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Abstract. Recent studies show that an ensemble of deep networks
can have better adversarial robustness by increasing the deep fea-
ture learning diversity of base models to limit the adversarial trans-
ferability. However, existing schemes mostly rely on a second-order
method for gradient regularization which usually involves a heavy
computation overhead. In this paper, we propose a simple yet effec-
tive method which eliminates the use of a second-order optimiza-
tion and significantly reduces the computation complexity of reg-
ularized simultaneous training of deep ensemble networks. For the
first time, we show analytically that stochastic regularization by the
proposed approach can promote both model smoothness and feature
diversity of representation learning in the deep space. We also show
that the proposed method is able to achieve a better gain of certi-
fied robustness. This is due to the effect of a prioritized feature se-
lection enabled by an adaptive and continuous sampling of neuron
activation among the base networks. Experimental results show that
our method can improve adversarial robustness significantly compar-
ing with the existing ensemble models on several image benchmark
datasets. The ensemble performance can be further boosted by com-
plementing the stochastic regularization approach with other defense
paradigms such as adversarial training.

1 Introduction

Despite their prevalent applications, deep neural networks (DNNs)
are found to be vulnerable to adversarial examples that are intention-
ally generated to induce predictive errors when input to the model
[29]. To defend against the attack, it is critical to enhance adversar-
ial robustness of the underlying networks. There are many defense
strategies proposed in the literature [9, 1, 24, 17]. But most of them
focus on strengthening individual models.

Deep learning architectures are widely applied in solving safety
and security-critical problems such as self-driving cars and biomet-
ric identification. It is critical to enhance the adversarial robustness
of DNN models under adversarial attacks. Moreover in many real-
time applications, lightweight models are deployed in mobile devices
where computation resources are limited, whereas several studies
have shown that popular defense schemes such as adversarial train-
ing can be less effective on such small models [20, 22]. One possible
solution is to build a robust ensemble of small deep networks as pro-
posed in this paper.
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Intuitively, it is harder to compromise an ensemble of models
rather than a single one. However, conventional ensemble models
train the base networks independently and often results in similar
model predictions [18]. On the other hand, adversarial examples can
be transfered across models especially similar ones [1], known as
transferred attacks. This has become an obstacle for building robust
countermeasures [30], especially in the context of ensemble models
when the member networks demonstrate overlapping vulnerability
[34].

Therefore, a recent line of research propose to increase diversity
of base models at either outputs or internal representations for lim-
iting adversarial transferability and improving ensemble robustness.
For instance, [21] proposed the ADP scheme to diversify the predic-
tive score distribution of base models over less-likely class labels at
the model output. [17] proposed a GradDiv regularizer to disperse the
gradient distribution by penalizing concentration in the ensemble loss
function. [12] proposes a diversified learning strategy based on pri-
ority dropouts coupled with a dispersed ensemble gradients (DEG)
regularizer to increase ensemble diversity on high-level feature rep-
resentations. [35] showed that both the lower and upper bounds of
adversarial transferability are tighter with smoother models, and ac-
cordingly proposed a TRS regularizer loss to enforce model smooth-
ness and reducing loss gradient similarity between base models.

Although demonstrated effective in gaining robustness, the previ-
ous ensemble training methods are either limited by increasing class
labels and more complex data scenes or involving a second-order
method of gradient regularization which significantly impairs the si-
multaneous training efficiency. In this paper, we propose a simple
yet effective method of ensemble training to promote both model
smoothness and feature diversity of representation learning among
base networks. Our strategy is in vein of the stochastic regularization
scheme proposed in [12]. Yet, the adaptive dropout based scheme
proposed in this paper does not require to work with second-order
optimization, which significantly reduces the complexity of regular-
ized simultaneous training. This is enabled by introducing a continu-
ous utility function for sampling active neurons across members with
diversified priority.

Our main contributions are:

• We propose a new keep rate generating function for adaptive sam-
pling of neuron activations that can enforce model smoothness in
the priority-based dropout training of deep ensembles, so called
the LPD scheme.

• We show that the proposed adaptive dropout can promote both
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model smoothness and feature diversified learning without using
any second-order method previously required for gradient regu-
larization. This significantly reduces the computation overhead of
simultaneous training for deep ensembles.

