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Abstract. Portfolio optimization tasks describe sequential decision
problems in which the investor’s wealth is distributed across a set of
assets. Allocation constraints are used to enforce minimal or maxi-
mal investments into particular subsets of assets to control for objec-
tives such as limiting the portfolio’s exposure to a certain sector due
to environmental concerns. Although methods for constrained Rein-
forcement Learning (CRL) can optimize policies while considering
allocation constraints, it can be observed that these general methods
yield suboptimal results. In this paper, we propose a novel approach
to handle allocation constraints based on a decomposition of the con-
straint action space into a set of unconstrained allocation problems.
In particular, we examine this approach for the case of two con-
straints. For example, an investor may wish to invest at least a certain
percentage of the portfolio into green technologies while limiting the
investment in the fossil energy sector. We show that the action space
of the task is equivalent to the decomposed action space, and intro-
duce a new reinforcement learning (RL) approach CAOSD, which
is built on top of the decomposition. The experimental evaluation
on real-world Nasdaq-100 data demonstrates that our approach con-
sistently outperforms state-of-the-art CRL benchmarks for portfolio
optimization.

1 Introduction

Portfolio optimization tasks belong to the family of resource alloca-
tion tasks in which an actor needs to allocate the available resources
over a set of choices in each time step. Technically, resource allo-
cation tasks can be considered multi-step decision problems with
a standard-simplex action space describing all possible allocation
choices, e.g., the set of all possible portfolio allocations in a financial
setting. Policy gradient based RL can be used to optimize stochastic
policies over the corresponding simplex action space and thus, they
are often used to optimize portfolio allocation agents. For example,
[20] proposes to use PPO [16] in combination with a Dirichlet action
distribution for risk-aware portfolio optimization.

In many real-world financial settings, investors set maximum and
minimum allocation weights to certain groups of assets for their port-
folio. These constraints might originate from their client’s investment
guidelines, restrictions posed by the regulator, or the investors’ eco-
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nomic opinion. For example, an investor might need to consider sus-
tainability aspects in addition to generating economic returns. In this
setting, the investor might be required to invest a minimal amount of
30% of the portfolio into green technologies and a maximum amount
of 15% into companies belonging to the fossil energy sector. Alloca-
tion constraints reduce the set of allowed actions for the agent within
the simplex action space, constraining the action space to a subset
of the original simplex action space that can be described geometri-
cally as a convex polytope. Unfortunately, directly modeling a suit-
able action distribution on this polytope, which can be used to formu-
late a parametrizable policy function, is inherently difficult. A viable
alternative approach is constrained Reinforcement Learning (CRL),
which penalizes constraint violations in order to teach the agent to
avoid disallowed actions, e.g., [12, 21, 18]. However, most of these
approaches cannot guarantee that no constraint will be violated, may
exhibit unstable training behavior, or produce suboptimal results, es-
pecially if more than a single allocation constraint is needed.

In this paper, we propose an alternative approach that decomposes
the original constraint action space into unconstrained sub-action
spaces, each containing a subset of the assets. The actions from these
sub-action spaces are then combined back into the original action
space using a weighted Minkowski sum. We exploit that any con-
straint requiring a maximum investment into a subset of assets is
equivalent to requiring a minimum investment in the inverse subset
of assets. This allows us to consider only constraints requiring a min-
imum allocation to asset groups. For the case of two allocation con-
straints, we decompose the action space into four sub-action spaces.
The first sub-action space invests into the assets that are restricted by
both allocation constraints. The second and third sub-action spaces
ensure the fulfillment of each constraint after the allocations in the
first sub-action space. The final sub-action space freely distributes
the remaining funds which were not needed to fulfill the constraints.
The allocation of assets in each sub-action space can be parameter-
ized using an unconstrained Dirichlet distribution. We employ PPO
[16] to optimize the policy function over the joint distribution of the
sub-action spaces. Our new approach CAOSD ensures a tractable
computation of the joint probability and gradients of the sub-action
spaces through an auto-regressive architecture. Additionally, we use
a transformer-based encoder of the current pricing structure of the
market which is based on the recent price development.

We demonstrate the effectiveness of our novel approach in port-
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folio optimization tasks based on real-world Nasdaq-100 index data.
The results show that our approach is able to generate significantly
higher returns than state-of-the-art constraint RL methods in the
overwhelming majority of cases.

The main contributions of this paper are the following:

• We introduce a novel decomposition for constrained simplex ac-
tion spaces with two allocation constraints into several uncon-
strained sub-action spaces.

• We propose a new method named CAOSD utilizing this decom-
position to effectively apply standard RL algorithms like PPO on
a surrogate action space.

• We demonstrate that CAOSD is able to significantly outperform
state-of-the-art CRL benchmark approaches on real-world market
data.

