicates the set of the k nearest neighbors of the alternative fp or
fq . We randomly select a batch data from the i-th currently camera
view and create a similarity matrix by Eq. (5), and normalize each
row to obtain a correlation matrix denoted by W , in which each row
element indicates the similar possibility to correlate an identity in the
current batch and the others in previous inspected camera views. We
define the following cross-camera correlation (CCC) loss to incre-
mentally correlate those similar identities across camera views:

Lccc(φ
s
θ, ψ

s
ω) = − 1

|B|
|B|∑
k=1

W (k) log(ψs
ω(φ

s
θ(xk))), (6)

where B denotes the batch size; W (k) denotes the k-th row of W
and xk is the k-th sample from a batch data derived from the i-th
currently camera view.

3.3.3 Mix Learning by Exemplars and Images

Inspired by the Mixup approach in [3], where labelled/unlabelled
data and manual/guessing labels are interleaved or mixed to calcu-
late batch normalization for the distribution consistency of labelled
and unlabelled data. We feed old-camera exemplars mixed with the
images in the current camera to obtain camera invariant features.
More specifically, we mix a generated exemplar x̂ and real sample
x randomly by the vanilla Mixup approach, i.e., xm = (x̂ + x)/2
with corresponding mixed label ym = (ŷ + y)/2, where ŷ and y

are the guessed labels of x̂ and x generated by a soften function
s(p, T )v := p1/T

v /
∑Si−1

j=1 p
1/T
j with temperature T , which is used

to softly enhance those smaller entries corresponding to the poten-
tial cues among similar identities across camera views, while com-
promise those confident cues corresponding to the incredible similar
identities across camera views in a reversible way. We define the mix
learning loss as below:

Lmix(φ
s
θ, ψ

s
ω) =

∑
(ym,xm)∈B

‖ym − ψs
ω(φ

s
θ(xm))‖22. (7)

Besides intra-camera incremental learning and inter-camera incre-
mental learning, we adopt the knowledge distillation to further allevi-
ate forgetting. Specifically, the teacher network is updated in a slower
manner compared to student work which is updated in a faster man-
ner to learn new knowledge, and hence contains more knowledge of
previous data. We enforce the student network to mimic the teacher
network to alleviate forgetting and define a knowledge distillation
loss formulated by:

Lkd(φ
s
θ, ψ

s
ω) (8)

=
−1

|B|Si

∑
x∈B

Si∑
k=1

σk(ψ
t
ω(φ

t
θ(x))) log(σk(ψ

s
ω(φ

s
θ(x)))),

where B is a batch which contains both generated exemplars and cur-
rent samples; σk denotes the k-th output entry of the softmax func-
tion and σk denotes the detach operation from teacher network. Fi-
nally, the cross-camera incremental learning loss is formulated by:

LCCI = Lkd + αiLccc + Lmix, (9)

where αi = i/n and 1 < i ≤ n, linearly increases during the
training stage since the model becomes increasingly confident in
the cross-camera correlation when more identities appear in camera
views, which enhances the possibility of matching similar identities
across camera views.

3.3.4 Online Privacy Preservation Framework

Our framework is learned with joint guidance of intra-camera incre-
mental learning, DeepInversion, cross-camera incremental learning
by:

LOPP = {LICI,LDI,LCCI}, (10)

where the three-stage learning procedure is an alternative and cycled
optimization by LICI → LDI → LCCI → LICI.

4 Experiments

4.1 Implementation Details

To implement our proposed OPP method, we adopt Resnet-50 as our
backbone for feature extraction. The output dimension of the last
layer in Resnet-50 is 2048. Following the last layer, we append a
contrastive module for contrastive intra-camera learning and an in-
cremental module for camera-wise incremental learning. The learn-
ing rates of the SGD optimizers for the base ResNet-50 backbone,
contrastive module and incremental module are 1e − 5, 1e − 3 and
1e − 3. In the exemplar generation in DeepInversion, we optimize
random exemplars with 1000 iterations and 64 batch size in two
rounds of exemplar random rolling. All input images and exemplars
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Market-1501 r=1 r=5 r=10 r=20 mAP
Full OPP model 88.21 94.92 96.38 97.68 73.36