• We study impacts of the proposed LPD scheme on intrinsic model
properties including model smoothness, loss gradient diversity,
and certified robustness, and show with extensive experiments that
our method can effectively improve the deep ensemble model ro-
bustness under various attacks.

2 Related work

Adversarial attacks of DNN models can be roughly classified into
white-box and black-box scenarios. In a white-box setting, an at-
tacker can access target model details to build adversarial examples,
typically via gradient descent [2, 9]. In black-box settings, however,
an attacker attempts to attack by transferred adversarial examples
built on a surrogate model [1, 5] or probing decision boundaries by
queries [3, 4].

Many defense methods are proposed against adversarial examples.
Most notably is adversarial training [9] which can be formulated as
a min-max optimization problem [20] that builds a stronger model
by attacking it on-the-fly. However, computing adversarial perturba-
tions at each step requires many iterations of gradient-based opti-
mization to be performed for each new mini-batch, which signifi-
cantly increases the computation complexity of adversarial training
especially as the model size and input dimensions increase [31].

Gradient regularization is another defense paradigm by altering
the shape of decision boundaries for interpretable and qualitatively
reasons, e.g., to have smooth input gradients with respect to its pre-
dictions [24] or increase gradient diversity [17, 12]. DNN trained
with input gradient regularization often exhibit remarkable robust-
ness against transferred examples that are generated to fool other
models [5, 24]. However, such regularization methods in general
have high computation cost because computing input gradients re-
quires to take second derivatives in each mini-batch of parameter
gradient descent [24].

Randomization techniques are also explored as a promising de-
fense against adversarial attacks [2]. Related work can be roughly
categories into randomness added to the input [33] and randomness
added to the model [6, 12]. The former intends to mitigate adversarial
effects by destructing the intentionally crafted perturbations by input
variations such as random resizing, padding, and discretization. The
latter includes adding random noise layers [19] and randomly perturb
the hidden layers to learn an anisotropic noise distribution [8], which
is equivalent to training the original network with an extra regular-
ization of Lipschitz constant to improve the learning-theoretic bound
on adversarial robustness.

Recently, dropout-based mechanisms are added to the defense
paradigm of randomization [11]. Novel use of dropout and variants
has emerged to help resisting adversarial attacks. In [6], a stochas-
tic activation pruning scheme is similar to random dropout in terms
of sampling activations, and it is also applied at test time. [13] pro-
posed a self-adaptive dropout that improves the adversarial robust-
ness of a single DNN model. [12] proposed a Priority Diversified
Dropouts (PDD) to promote ensemble diversity of high-level feature
representation learning. The diversified feature learning is driven by
a second-order gradient regularization scheme of DEG [24].

Intrinsic properties of adversarial examples are studied to better
understand the attacks hence the design of defense methods. [5] sys-
tematically studies the underlying reasons of transferability at both

training and testing time, and suggests three main impact factors: 1)
size of the input gradients, 2) gradient alignment, and 3) variability
of the loss landscape. Among the three factors, most existing work of
defense are developed based on reducing gradient alignment between
the target and surrogate models to reduce the attack transferability in
ensemble models [17, 12, 35]. In particular, [35] demonstrates theo-
retically that increasing gradient diversity alone is not enough and it
has to work with increased model smoothness to ensure lower trans-
ferability.

3 Proposed Method

Inspired from [5], we propose to facilitate simultaneous training by
reducing the model complexity and increasing the variability of loss
landscape for ensemble robustness without a second-order optimiza-
tion of gradient alignment. This is achieved in a unified simple frame-
work of designing an adaptive dropout with priority-based keep-
rate generating functions across the base networks. The proposed
stochastic regularization scheme is described as follows.

3.1 Problem Formulation

Dropout is a stochastic regularization technique that was convention-
ally used to combat overfitting in various DNN models. They are typ-
ically applied in the training phase by setting a random subset of neu-
ron activations to zero, i.e., “dropping” units in the fully-connected
(FC) layer, with a certain probability (1 − p) where p is the keep
rate. In this way, the network is made more robust to input noise and
has better generalization performance on information-degraded data
points [11, 28].