Our paper is structured as follows: In Section 2, we give an
overview of the related work and continue in Section 3 with a for-
mal problem definition. Afterward, we introduce our decomposition
and show how to utilize the decomposition for RL in Section 4. We
proceed with an extensive experimental evaluation of our approach
in Section 5 before concluding the paper in Section 6.

2 Related Work

Portfolio optimization tasks with allocation constraints can be for-
mulated as constrained Markov decision processes (CMDPs) [3] and
policies can be optimized using CRL approaches [12, 21, 18]. Note
that our novel decomposition is able to parameterize the constraint
action space directly, and thus, the task can be formulated as an
(unconstrained) Markov decision process (MDP), for which optimal
policies can be found through standard RL algorithms.

CMDPs have seen successful applications in fields such as net-
work traffic [11], and robotics [10, 2]. Finance applications such as
[4, 20] use a scalarized objective function to maximize the return
while penalizing for risk to perform a multi-objective, i.e. risk/return,
portfolio optimization. The allocation constraints in our setting al-
low also to control for risk as they can be used to limit the investor’s
exposure to risky sub-markets. [1] combine the risk/return optimiza-
tion while also considering allocation constraints. They enforce these
constraints by using a penalizing CRL approach stating that “there is
no straightforward way to design an actor-network so that all pro-
posed actions are compliant”. Our approach tackles this challenge
and provides a way to do so on an actor-network level without the
need for a penalty term.

There are different approaches to identify optimal policies in
a CMDP setting. Penalty-based approaches include an additional
penalty term into the objective function representing the constraints.
An example is Lagrangian-based approaches such as [18, 5] that
transform a constrained optimization problem into an unconstrained
one by applying Lagrangian relaxation. A subsequent step solves a
saddle point problem by optimizing the objective function and dy-
namically adjusting the penalty factor λ.

Alternative penalty-based approaches, such as [12], employ
interior-point methods. Common drawbacks of penalty-based ap-
proaches are the need for additional hyperparameter tuning, expen-
sive training loops, and the lack of guarantees for satisfying the con-
straints. An alternative approach is based on defining Trust Regions
[2], which may produce constraint violations due to approximation
errors. Furthermore, there are approaches based on prior knowledge
[9] which pretrain a model to predict simple one-step dynamics of
the environment. Other approaches are based on the use of Lyapunov

functions to solve CMDPs by projecting either the policy parame-
ter or the action onto the set of feasible solutions induced by state-
dependent linearized Lyapunov constraints [6, 7]. However, this ap-
proach can be computationally expensive and, in some cases, numer-
ically intractable, especially as the action space grows larger [7].

Our method relies on a novel decomposition of the action space
into sub-spaces. Thus, approaches factorizing the action spaces are
another important research area that is related to this work. In [17],
the authors introduce action branching, which divides the action
space into independent sub-action spaces. In contrast, our prob-
lem involves modeling sub-action spaces that depend on each other.
Auto-regressive approaches, which can model dependencies between
sub-action spaces [13, 19, 15], are another common method for the
factorization of the action spaces. Unlike these works, our approach
focuses on a novel decomposition of a constrained simplex action
space to make the optimization problem easier to solve using stan-
dard RL methods.

3 Problem Setting

An MDP is a 5-tuple (S,A,P,R, γ) where S represents the state
space, A the set of available actions, P the transition function de-
scribing the distribution over future states s′ given a state-action pair
(s, a), R is a reward function r : S × A × S → R and γ is the
discount factor.

For portfolio allocation tasks, A is defined as a simplex
over a set of N assets I = {0, . . . , N − 1}, i.e., A ={
a ∈ R

N
0,+ :

∑N−1
i=0 ai = 1

}
. In other words, ai describes the posi-

tive relative amount of capital assigned to the ith asset.
An allocation constraint is defined by a subset V ⊆ I of assets

and a threshold value c ∈ [0, 1] and implies that
∑

j∈V aj ≥ c for
all allocations a ∈ A. Thus, at least the amount c of the available
capital must be allocated to assets from the set V . Let us note that
any less-than constraint can be rewritten into a greater-equal con-
straint and vice versa. In particular, assigning at most c into assets
from V is equivalent to assigning more than (1 − c) into the re-
maining assets I \ V , e.g., in a three asset setup with asset weights
x1 + x2 + x3 = 1 the greater-equal constraint x1 + x2 ≥ 0.3 is
equivalent to the constraint x3 < 0.7. Thus, without the loss of gen-
erality, we will assume greater-equal constraints in the following. For
portfolio allocation tasks with one or more allocation constraints, the
action space is a convex polytope within the original simplex of all
N -dimensional allocation vectors.