w/o CCI loss 76.70 88.26 90.24 91.80 66.45
w/o ICI loss 72.28 83.16 83.52 86.49 63.47

baseline 71.44 80.06 82.15 84.21 59.43
DukeMTMC r=1 r=5 r=10 r=20 mAP

Full OPP model 74.78 86.64 90.00 92.37 58.32
w/o CCI loss 68.75 85.31 86.22 88.17 55.25
w/o ICI loss 62.14 82.27 83.87 85.10 53.53

baseline 63.02 82.63 83.25 86.61 52.43
MARS r=1 r=5 r=10 r=20 mAP

Full OPP model 63.94 70.01 72.76 76.69 46.30
w/o CCI loss 62.20 67.73 68.50 74.54 44.28
w/o ICI loss 61.75 65.96 66.48 70.48 42.30

baseline 59.24 64.38 66.12 72.47 41.55
MSMT17 r=1 r=5 r=10 r=20 mAP

Full OPP model 55.73 67.82 72.30 76.29 37.89
w/o CCI loss 52.43 61.56 69.77 73.30 35.73
w/o ICI loss 50.32 58.60 67.84 74.63 33.25

baseline 51.89 58.24 64.22 72.83 32.18

Table 1. Ablation study of the proposed OPP method. Here, the CCI loss
in Eq. (9) and ICI loss in Eq. (3) the OPP method was integrally removed to
investigate its removal impact on the online Re-ID model. The w/o CCI and

ICI loss functions denote that the OPP model was carried out without the
CCI and ICI loss functions. The baseline denotes that the OPP model was

carried out with the ICI loss.

are shaped to 256 × 128. In the intra-camera training stage, the on-
line Re-ID model was trained with 250 epoches for intra-camera con-
trastive learning. In the cross-camera incremental learning stage, the
online Re-ID model was trained with 50 epoches for cross-camera
incremental learning. In the label guessing stage, we adopt two ran-
dom augmentations for the soften label guessing, i.e., K = 2 for
the augmentation of exemplars and images. The order of the camera
sequence was shuffled randomly with the fixed random seed in the
experiments.

4.2 Datasets and Settings

The performance of the OPP method in the experiments were eval-
uated on four benchmark datasets: Market-1501 [42], DukeMTMC
[26], MSMT17 [29] and MARS [41]. In the online training stage,
we first create continually-perceived sets in advance for sequentially
accessing training data in each of these datasets. The element in
the continually-perceived data sets contains either video tracklets or
identity frames in the individual camera. In the testing stage, we use
all images in the query set to match possible images in the gallery
set, where the performance of our OPP method was evaluated by
the mean average precision (mAP) and we also report the Rank-1
(r = 1), Rank-5 (r = 2), Rank-10 (r = 10) and Rank-20 (r = 20)
scores. More specifically, the continually-perceived data sets divided
from each of the following datasets were presented as follows.

The Market-1501 dataset contained a large number of identity im-
ages from 6 disjoint cameras and used the DPM as pedestrian detec-
tor. The naming rule of this dataset is 0001_c1s1_001051_00.jpg,
where 0001 denotes the person identity and c1s1 is the 0001 iden-
tity appearing in the sequence 1 of camera 1. Therefore, we can first
form an intra-camera c1s1 data set containing different intra-camera
identities in our OPP setup. Thereafter, total 25 continually-perceived
data sets were created by the union of all cxsy data sets and gradu-
ally observed by the online Re-ID model. The continually-perceived
data sets for DukeMTMC and MSMT17 were created by the similar
way. In the MARS dataset, all bounding boxes and tracklets are gen-
erated automatically by DPM and GMMCP. The naming rule of this

Martket-1501 r=1 r=5 r=10 r=20 mAP
WA-iCaRL [25] 76.46 90.55 92.61 95.20 63.22

RM [2] 70.42 86.33 89.52 92.84 65.36
Co2L [4] 82.36 89.40 91.47 96.76 68.20
AGD [19] 80.43 87.65 90.22 94.37 66.24
PTKP [9] 84.80 90.26 92.58 94.72 69.54