Consider the ensemble model F = {F (θk)} where F (θk) is a
base network for k = 1, 2, ...,K. Typically, F is trained by aggre-
gating the individual predictors on the mini-batch of data x such as

ŷF =
1

K

K∑
k=1

F (x; θk). (1)

We refer the conventional independent training of F (x; θk) without
interactions between the base networks as the baseline approach, and
those with interactions as simultaneous training. There are different
ways to impose interactions on members in the ensemble model. For
instance, [21] defines an ADP regularizer on the output of predictive
scores of {ŷk} for all k to encourage non-maximal predictions of
each network to be mutually orthogonal. [34] generates training in-
puts on-the-fly with isolated vulnerabilities by utilizing a different set
of features from other sub-models. [17, 12, 35] introduces additional
gradient regularization to the ensemble loss function.

In this paper, we study the paradigm of stochastic regularization by
adaptive dropout training over an ensemble of deep networks. Adap-
tive dropout serves to span the latent semantic feature space of the
ensemble model by inducing sparsity in feature representation and
reduce the base model complexity [28], which results in different ac-
tivation patterns of deep features. On the other hand, previous study
such as [14] showed that the ReLU activation strength contains crit-
ical feature information that can be exploited for dropout analysis
and subsequently model improvement. Therefore, [12] designs an
adaptive dropout as a feature selection scheme based on joint acti-
vation density estimation across the based networks to facilitate di-
versified learning of feature representations in simultaneous training.
Here, we introduce necessary notations of the stochastic regulariza-
tion by briefly reviewing the priority-based diversity dropout (PDD)
proposed therein.
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Algorithm 1 Laplace Priority Dropout (LPD)
Require: The last FC layer of F (θk) for k = 1, 2, ...,K in each

training period
1: for k=1 to K do

2: Compute μ(v) by Eq. (3) for each neuron with activation
strength v > ε in the last FC layer of F (θk);

3: Count nk(μ) for all μ(v) values in F (θk);
4: end for

5: Compute N(μl) =
∑

k nk(μl) for l = 1, 2, ..., L;
6: Sort μ1, μ2, ..., μL w.r.t. N(μl) in descending order;
7: for k=1 to K do

8: Find rk ∈ {μl} with the k-th largest count in N(μl);
9: Assign rk as the priority activation median to F (θk);

10: Compute zk(μ) by Eq. (4) for all μ values in F (θk);
11: Compute the LPD keep rate pLPD (k, μ) by Eq. (6) for each FC

unit of F (θk) based on its μ value;
12: Keep a FC unit in F (θk) with probability pLPD (k, μ);
13: end for

14: return The last FC layer of F (θk) for k = 1, 2, ...,K.

The adaptive dropout is applied to the last fully connected (FC)
layer across all member networks F (θk) ∈ F for k = 1, 2, ...,K.
It first finds the spanning range of activation strength for all hidden
units in the last FC layer, and then collect the ensemble statistics of
neuron activation density through M > K quantized activation in-
tervals over the K base networks. The ensemble statistic indicates
the “importance” of underlying features as more neurons with par-
ticular strength are activated in the networks. Thus, intervals with
a higher neuron density are considered having a higher priority for
feature selection. The top-K such intervals are then assigned to the
K base networks to diversify high-level feature representation learn-
ing in the deep ensemble. This is enabled by a different generating
function of keep rates for each network [12]:

pPDD (k,m) =

{
α , m = tk
β · (1−Nk(m)/Ck) , m �= tk

(2)

where m and tk can be viewed as the quantized activation strength of
a hidden unit and activation priority interval of the k-th network. The
parameters α and β are coefficients in [0, 1]. In particular, a relatively
large α is selected to activate priority neurons, i.e., m = tk, with
a higher probability and a small β is used to cap the total number
of neuron activations in all other cases, i.e., m �= tk. The latter is
based on the neuron activation density Nk(m)/Ck of a hidden unit
with particular activation strength, where Ck =

∑M
m=1 Nk(m) is

the total number of activated units with a valid activation strength for
m = 1, 2, ...,m in the last FC layer of F (θk) for k = 1, 2, ...K.

3.2 Laplace Priority Dropout

The priority-based adaptive dropout can be viewed as a feature se-
lection by the base network [12]. However, it is not clear why the
stochastic regularization of dropout training can improve the model
adversarial robustness. Moreover, the PDD scheme has to work with
a second-order gradient regularization (DEG) to maximize its perfor-
mance [12]. In this paper, we aim to explain and evaluate the impact
of adaptive sampling from the perspective of several intrinsic prop-
erties that are highly related to improving the adversarial robustness
as introduced in Section 2.