The goal of a constrained portfolio allocation task is to find a
policy πθ maximizing the expected reward Eτ∼πθ [

∑T−1
t=0 γt · rt+1]

where rt+1 is the direct reward observed for the tth state transition
of episodes τ sampled by πθ while only using allowed allocations. In
our setting, the reward corresponds to the direct economic returns of
the entire portfolio. Finding a suitable formulation for πθ becomes
more and more complex with an increasing number of allocation
constraints. In the following, we will formulate πθ for up to two al-
location constraints which can directly be used in combination with
standard actor-critic and policy gradient RL algorithms. Thus, we
consider the following action space with V1 ⊆ I and V2 ⊆ I:

A2C =

{
a ∈ R

N
0,+ :

∑
i∈I

ai = 1,
∑
j∈V1

aj ≥ c1,

∑
k∈V2

ak ≥ c2, 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

}

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2656



4 Constrained Allocation Optimization with
Simplex Decomposition (CAOSD)

As mentioned in Section 3, the action space underlying our problem
is a convex polytope within the standard simplex over a universe of n
assets. Thus, directly defining a parameterizable probability distribu-
tion that could be used in a policy function for reinforcement learning
is rather complex. To avoid this complexity, we propose to decom-
pose the action space into four standard simplices over subsets of I .
For a proper weighting, allocations taken from these four standard
simplices add up to form a complete allocation action in the origi-
nal action space. In the following, we will describe the simplices and
how to compute weights, guaranteeing that the original and the de-
composed action set are equivalent. Afterward, we will describe how
a policy function can be defined on top of the decomposed action
space and how policy gradient based reinforcement learning meth-
ods can be applied.

4.1 Action Space Simplex Decomposition

To formalize our approach, we begin by defining the basic elements
of our decomposition, i.e., the padded standard simplices and their
combination with the weighted Minkowski sum.

Definition 1. Let I = {0, . . . , N − 1} be a set of indices referring
to respective dimensions in R

N . Let SK be a standard simplex in
the subspace defined over the dimensions indicated by the index set
K ⊆ I . Let gK : R

|K| → R
N be a function that projects SK

into R
N , by padding the entries for any elements in R

N in those
dimensions with indices I \K with 0. Applying the function g on SK

then yields a padded standard simplex (PSS) defined as:

PSSK = gV (SK) =

{
y ∈ R

N
0,+ :

∑
j∈K

yj = 1; yi ≥ 0 ∀i ∈ K;

yj = 0 ∀j ∈ I \K
}

for K �= ∅

and

PSSK = gV (SK) =

{
y ∈ R

N
0,+ : yj = 0 ∀j ∈ I

}
for K = ∅

Definition 2. Given n sets of vectors Q1, . . . , Qn in R
N , the

weighted Minkowski sum of Q1, . . . , Qn is generated by adding
each combination of vectors from sets Qi after applying a respec-
tive weighting factor zi, i.e., (Qi)zi = {zi · qi|qi ∈ Qi} with
i = {1, . . . , n}. We write the weighted Minkowski sum of the sets
as Mz = (Q1)z1 + . . . + (Qn)zn = {z1 · q1 + . . . + zn · qn|q1 ∈
Q1, . . . , qn ∈ Qn}. We refer to (Qi)zi for i = {1, . . . , n} as the
weighted Minkowski summands.

Our approach identifies four PSSs and a weighting vector z =
[z1, z2, z3, z4] that can be combined as a weighted Minkowski sum
Mz = (PSS1)z1 + (PSS2)z2 + (PSS3)z3 + (PSS4)z4 such that
Mz = A2C .

The first weighted Minkowski summand PSSK1 is built over the
intersection of assets K1 = V1 ∩ V2. Investing into these assets con-
tributes to fulfilling both constraints. In fact, if c1 + c2 > 1, we need
to invest at least a portion of z1 = c1+c2−1 into assets from V1∩V2

to avoid over investment.
The second weighted Minkowski summand PSSK2 is defined

over the assets in V1 = K2. To fulfill the first constraint, we have
to make sure that we at least invest c1 into assets in V1. However,

PSSK1

PSSK2

PSSK3

PSSK4

V1 ∩ V2

V1

V2 I

Figure 1: Set of padded variables represented as white area, set of
modeled variables represented as colored area for each of the four
PSSs.

we need to consider that any capital z1 already being allocated into
PSSK1 also contributes towards fulfilling this constraint. Corre-
spondingly, PSSK3 is defined over the assets in K3 = V2 and re-
quires an investment of c2 minus any allocation made to V1∩V2 from
PSSK1 and PSSK2 . Finally, PSSK4 is defined over the complete
asset universe I . It covers the case, that not any available capital is
needed to fulfill the allocation constraints. Thus, any remaining cap-
ital 1− (z1 + z2 + z3) can be freely allocated among the assets in I
to maximize the economic return. An illustration of the four sets be-
ing covered by these weighted Minkowski summands can be found
in Figure 1.