OPP (Ours) 88.21 94.92 96.38 97.68 73.36

DukeMTMC r=1 r=5 r=10 r=20 mAP
WA-iCaRL [25] 60.83 78.37 83.64 90.25 45.70

RM [2] 58.25 68.61 76.35 84.86 49.38
Co2L [4] 63.67 76.56 81.64 87.27 47.20
AGD [19] 68.50 82.04 86.12 87.35 49.76
PTKP [9] 66.27 77.36 82.40 88.58 49.29

OPP (Ours) 74.78 86.27 90.00 92.37 54.32

MARS r=1 r=5 r=10 r=20 mAP
WA-iCaRL [25] 46.44 61.13 67.56 75.03 35.78

RM [2] 46.27 60.32 66.94 73.53 36.81
Co2L [4] 48.35 59.84 67.73 73.06 37.78
AGD [19] 52.53 75.68 72.25 75.33 36.41
PTKP [9] 54.16 62.75 68.40 73.81 39.16

OPP (Ours) 62.94 70.01 72.76 76.69 44.30

MSMT17 r=1 r=5 r=10 r=20 mAP
WA-iCaRL [25] 36.36 65.24 69.38 74.06 29.34

RM [2] 32.72 60.46 68.28 73.53 28.12
Co2L [4] 30.50 61.37 68.86 72.26 28.54
AGD [19] 35.38 62.50 64.39 75.87 32.18
PTKP [9] 41.78 63.29 69.63 73.51 30.44

OPP (Ours) 51.73 67.82 72.30 76.29 35.89

Table 2. Performance comparison with continual learning methods on four
Re-ID benchmark datasets within a single domain. The best results are in

black boldface font.

Figure 3. Selective exemplar images generated by the DeepInversion for
the replay with new arriving camera data.

dataset is 0000C6T3036F006.jpg, where 0000 denotes the person
identity; C6 and T3036 are the 0000 identity appearing in the tracklet
3036 of camera 6. Therefore, we can use the tracklet T3036 as a data
set if it has the number of images larger than 20000; Otherwise, we
merge the tracklet with others into the data set until the number of
images of the data set is larger than 20000. Finally, we obtain total
22 continually-perceived data sets.

4.3 Evaluation of the OPP Method

In our OPP method, we introduce the intra-camera incremental (ICI)
loss in Eq. (3) and the cross-camera incremental (CCI) loss in Eq.
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Methods Reference
Train: Market1501 → DukeMTMC → MARS → MSMT17

Market-1501 DukeMTMC MARS MSMT17 Average
r = 1 mAP r = 1 mAP r = 1 mAP r = 1 mAP sr=1 smAP

JTA (Upper bound)∗ AAAI21 94.60 86.30 89.10 76.30 67.36 49.42 78.50 53.10 82.39 66.28
WA-iCaRL† CVPR20 76.46 63.22 61.52 46.43 48.04 37.27 37.29 30.75 55.83 44.42

RM† CVPR21 70.42 65.36 58.34 48.11 47.40 38.87 33.53 28.27 52.42 45.15
Co2L† ICCV21 82.36 68.23 64.20 48.53 48.57 38.69 31.36 29.25 56.62 46.18
AGD† CVPR22 81.27 67.54 63.49 48.21 50.45 41.36 36.22 30.73 57.86 46.96
PTKP† AAAI22 84.80 69.54 67.35 50.47 54.42 40.76 43.55 31.26 62.53 48.01

OPP Ours 88.21 73.36 76.29 55.20 63.85 45.67 55.14 36.58 70.87 52.70

Table 3. Comparison with state-of-the-art methods across domains. The notation “*” means the results of models using the cross-camera annotation of
sequential camera-wise data. “†” means we implement the released code on our baseline, where no cross-camera annotation was used.

Market-1501 r=1 mAP MSMT17 r=1 mAP
MATE [43] 88.70 71.10 MATE [43] 46.00 19.10
PTKP [9] 84.80 69.54 PTKP [9] 41.78 30.44
OPP (Ours) 88.21 73.36 OPP (Ours) 51.73 35.89

Table 4. Performance comparison with intra-camera supervised methods.