In [35], it was shown that model smoothness plays a critical role
in constraining loss gradients similarity and hence tightening the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ke
ep

 R
at

e

Figure 1. Adaptive keep rates generated by the proposed LPD with respect
to the value of Laplace kernel z.

bounds of adversarial transferability. Thus, we are inspired to study
and hence improve the model smoothness of dropout-based stochas-
tic regularization. We notice that the sampling function of active hid-
den units is the key to the dropout training, and that the generat-
ing function of PDD in (2) is composed of a two-case discriminative
function. In this vein, we propose a new keep rate generating function
for adaptive sampling of neuron activations that can enforce model
smoothness in the priority-based dropout training of deep ensembles.

For diversified learning, the design goal is to have priority features
retained with higher probability and non-priority ones suppressed
much faster for different base networks. Thus, a viable solution is to
use a Laplace kernel that has the shape of desired property as shown
in Figure 1. The use of Laplacian kernel not only satisfies the de-
sign goal but also enables analytical properties of dropout analysis
for priority-based regularized training of the ensemble models. We
call the proposed method Laplace Priority Dropout (LPD) which is
outlined in Algorithm 1. The following describes the main steps of
how LPD generates the keep rates for adaptive sampling of hidden
units across the networks.

For the ease of expression, a hyper-parameter s is set up to indicate
the size of activation interval. Without specification, we use s = 0.1
empirically. We then compute the median value μ for a hidden unit
with activation strength v in the last FC layer as

μ(v) =
⌈v
s

⌉
· s− 0.5s (3)

Suppose the k-th network F (θk) has Ck activated neurons in the
last hidden layer and each is computed with a median value us-
ing its activation strength by Eq. (3). We gather statistical counts
of μm across all base networks, i.e., N(μm) =

∑
k nk(μm) for

k = 1, 2, ...,K and m = 1, 2, ...,M where M is the total number
of activation median values in the ensemble networks.

We then sort μ1, μ2, ..., μM with respect to N(μm) in descend-
ing order to get μ∗

1, μ
∗
2, ..., μ

∗
M . The top-K values of {μ∗

m} are con-
sidered as priority median values for neuron activation and each is
assigned to one of the K base networks in F . The priority median
values are denoted by rk for the k-th network.

To facilitate the diversified learning, we want neurons whose acti-
vation median value close to the designated rk to have a higher prob-
ability and retain in the last FC layer of F (x; θk). For the k network,
we map the activation strength v with a median value μ into

zk(μ) = γ · nk(μ)

Ck
· (rk − μ)2 (4)

where the first term γ is a scaling parameter, the second term
nk(μ)/Ck indicates the neuron density in the corresponding acti-
vation interval, and the third term is a distance between μ and the
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priority median value rk of the k-th network. We then build a utility
function with the kernel

fk(μ) =
1

2λ
· exp(−zk(μ)

λ
), (5)

which generates the adaptive keep rates as

pLPD (k, μ) = α · fk(μ) + β. (6)

Note that the kernel zk(μ) is not only based on the Euclidean dis-
tance from the priority median but also the neuron density which is
also a variable of the activation median μ. In this way, the keep rate
is higher for hidden units whose activation strength is closer to the
priority and activated more frequently in the local network.

3.3 Analytical Properties of LPD

The kernel mapping of Eq. (6) enables analytical properties of the
keep rates hence improving explainability of the adaptive dropout
scheme for ensemble robustness. As shown in Eq. (6), pLPD is linear
function of the utility function f(zk) which follows La(0, λ). Thus,
the probability density function of pLPD also follows the Laplace
distribution, i.e., pLPD ∼ La(β, αλ). Without specification, we set
λ = 0.5, α = 0.85 and β = 0.127 empirically in our experiments.
Accordingly, pLPD ∼ La(0.127, 0.425). Figure 1 plots the adaptive
keep rates pLPD with respect to the value of our Laplace kernel z. It
can be seen that when z is close to 0, i.e., the FC unit is nearby the
priority median for activation, the keep rate is high with a probability
close to 1. After the inflection point, i.e., at about β+

√
αλ = 0.78 in

Figure 1, the keep rate is gradually reaching the plateau of β = 0.127
which ensures that even the activated neurons with low priority have
a chance to retain for better generalizability. According to properties
of the Laplace distribution, the adaptive keep rates have an expected
value E(pLPD) = β and a variance V (pLPD) = 2(αλ)2, which are
0.127 and 0.361 in our case, respectively.