To demonstrate the basic principle, consider an allocation task in
which our capital must be allocated over five assets a1, a2, a3, a4 and
a5. The first constraint c1 requires to allocate at least 30% weight to
the group of variables with index V1 = {1, 3}. The second constraint
c2 requires to allocate at least 50% weight to the group of variables
with index V2 = {2, 4}. Thus, the set of feasible solutions, i.e. the
action space, is defined by the polytope

P0 =

{
a ∈ R

5 :
∑
i∈I

ai = 1;
∑
i∈V1

ai ≥ 0.3;
∑
i∈V2

xi ≥ 0.5;

xi ≥ 0 ∀i ∈ I = {1, 2, 3, 4, 5}
}

Given the four PSSKj with the respective index sets of K1 = ∅,
K2 = V1, K3 = V2, K4 = I and the weighting vector z =
[z1, z2, z3, z4] = [0.0, 0.3, 0.5, 0.2]. The corresponding weighted
Minkowski sum M will equal P0 as shown in the following: Any fi-
nal allocation a = [a1, a2, a3, a4, a5] ∈M is the vector sum of four
vectors ãj = [ã1,j , ã2,j , ã3,j , ã4,j , ã5,j ] ∈ (PSSKj )zj ⊂ R

5 for
j ∈ {1, 2, 3, 4}, i.e. a = ã1 + ã2 + ã3 + ã4. The first sub-weighting
vector ã1 will be (0, 0, 0, 0, 0) due to K1 = ∅ as we cannot invest
into any assets. Any sub-weighting vector ã2 ∈ (PSSK2)z2 will al-
locate a total of z2 = 0.3 weight to the variables with an index in
V1, ensuring that any a ∈ M will always satisfy the lower bound
of the first constraint c1 = 0.3. Any vector ã3 ∈ (PSSK3)z3 will
allocate a total of z3 = 0.5 weight to the variables with an index in
V2, ensuring that any a ∈ M will always satisfy the lower bound
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of the second constraint c2 = 0.5. Any vector ã4 ∈ (PSSK4)z4
will allocate the remainder of z4 = 0.2 weight to any combination
of variables in I , (a) ensuring that

∑
i∈I ai = 1 and (b) potentially

allocating additional weight to the variables with indices in V1 and
V2 (since V1 ⊆ I and V2 ⊆ I), allowing a ∈M to exceed the lower
bounds of c1 and c2, i.e.

∑
i∈V1

ai ≥ 0.3 and
∑

i∈V2
ai ≥ 0.5. As

a result, the sets M and P0 have an identical H-representation (see
Definition 3), i.e. being specified by the identical sets of constraints,
making them identical polytopes.

In the following, we will introduce a weighting scheme selecting z
which guarantees general equivalence between M and P0. First, we
formalize our constrained action space A2C as convex polytope and
introduce its H-representation.

Definition 3. A convex polytope P in R
n is defined as a polytope

that additionally is also a convex set. P can be viewed as the set of
solutions to a system of linear inequalities, i.e., the intersection of a
finite number of closed half-spaces, called P ’s half-space represen-
tation (H-representation):

a11x1 + a12x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn ≥ bm

The general formulation on how to identify the four PSSKj with
their respective index sets Kj and the definition of the weight-
ing vector z can be found in Theorem 1. Let us note that we
define the weighting vector z as an autoregressive function with
z = [z1, z2(z1), z3(z1, z2, y2), z4(z1, z2, y2, z3)] which results in
an adaptive weighting vector depending on each current combination
of elements in PSSKj for all j = {1, 2, 3, 4}.

Theorem 1. Any polytope P defined by the system

∑
i∈I

xi = 1; xi ≥ 0 ∀i ∈ I;
∑
i∈V1

xi ≥ c1;
∑
i∈V2

xi ≥ c2

with I = {0, . . . , N − 1}, V1 ⊆ I and V2 ⊆ I can be expressed as
a weighted Minkowski sum with the four weighted Minkowski sum-
mands with yi,j = [y0,j , . . . , yN−1,j ] ∈ (PSSKj )zj :

(PSSK1)z1 : K1 = V1 ∩ V2 and z1 = max(0, c1 + c2 − 1)

(PSSK2)z2 : K2 = V1 and z2 = max(0, c1 − z1)

(PSSK3)z3 : K3 = V2 and z3 = max(0, c2 − z1 − z2,∩)

where z2,∩ =
∑

i∈V1∩V2

yi,2

(PSSK4)z4 : K4 = I and z4 = 1− z1 − z2 − z3

Proof. Showing that two convex polytopes have an equivalent H-
representation, i.e. an equivalent system of linear inequalities de-
scribing them, proves that they are identical.