DukeMTMC r=1 r=10 mAP
baseline + Lccc + Lmix + Lkd 74.78 90.00 54.32
baseline + Lccc + Lmix 64.84 84.24 53.69
baseline + Lkd + Lmix 68.82 87.04 53.71
baseline + Lccc + Lkd 68.76 87.17 53.80
baseline 63.02 83.25 52.43

Market>DukeMTMC>MARS>MSMT17 r=1 mAP
baseline + Lccc + Lmix + Lkd 90.00 54.32
baseline + Lccc + Lmix 84.24 53.69
baseline + Lkd + Lmix 87.04 53.71
baseline + Lccc + Lkd 87.17 53.80
baseline 83.25 52.43

Table 5. Each loss is added one by one in the OPP method.

(9). To investigate the efficiency of the two loss functions, we re-
moved each of them from our OPP method and explored the magni-
tude of performance degradation individually. We reported the per-
formance comparison to the baseline method, which only used the
cross-entropy loss in Eq. (1) and basic contrastive loss in Eq. (2) to
learn the online Re-ID model. The results are reported in Table 1,
where the notations “w/o CCI” and “w/o ICI” represented results
without the CCI and ICI loss, respectively.

Comparing the full OPP method to the baseline in Table 1, it ex-
hibited the efficiency of our OPP method in the case of the person
Re-ID with online privacy preservation. More specifically, the re-
ported results represent notable improvements in the rank-1 match-
ing accuracy, e.g., 16.77%, 11.76%, 4.70% and 3.84% improvements
were approximately observed on the Market-1501, DukeMTMC,
MARS and MSMT17 datasets, respectively. Note that the gains on
the Market-1501 and DukeMTMC datasets were more remarkable
than the gains on the other datasets. Considering mAP, we also ob-
tain 4∼14% improvement on these continually intra-camera labeled
datasets.

Moreover, as reported in Table 1, the ablation study indicates that
the removal of the ICI loss will lead to the notable performance
degradation. For example, on the Market-1501 and DukeMTMC
datasets, we observed approximate 15.93% and 12.64% degradation,
respectively, which indicates that the ICI loss was quietly useful to
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Figure 4. Accurate grid search for parameter-sensitive exploration on the
Market-1501 and DukeMTMC datasets, where the OPP performance

changed with respect to the values of the three parameters p, k and T .

improve the feature discriminative confidence in the current task.
More detailed impact of each individual loss was presented in Ta-
ble 5.

4.4 Evaluation on Camera-wise Learning

This work mainly focuses on handling the privacy disclosure issue by
the online camera-wise perception within a single domain. Beyond
the performance evaluation within a single domain, we still evaluate
cross-domain continual learning performance in this section for the
proposed OPP method. The compared methods include related state-
of-the-art alternative methods: WA-iCaRL [25], JTA [32], Co2L [4],
RM [2], AGD [19] and PTKP [9]. Since only intra-camera annota-
tion was available in our online Re-ID setup, the contrastive learning
method Co2L can be directly used for comparison in this scenario;
We only retain the components using intra-camera annotation in the
PTKP method for the fair comparison. The others were also trained
by the intra-camera supervision. Note that the JTA method, a base-
line assembling all datasets in advance for joint training, was used to
show the upper bound for reference.

We argue that the realistic changes such as cross-camera visual
ambiguity and appearance variation caused by illumination, camera
viewpoint, background and occlusions are challenging enough for
continually learning a model within a single domain, especially with
the consideration of the privacy disclosure in this online scenario.
For comprehensive evaluation, we focus on handling the privacy dis-
closure issue within a single domain by the proposed OPP method.
Furthermore, we still study cross-domain continual learning and ex-
plore the cross-domain performance of the proposed OPP method.
The performance evaluation was divided into three parts as follows:
- Evaluation across domains. Table 3 reported the comparison re-
sults with state-of-the-art methods across domains, where the evalua-
tion results were recorded after sequentially training on each dataset.
As reported in Table 3, our OPP method outperforms the other com-
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petitive methods in the online Re-ID setup, where only intra-camera
annotation was provided without the possiblity of privacy disclosure.
In contrast, the JTA method was trained by the cross-camera super-
vision, and thus the performance of our OPP method can not out-
perform to the method. More specifically, compared to the SOTA
method PTKP, we achieved improvements of approximately 3.41%,
8.94%, 9.43% and 11.59% rank-1 matching accuracy on the Market-
1501, DukeMTMC, MARS and MSMT17 datasets. Compared to the
upper bound JTA, the performance gaps between the usage and non-
usage of the cross-camera annotation were relatively small on the
four datasets as shown in Figure 5(a). These results exhibited the ef-
fectiveness of the OPP method. Furthermore, the OPP method was
compared with intra-camera methods and reported in Table 4.