4 Impact of LPD on Model Properties

4.1 Ensemble Diversity of Generalizability

We study ensemble diversity of the proposed method in terms of
three perspectives, namely the ambiguity of member outputs Specif-
ically, we exploit entropy to summarize the ambiguity level of the
member outputs as in [15]

E =
1

N

N∑
i=1

1

K − �K/2� min {l(xi),K − l(xi)} (7)

where N denotes the size of test dataset, l(xi) denotes the number of
member classifiers that correctly recognize an input xi. The highest
diversity among all K members in an ensemble is manifested by
�K/2	 votes with the same value (0 or 1), while the lowest diversity
is when there is no disagreement with all 0’s or 1’s. Table 1 shows
the entropy measures on CIFAR-100 and Tiny-ImageNet, where the
maximal disagreement is always achieved by PDD+DEG or LPD.
The output ambiguity becomes larger for LPD when the number of
ensemble size K increases, which indicates a better generalizability
of the ensemble networks.

Table 1. The entropy measure E computed by (7) on the ensemble
learning methods.

Ensemble Methods CIFAR-100 Tiny-ImageNet
K = 3 K = 5 K = 3 K = 5

Baseline 0.1905 0.1874 0.2553 0.2624
ADP 0.2155 0.2240 0.3082 0.3046
PDD 0.2277 0.2462 0.4117 0.4126
LPD 0.2631 0.2784 0.4624 0.4667

4.2 Diversity of Input Loss Gradients

As introduced in Related Work, several studies have shown that in-
creasing the loss gradient diversity or reducing the gradient align-
ment with respect to input helps to boost the performance of ad-
versarial robustness and lower the success rate of transferred attacks
[5, 12, 17, 35]. To measure the gradient diversity, we also use the en-
semble cosine similarity, denoted by Ld =

∑
1≤i<j≤K cos 〈gi, gj〉

for K = 3, between pairwise loss gradients of input by any two
base networks. Note that Ld = 0 indicates gradient orthogonality.
While Ld > 0 indicates higher gradient similarity, Ld < 0 indicates
negative correlation in opposite gradient directions.

Table 2 lists the 25%, 50%, 75% quantiles of Ld by the compar-
ing methods on the first 2000 CIFAR-10 test samples. It can be seen
that the three diversity-driven simultaneous training methods have
all improved loss gradient diversity amongst the base networks. In
particular, PDD and LPD have Ld very close to 0. Given the small
magnitudes, the difference between the two is almost negligible. For
instance, LPD is about 107 times smaller than ADP in terms of Ld

at the 75% quantile. The results suggest that LPD-based diversified
learning is effective on constraining gradient similarity even with-
out an explicit gradient regularization scheme. This helps to signifi-
cantly reduce the computation complexity by eliminating the use of
a second-order method as in [12].

Table 2. Loss gradient diversity by Ld on CIFAR-10. The best
performance is marked in bold.

Q Baseline ADP PDD LPD
25% 3.76e-01 -1.48e-01 -4.11e-08 1.25e-14

50% 6.06e-01 2.73e-02 -9.93e-12 1.04e-11
75% 9.24e-01 2.77e-01 6.23e-09 2.49e-08

4.3 Model Smoothness

LPD is designed to improve model smoothness in the priority-based
diversified learning by using a continuous utility for generating the
adaptive keep rates. To measure model smoothness, [32] derives a
universal lower bound of Lipschitz Continuity which is closely asso-
ciated to the maximum norm of local input gradients. In [27], model
smoothness is also upper bounded by the l2 norm of input gradients.
Accordingly, we also evaluate model smoothness using the ensemble
l2 norm of gradients, denoted by Ls =

∑
1≤k≤K ‖gk‖2 for K = 3.

In general, the ensemble model is smoother with a smaller value of
Ls.

Table 3 shows the 25%, 50%, 75% quantiles of Ls also on the
CIFAR-10 dataset. Among the four comparing methods, LPD has
the smallest Ls which is, in general, two magnitudes smaller than
that by the second best performing PDD. This indicates that LPD
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improves model smoothness significantly while constraining the en-
semble gradient similarity.