When calculating the weighted Minkowski sum M of the four
PSSs, we can deduce that for any element x = (y1+y2+y3+y4) ∈
M with y1 ∈ (PSSK1)z1 , y2 ∈ (PSSK2)z2 , y3 ∈ (PSSK3)z3
and y4 ∈ (PSSK4)z4 the following constraints are fulfilled:

The contribution to the variables
∑

V1
xi by (PSSK1)z1 and

(PSSK2)z2 will always be max(0, c1+c2−1)+max(0, c1−z1) =

c1 while (PSSK3)z3 and (PSSK4)z4 can optionally contribute pos-
itive weight, resulting in
∑
i∈V1

xi =
∑

i∈V1∩K1

yi,1

︸ ︷︷ ︸
=z1=max(0,c1+c2−1)

+
∑

i∈V1∩K2

yi,2

︸ ︷︷ ︸
=z2=max(0,c1−z1)

+
∑

i∈V1∩K3

yi,3

︸ ︷︷ ︸
≥0

+
∑

i∈V1∩K4

yi,4

︸ ︷︷ ︸
≥0

≥ c1.

The contribution to the variables
∑

V2
xi by (PSSK1)z1 ,

(PSSK2)z2 , (PSSK3)z3 will always be z1 + z2,∩ +max(0, c2 −
z1−z2,∩) = c2 while (PSSK4)z4 can optionally contribute positive
weight, resulting in

∑
i∈V2

xi =
∑

i∈V2∩K1

yi,1

︸ ︷︷ ︸
=z1

+
∑

i∈V2∩K2

yi,2

︸ ︷︷ ︸
=z2,∩

+
∑

i∈V2∩K3

yi,3

︸ ︷︷ ︸
=max(0,c2−z1−z2,∩)

+
∑

i∈V1∩K4

yi,4

︸ ︷︷ ︸
≥0

≥ c2.

The total weight contribution from all four (PSSKj )zj for j =
{1, 2, 3, 4} to all variables

∑
I xi will be always z1+z2+z3+(1−

z1 − z2 − z3) = 1, i.e.
∑
i∈I

xi =
∑

i∈I∩K1

yi,1

︸ ︷︷ ︸
=z1

+
∑

i∈I∩K2

yi,2

︸ ︷︷ ︸
=z2

+
∑

i∈I∩K3

yi,3

︸ ︷︷ ︸
=z3

+
∑

i∈I∩K4

yi,4

︸ ︷︷ ︸
=z4=1−z1−z2−z3

= 1.

Additionally, we check the constraints for the single variables xi

for i ∈ I . Since for yj = [y0,j , . . . , yN−1,j ] with j = {1, 2, 3, 4} all
single variables yi,j with i ∈ I are defined to be greater equal than
zero, it follows that

xi = yi,1︸︷︷︸
≥0

+ yi,2︸︷︷︸
≥0

+ yi,3︸︷︷︸
≥0

+ yi,4︸︷︷︸
≥0

≥ 0 ∀i ∈ I

which shows the equivalence of the two sets of convex closed half-
spaces defining P and M , which proofs that P = M .

4.2 Task optimization via Reinforcement Learning

After describing the simplex decomposition of the action space, we
will now define a stochastic policy function based on our novel de-
composition which can be used for policy optimization with policy
gradient based RL approaches.

We optimize the policy on a surrogate action space Ã = Ã1 ×
Ã2×Ã3×Ã4, which is the Cartesian product of the four sub-action
spaces. These sub-action spaces correspond to the four PSSKj when
decomposing A2C as introduced in the previous section. An action
ã ∈ Ã can be mapped into the original action space by using the
weighted asset-wise sum over the sub-action spaces: a = z1 · ã1 +
z2 ·ã2+z3 ·ã3+z4 ·ã4. Note that each surrogate action ã maps to one
particular action a in the original action space A but not vice versa.
In other words, the mapping is surjective but not bijective. Based on
this property, we can show that any optimal policy on the surrogate
action set Ã is optimal on the original action space A as well.

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2658



s state
encoder

xs

Branch
one

Branch
two

Branch
three

Branch
four
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Figure 2: Auto-regressive architecture. The dashed arrows represent
the process of sampling from a Dirichlet distribution to generate a
sub-action ãj .

Theorem 2. Given the constraint allocation task (S,A,P,R, γ) as
defined in Section 3 with the surrogate action space Ã correspond-
ing to the action decomposition defined in Theorem 1. Any optimal
policy over the surrogate action space Ã, π∗

Ã with Q(s, π∗
Ã(s)) ≥

Q(s, πÃ(s)) for any state s ∈ S and any policy πÃ(s), implies an
optimal policy π∗

A on the original action space A.

Proof. We know from Theorem 1 that there exist weights z which
allow to represent any a ∈ A by at least one surrogate action ã. In
addition, we know that for any state s ∈ S and any action a ∈ A,
the state-action value function Q(s, a) is the same for any ã map-
ping to a as the reward received for performing ã is provided by the
environment via performing the joint action a.