- Evaluation within single domain. Table 2 reported the compar-
ison results with state-of-the-art methods within a single domain,
where the evaluation results were recorded after training on each
dataset. Different from previous cross-domain training, there were
no dataset domain knowledge that can be transfered sequentially. In

contrast, there are only camera-wise knowledge that can be trans-
ferred in a single domain. As reported in Table 2, our OPP method
still outperforms the compared methods in the online Re-ID setup,
where only intra-camera annotation was used, but the performance
can not compare with the sequential learning across domains in Ta-
ble 3, since there cross-domain knowledge can be transferred from
previous datasets. More specifically, compared to the SOTA method
PTKP, we achieved improvements of approximately 3.41%, 8.51%,
8.78% and 9.95% on the Market-1501, DukeMTMC, MARS and
MSMT17 datasets in terms of the rank-1 matching accuracy.
- Evaluation on forgetting. After sequentially training on each
dataset or training with camera data, we computed each rank-
1 performance difference of compared methods to measure the
anti-forgetting capability. Lower difference indicates better anti-
forgetting capability. More specifically, the cross-camera and sin-
gle domain performance differential results were shown in Figure
5(b) and Figure5(c), respectively. Note that all intra-camera learning
methods were used for the comparison except for the JTA that uses
the cross-camera annotation. We observed that the proposed OPP
method suffers from less forgetting than the others. This is because
OPP utilizes the DeepInversion regularization strategy to regularize
the model parameters by the generated exemplars as shown in Fig-
ure 3 when learning from new data, and then we feed old-camera
exemplars or images along with the current task images to learn the
network jointly for mitigating catastrophic forgetting.

4.5 Parameter-Sensitive Analysis
There are three hyperparameters involved in our OPP method: 1) The
number of generated exemplars per identity denoted as p built by the
base teacher network to preserve preceding knowledge from previous
inspected camera views to address catastrophic forgetting in Subsec-
tion 3.3.1. 2) The number of k nearest neighbors in the formulation
of Eq. (5). 3) The distribution temperature T in mix learning. Figure
4 shows the OPP’s performance sensitive to the three parameters on
the Market-1501 and DukeMTMC datasets. We recorded the mAP
w.r.t. different values of the three parameters to approximately figure
out their best values. As shown in Figure 4, the model approximately
performs best when p = 2, T = 3, k = 3 or k = 4 and on the above
datasets in a range of parameter-selection possibilities.

5 Conclusion
In view of the possibility of privacy disclosure in the online person
Re-ID scenario, this work removes the needs for cross-camera an-
notation and data storage for online person Re-ID, where the online
Re-ID model perceived data in a camera-wise manner and no cross-
camera annotated and stored data incurred privacy disclosure. The
proposed online Re-ID model in this setup was designed to sequen-
tially learn across non-overlapping camera views only using the on-
line intra-camera annotation, and meanwhile incrementally perceives
the camera-wise data without forgetting previous knowledge already
learned. We used generated exemplars as supplements of the missing
data in previous inspected cameras, making cross-camera associa-
tion, knowledge preservation and camera-wise domain shift mitiga-
tion to be feasible in the online person Re-ID scenario. More specif-
ically, we used cross-camera correlation and mix learning strategies
to discover the cross-camera similarity cues and incrementally cor-
relate cross-camera identities potentially belonging to the same per-
son. The generated exemplars in previous inspected cameras along
with real images in the current camera were mixed to guide the
camera-invariance representation learning. The experimental results
have verified the effectiveness of the proposed OPP method in the
online person Re-ID scenario.
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