Previous study [35] shows theoretically that increasing both gra-
dient diversity and model smoothness are critical to ensure lower
transferability of adversarial examples for better model robustness.
Our experimental results support this view by showing that LPD fur-
ther improves the results of PDD by enforcing model smoothness in
addition to diversified feature learning by dropout-based stochastic
regularization. In this way, LPD is also able to boost the performance
of adversarial robustness as will be shown in the next section.

Table 3. Model smoothness by Ls on CIFAR-10. The best performance is
marked in bold.

Q Baseline ADP PDD LPD
25% 3.86e-02 4.45e-01 8.02e-07 3.57e-09

50% 7.03e-02 6.49e-01 7.40e-06 3.50e-08

75% 3.98e-01 2.21e+00 5.08e-05 6.78e-07

4.4 Certified Robustness

Certified robustness provides a provable guarantee that no adver-
sarial example is capable of fooling the target model in the neigh-
borhood of a given input [26]. In general, the robustness verifica-
tion can be formulated as an optimization problem with maximiza-
tion objective under a set of constrains placed by the underlying
model F (x; θ) which can be viewed as a composite function in-
volving L hidden layers with parameter sets θl for l = 1, ..., L.
Given an input data point x ∈ R

d and a bounded lp-norm pertur-
bation ε ∈ R+, the set of adversarial examples of x is denoted
by S(x) =

{
x′ | ‖x′ − x‖p < ε

}
. The robustness verification is

to find the output margin of F (x) on S(x), which can be formu-
lated as the layer-wise optimization objective function [38]. Due to
the non-linear constraint introduced by the activation function, e.g.
ReLU function, solving exactly the optimization objective is an NP-
complete problem [25]. To address the issues, a line of research work
is focus on studying the bound algorithms via mixed-integer pro-
gramming solvers or layer-wise convex relaxation framework [7].
Among these techniques, CROWN [38] typically can give the tight-
est bound. It proposes to find a lower bound on the output margin be-
tween the ground-truth class and other classes to verify if the norm-
bounded perturbation can change the model prediction. We follow
the work of certified robustness for ensemble models in [37] to cal-
culate the lower bound. The CROWN method defines F̂ (x) with the
same parameters as those of F (x) except the last layer which is re-
formed by

ŵL
(j,:) = wL

(i,:) − wL
(s(j,i),:)

b̂Lj = bLi − bLs(j,i)

where j ∈ [C − 1], s(j, i) =

{
j j < i

j + 1 j ≥ i

(8)

such that F̂ (x) produces C − 1 margins [F (x)]i − [F (x)]j for the
ground-truth class i to another class j where j �= i. The optimization
objective can then be solved alternatively by running the CROWN
algorithm on F̂ (x). In this way, we obtain a lower bound for each
margin, denoted by

M̂(x; ε) = {M̂1, M̂2, ..., M̂C−1} (9)

It should be noted that the CROWN method is a verification al-
gorithm with very high computational complexity and huge GPU
memory requirements. Even if we utilize Tesla-V100 GPUs with
32G memory, running the CROWN algorithm by using standard
ResNet18 on CIFAR10 dataset will produce an insufficient memory
error based on the library auto_LiRPA 1 developed in part by the
authors of CROWN. To show the performance of our proposed LPD
algorithm and some the-state-of-art methods in terms of certified ro-
bustness, we choose the model integrated by 3 scale-down ResNet18
models, in which we reduce the parameter ’in_channels’ in the stan-
dard ResNet18 from 64 to 4. We compare LPD with Baseline and
ADP. In particular, the first 200 samples that could be correctly clas-
sified by all three models are selected from the test dataset for evalu-
ation.

Figure 2 compares the certified robustness of different models
by their minimal lower bound in M̂(x; ε) from (9) over the 200
CIFAR-10 samples. The l∞-norm bounded perturbation has a max-
imum magnitude of ε = 0.0005. The minimal lower bound mea-
sures how difficult it is to find an adversarial example x′ by impos-
ing ‖x′ − x‖p < ε on x. A positive point indicates that no such an
x′ can be found for x. Note that the more points located above the
line of minimal lower bound = 0, the better adversarial robustness the
model achieves. It can be seen that the enhanced model trained with
both LPD and PDD have far more robust points in Figure 2, which
indicates a better gain of certified robustness by the CROWN method
[37].