Thus, for any optimal policy π∗
Ã, there exists a corresponding pol-

icy π∗
A providing the same Q-values. Now assume that π∗

A is not
optimal and thus, there would be a policy π̂A with Q(s, π̂A(s)) >
Q(s, π∗

A(s)) for at least one state s ∈ S. Since the mapping between
the Ã andA is surjective, there must exist a decomposition of π̂A(s)
to the surrogate action space yielding higher Q-values than π∗

Ã(s)
which contradicts the optimality of π∗

Ã.

Theorem 2 shows that any well-performing policy in Ã can be
mapped to an equally well-performing policy over A.

After introducing the surrogate action space, we will introduce our
stochastic policy function over Ã. We model each sub-action space
with a Dirichlet distribution with a parameter vector αKj , which
is obtained by a neural network. Our policy function that is based
on the decomposition described in Theorem 1, requires an iterative
computation of the weighting vector z. Our algorithm for sampling
an action is detailed in Algorithm 1. In each step, we sample the
asset allocation for PSSKj by the corresponding Dirichlet distribu-
tion Dirj and then determine the corresponding weight zj . In the
end, the weighted asset-wise sum is computed and returned as joint
action which is applied to the environment.

An overview of our architecture is depicted in Figure 2. We first
create a representation xs of the observation s using a transformer
model. Each sub-action space is parameterized by an MLP using the
representation xs as well as all sampled surrogate actions from the
previous sub-action spaces. This structure allows a tractable compu-
tation and optimization of the joint surrogate action ã probability:
P (ã1, ã2, ã3, ã4|xs) = P (ã1|xs) ·P (ã2|ã1, xs) ·P (ã3|ã2, ã1, xs) ·
P (ã4|ã3, ã2, ã1, xs).

We employ a policy gradient approach based on the PPO algorithm
introduced by [16]. Note that our method can also be used with other
policy gradient based RL methods.

The state encoder is composed of three fully connected layers of
size 512, 256, and 128 with ReLU activation functions that feed into

Algorithm 1 Action Generation using the Simplex Decomposition
Input: Index set of all N assets in the investable universe I =
{0, 1, ..., N − 1}; Two allocation constraints C1 :

∑
i∈V1

xi ≥ c1
and C2 :

∑
i∈V2

xi ≥ c2
Define:
K1 = V1 ∩ V2, K2 = V1, K3 = V2 and K4 = I , fj is an autore-
gressive policy network branch for j = {1, 2, 3, 4}
Begin action generation:

1: calculate α1 from f1(xs), sample ã1 from Dir(α1)
2: set z1 = max(0, c1 + c2 − 1)
3: set qV1∩V2 := z1

∑
i∈V1∩V2

xi,1

4: calculate α2 from f2(xs, ã1), sample ã2 from Dir(α2)
5: set z2 = max[0, c1 − z1]
6: update qV1∩V2 := qV1∩V2 + z2

∑
i∈V1∩V2

xi,2

7: calculate α3 from f3(xs, ã1, ã2), sample ã3 from Dir(α3)
8: set z3 = max[0, c2 − qV1∩V2 ]
9: calculate α4 from f4(xs, ã1, ã2, ã3), sample ã4 from Dir(α4)

10: set z4 = 1− z1 − z2 − z3
11: calculate action a by adding the weighted sub-actions:

z1 · ã1 + z2 · ã2 + z3 · ã3 + z4 · ã4 = a

a GTrXL element, allowing also to handle tasks that require mem-
ory. GTrXL is based on [14] and is specifically designed to utilize
transformers in an RL setting. The GTrXL element is composed of a
single transformer unit with a single encoder layer and a single de-
coder layer with four attention heads and an embedding size of 64.
The different branching modules are all made up of two fully con-
nected layers of size 64 and 32, respectively, with a ReLU activation
function after the first layer and a softplus activation function for the
final output layer.

5 Experiments

5.1 Constrained Portfolio Optimization Tasks

We evaluate our approach in the financial setting on various con-
strained portfolio optimization tasks. The environment is based on
[20] and uses real-world data from the Nasdaq-100 index that has
been processed by the qlib package.1 The data is used to estimate
the parameters of a hidden Markov model (HMM), which is then
used to generate trajectories. The monthly closing stock prices from
January 1, 2010 to December 31, 2020 are included in the data set.
An additional data set containing monthly closing prices from Jan-
uary 1, 2021 to December 31, 2021 is exclusively used to backtest
the approaches. The environment’s investment universe consists of
12 assets plus the special asset cash. Cash has neither a positive or
negative return and remains stable over time. The remaining 12 as-
sets are chosen at random from a pool of 35 pre-selected assets from
the Nasdaq-100 data set. The assets were pre-selected based on the
fact that they have been a member of the index at least since January
1, 2010, and there were no missing data entries.

In the following, we provide a detailed description of the portfolio
optimization task. An agent is required to invest his wealth into N
different assets based on asset allocation decisions made at each time
step of the investment horizon T . The constrained action space for
this task is described by A2C as defined in Section 3, where the sets
V1 and V2 contain the indices of assets affected by the respective
constraint. These allocation constraints in the financial setting can
be motivated by various factors, such as the need to invest at least a

1 https://github.com/microsoft/qlib/tree/main
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certain percentage of the portfolio into a group of assets in a specific
sector or with a certain risk classification.

The observation space is defined as O = W × V × U . The set
W ⊆ R represents the agent’s current absolute level of wealth, the
set V ⊆ R

N describes the current portfolio allocation, and the set
U ⊆ R

N is the observed single asset economic returns from the
previous time step.

The total portfolio return r = ϑPF − tc is the agent’s reward

for each time step and is defined as the realized portfolio’s return
ϑPF minus any transaction costs tc that occurred. The portfolio’s re-
turn is a random variable ΘPF = aᵀΘ based on the random vector
Θ = [Θ0, . . . ,ΘN−1] representing the economic returns of the sin-
gle assets and the deterministic vector a that represents the portfolio’s
allocation weights selected by the agent. The cumulative portfolio to-
tal return over the investment horizon of 12 months, i.e. T = 12 time
steps, is defined as

ν =

T−1∑
t=0

rt+1

and in the following referred to as the annualized total portfolio re-
turn.

5.2 Experimental Setup

As previously stated, two evaluation environments are used: (1) the
simulation environment and (2) the backtesting environment. We con-
duct a total of 100 experiments, each with a unique constraint con-
figuration, i.e., a unique combination of two allocation constraints.
Each constraint configuration is evaluated on both evaluation envi-
ronments with the goal of comparing the performance of the ap-
proaches for different constraint configurations (a) on the environ-
ment the agents were originally trained on and (b) on unseen, real
world data.

Each experiment uses a different random seed as well as a ran-
domly generated constraint configuration. A constraint configuration
is made up of two allocation constraints Cj of the form

∑
i∈Vj

ai ≥
cj with j ∈ {1, 2} where Vj represents the set of affected assets and
cj the constraint’s threshold value. To generate both allocation con-
straints at random, we sample the number of affected assets between
1 and 12. We rule out the possibility of selecting 0 or 13 assets since
any greater equal allocation constraint would be either infeasible or
trivial. The sampled number defines the number of specific assets
which are then sampled from the list of 13 assets, i.e. the invest-
ment universe, without replacement resulting in Vj . Subsequently cj
is sampled from a uniform distribution in the interval [0, 1]. The pro-
cess is repeated for the second allocation constraint as well resulting
in a randomly generated constraint configuration. In a final step it is
verified that the resulting polytope P as defined in Section 3 is not
an empty set, i.e. a system that does not have a feasible solution.2

We compare our CAOSD approach to four other approaches, one
of which is a naive random approach and three of which are state-of-
the-art CRL approaches. The CRL approaches typically model con-
straint violations on a trajectory level, which means that they con-
strain the expected discounted sum of costs that occurred in each
time step [3]. However, they can be adjusted to model allocation con-
straints that must be satisfied at each time step. This can be done by
defining the costs at each time step in such a way that they return a

2 This can be checked by determining whether the V-representation of P
contains at least one vertex.

positive value if an allocation constraint is violated and zero other-
wise. When a violation occurs in any time step, the discounted sum
of costs will be greater than zero. Therefore, we can constrain every
time step in the trajectory implicitly by imposing a constraint on the
trajectory level that the expected discounted sum of costs needs to be
less than or equal to zero.

The first CRL benchmark approach is the Lagrangian-based
RCPO introduced by [18]. The second benchmark approach is
IPO proposed by [12] that uses an interior-point method to opti-
mize the policy. The third approach is P3O by [21], a first-order op-
timization approach that uses an unconstrained objective in combi-
nation with a penalty term equaling the original constraint objective.
The benchmark approaches are implemented in the RLlib framework
based on their papers.3 The code for all approaches is made pub-
licly available.4 All agents were trained on a cluster using various
types of commercially available single GPUs. All approaches were
extensively tuned in terms of hyperparameters using a grid search.
Additional information on the hyperparameter tuning process can be
found in the Appendix. During evaluation, RL agents take the action
with the highest likelihood.

In addition to the three benchmark approaches we also utilize a
random approach. This approach uniformly draws actions, i.e. asset
allocations, from the constrained polytope. Efficient uniform sam-
pling from a polytope is a surprisingly complex task, therefore we
follow [8] to obtain uniform samples from the constrained action
space. Using several rollouts of this baselines allows us to establish
an estimate of the difficulty of an experiment, since the possible re-
turns are highly dependent on the allocation constraints.