It should also be noted that the provable verification measure
only provides a lower bound of guaranteed robustness on the out-
put margin under norm-bounded input perturbations. APD promotes
the model robustness by diversifying the predictive score distribu-
tion over less-likely class labels at the model outputs. It is effective
by empirical evaluations under specific attacks as shown in Figure
3, but not as much by certified robustness tests in Figure 2. Certified
robustness tests give the worst-case scenario under the perturbation
constraint even for unseen attacks. It is usually a conservative esti-
mate in the vicinity of a particular input example and tends to be
loose on expressive networks [26]. Thus, there can be a discrepancy
of certified robustness from the empirical evaluation under specific
attacks. This is demonstrated by LPD whose certified robustness is
slightly better than PDD in Figure 2 but can achieve a significant
gain of model performance by up to over 20% under actual attacks
as shown in Table 4 of the next section.

5 Performance Evaluations

Datasets. Three benchmarks datasets are used, namely CIFAR-10,
CIFAR-100 and Tiny-ImageNet. In all cases, the pixel values of im-
ages are scaled to be in the interval [0, 1].
Target Models. The deep ensemble model contains K = 3 ResNet-
18 networks [10]. Dropout-based methods are applied to the last FC
layer of 512 neurons before the softmax layer. Both APD and PDD
(with DEG enhancement) are implemented with best performing pa-
rameters [21, 12].
Attack Methods. Five representative attack methods, namely FGSM
[9], BIM [16], PGD [20], JSMA [23], and the C&W attack [2], are
implemented with the ART v1.1 library 2 with a pytorch on Tesla
V100 GPU. Unless otherwise specified, the attack parameter (Para.)
is the attack strength ε for FGSM, BIM and PGD, the γ control of

1 https://github.com/KaidiXu/auto_LiRPA
2 https://github.com/IBM/adversarial-robustness-toolbox
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Table 4. Model recognition accuracy (%) under various white-box attacks.

Attacks CIFAR-10 Tiny-ImageNet
Para. Base. ADP PDD LPD Para. Base. ADP PDD LPD

No Attack - 95.48 95.49 95.58 95.83 - 67.36 66.94 64.68 64.17

FGSM 0.02 47.07 62.93 58.42 73.26 0.02 18.87 12.46 45.63 50.85

0.04 34.32 43.27 41.75 65.55 0.04 7.44 3.79 24.92 30.61

BIM 0.02 6.01 38.17 30.12 42.69 0.01 16.87 12.41 34.22 41.24

0.04 1.00 16.93 12.43 21.95 0.02 3.30 2.32 16.35 21.62

PGD 0.02 7.49 38.97 33.92 45.90 0.01 22.85 19.85 39.16 44.22

0.04 0.37 15.27 13.38 27.50 0.02 5.30 3.81 17.49 25.34

JSMA 0.05 27.20 50.42 48.78 68.69 0.05 43.64 47.74 65.78 69.68

0.10 7.73 21.29 18.67 49.50 0.10 26.18 28.95 52.09 57.47

C&W 0.10 0.14 0.75 61.60 68.60 0.10 3.57 1.02 27.76 25.34

Figure 2. Certified robustness over 200 CIFAR10 samples.

L0 perturbation intensity θ = 0.1 for JSMA, and the c control of the
classification loss for C&W.

5.1 Model Adversarial Robustness

Table 4 shows model recognition accuracy of the comparing ensem-
ble methods under various white-box attacks. It can be seen that the
baseline (Base.) results have very low recognition accuracy in gen-
eral, indicating that the attacks are fairly strong with high success
rates. In most cases, the proposed LPD demonstrates better adversar-
ial robustness with a significant gain up to 20% even comparing with
the PDD (with DEG enhancement). Comparing with other methods,
LPD has improved the model robustness against the BIM and PGD
attacks by about 5-15% on CIFAR-10 and Tiny-ImageNet. We also
note that the amount of gain varies across different attacks and their
settings. This may be due to the stochastic nature of dropout-based
regularization for diversified feature learning. The performance can
be further boosted by combining our approach with other robustness
training methods such as adversarial training as shown in Table 6.

We also evaluate the model accuracy under black-box attacks by
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Figure 3. Model robustness by accuracy (%) under the PGD attack with an
increasing perturbation value (in log2 scale) on CIFAR-100.

leveraging the transferability of adversarial examples built on surro-
gate models assuming different attacker knowledge [12]. In particu-
lar, Type II attacks are adaptive methods by assuming the surrogates
are trained with the same defence method (if there is any). The results
are reported in Table 5. Again, LPD performs the best in most cases
by reducing transferability of adversarial samples.This indicates that
the proposed scheme is able to improve adversarial defense by im-
proving model smoothness of the ensemble model under constrained
gradient similarity.

Table 5. Model adversarial robustness by accuracy (%) under different
black-box attacks on CIFAR-100.

Type Attacks Para. Base. ADP PDD LPD

I
PGD 0.02 40.31 41.10 60.49 65.14

0.04 15.47 17.94 30.38 34.80

JSMA 0.05 66.81 68.59 72.35 77.45

0.1 55.93 59.18 62.24 68.93

II
PGD 0.01 77.15 66.35 87.37 85.27

0.02 56.63 47.98 77.60 73.08

JSMA 0.05 56.33 58.46 69.32 74.24

0.1 35.91 39.64 58.71 66.21
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5.2 Incorporating with Adversarial Training

Our method complements exiting defense paradigms acting on indi-
vidual models such as adversarial training [9] and other data augmen-
tation schemes [36]. Table 6 shows the results by incorporating the
dropout-based regularization schemes with adversarial training with
adversarial examples generated by an attack method. In all cases,
LPD further boosts the defence performance, especially under at-
tacks of large perturbation intensities and under unseen attacks, e.g.,
AdvTFGSM against PGD and AdvTPGD against FGSM.

Table 6. Model accuracy (%) by incorporating adversarial training to the
ensemble model on CIFAR-100.

Attacks CIFAR-100
FGSM PGD

Para. (ε) 0.04 0.08 0.02 0.04
AdvTFGSM 41.06 20.80 20.15 3.62

AdvTFGSM + PDD 59.64 27.09 38.17 19.50
AdvTFGSM + LPD 61.23 29.45 40.42 21.30

AdvTPGD 44.14 21.67 44.11 15.69
AdvTPGD + PDD 55.56 34.68 51.02 26.13
AdvTPGD + LPD 56.74 36.35 53.11 27.52

5.3 Increasing Attack Strength

Figure 3 plots the model recognition accuracy by increasing the nor-
malized perturbation intensity ε under L∞ and L2 norm attacks us-
ing PGD, respectively. Note that the plots are on a semi-log scale
with the ε value doubly increased over the x-axis. It can be seen that
LPD is consistently more robust than other methods even under large
perturbation attacks. For example, LPD is able to withstand L∞ per-
turbations with a normalized intensity of 0.32 (i.e., 82/255 pixels),
which is about 8 times stronger than the Baseline limit on CIFAR-
100.

5.4 Complexity Analysis

Most of the existing approach aiming at promoting gradient diversity
or improving model smoothness inevitably introduce second-order
optimization that largely increase the cost of training, which hin-
ders their application in practice. Specifically, the calculation of DEG
penalty in [12] requires O(K2) for pair-wise operations and O(n2)
for computing cosine similarity, while the min-max framework used
in TRS to compute the regularization term of model smoothness per-
forms back propagation twice and requires O(n2), where K is the
number of networks and n is the gradient dimension. Different form
that, the proposed LPD method involves counting in O(Ck) and sort-
ing in O(I log I), where Ck is the number of FC units in the k-
th network and I is the number of intervals. In practice, the train-
ing cost is trivial so that the LPD method can be efficiently applied
to large-scale models toward complex datasets. We test the training
time per epoch with a mini-batch size of 64 on CIFAR-10. When
K = 3, for instance, it takes 80s/epoch for LPD, 703s/epoch for
DEG, 4106s/epoch for TRS, 64s/epoch for ADP, and 54s/epoch for
baseline on Tesla V100. It is clear that the proposed LPD method are
comparable to the baseline and ADP while significantly superior than
two methods based on second-order optimization in terms of training
efficiency.

6 Conclusion

In this paper, we propose a new dropout-based simultaneous training
strategy that promotes both model smoothness and gradient diver-
sity in the deep learning space of ensemble models. The proposed
approach does not involve any second-order optimization and thus
have a low computation complexity of simultaneous training for en-
hancing the deep ensembles. Our evaluations show that our method is
simple yet effective under different attacks, especially against adap-
tive attacks and transferred examples in black-box settings.
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