5.3 Evaluation

In our evaluation, we first compare the performance of our approach
and the benchmarks over the entire set of experiments, which demon-
strates the effectiveness of our approach in various settings. After-
ward, we discuss the performance and convergence during training
and take a detailed look at a single experiment. A key metric of the
evaluation is the agents’ mean annualized total portfolio returns. We
define the mean annualized total portfolio return for each of the five
approaches, i.e. app = {RCPO, IPO, P3O,CAOSD,RDM},
and each of the environments, i.e. env = {sim, bt}, as ν̄env

app =
1

J

∑J−1
j=0 νenv

app,j where J is the number of evaluation trajectories.
For the simulation environment J = 1000 trajectories per approach
are evaluated after the agents’ training is completed.

In backtesting – with the exception of the random approach – only
the single real-world trajectory is evaluated to measure the agents’
performance since their evaluation is deterministic. The random ap-
proach is treated differently since its evaluation remains stochastic
due to its previously mentioned design to always sample uniformly
an action from P . To reduce the variance in the results, we evaluate
ν̄bt
RDM on J = 1000 rollouts during backtesting.
We use two measures to evaluate the performance of the ap-

proaches over all experiments. The first measure, θ̄env
app , is the av-

erage of the mean annualized return of each approach over all exper-

iments. More formally, θ̄env
app =

1

N

∑N−1
i=0 ν̄env

app,i, where N = 100

is the number of experiments. Since the return that can be achieved
in each experiments varies greatly depending on the constraint con-
figuration, our second measure is defined as the difference of returns

3 https://docs.ray.io/en/master/rllib/index.html
4 https://github.com/DavWinkel/SimplexDecompositionECAI
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θ̄env
app

Upper 95%
CI

Lower 95%
CI

Simulation

RCPO 0.292 0.299 0.284
IPO 0.212 0.217 0.207
P3O 0.305 0.314 0.296

CAOSD 0.327 0.335 0.319
Random 0.209 0.217 0.201

Backtesting

RCPO 0.497 0.521 0.474
IPO 0.35 0.365 0.334
P3O 0.522 0.552 0.492

CAOSD 0.552 0.582 0.522
Random 0.333 0.355 0.311

Table 1: Evaluation of θ̄env
app and its 95% confidence interval for all

approaches in both environments for N=100 experiments after train-
ing is completed.

of each approach to the performance of the random baseline in the

same experiment: δ̄env
app =

1

N

∑N−1
i=0 ν̄env

app,i − ν̄env
RDM,i.

δ̄env
app

Upper 95%
CI

Lower 95%
CI

Simulation

RCPO 0.082 0.093 0.071
IPO 0.003 0.012 -0.007
P3O 0.096 0.108 0.084

CAOSD 0.118 0.129 0.106

Backtesting

RCPO 0.164 0.196 0.132
IPO 0.017 0.046 -0.012
P3O 0.189 0.227 0.151

CAOSD 0.219 0.258 0.179

Table 2: Evaluation of δ̄env
app and its 95% confidence interval for the

non-random approaches in both environments for N=100 experi-
ments after training is completed.

Table 1 and Table 2 show the performance of the approaches for
both metrics in both environments as well as their corresponding
95% confidence intervals. The CAOSD approach shows consider-
able improvements over the other approaches in both metrics and
both environments. These improvements are statistically significant
on a 95% confidence interval. The P3O approach ranks second in
both environments for both metrics before RCPO. IPO is only able
to outperform the random approach in the backtesting environment
while producing similar performance results to the random approach
in the simulation environment.

In the second part of the evaluation, we will discuss the per-
formance of the agents during training on a representative experi-
ment. The experiment has a constraint configuration with the two
allocation constraints C1 :

∑
i∈V1

ai ≥ 0.23 with V1 containing
the indices referring to the company stocks [BIDU, QCOM] and
C2 :

∑
i∈V2

ai ≥ 0.32 with V2 referring to the indices of the compa-
nies [ADBE, SBUX, QCOM] (see Appendix for a detailed list of the
environment’s investment universe). During training, an evaluation
with J = 200 trajectories is performed every 80000 environment
steps.

Figure 3 shows the agents’ mean annualized total portfolio re-
turn during training on the y-axis and the number of environment
steps on the x-axis. The figure also shows the 95% confidence inter-
val of the mean annualized total portfolio return for each of the ap-
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Figure 3: Mean annualized total portfolio return during training and
its 95% confidence interval. This figure is best viewed in color.

proaches seen as the shaded areas around the lines. Note that we only
show the training performance for the simulation environment, since
there is no training in the backtesting environment. The CAOSD ap-
proach had the best training performance in the experiment shown in
Figure 3, followed by P3O and RCPO. The IPO approach is not able
to improve the mean annualized total portfolio return during training
and stays comparable to the random approach.

6 Conclusion

In this paper, we examine portfolio optimization tasks with alloca-
tion constraints that require investing at least a certain portion of
the available capital into a subset of assets. The task covers many
real-world use-cases such as investors wanting to limit their expo-
sure to certain groups of assets due to risk concerns, or investors who
want to reflect aspects such as sustainability or social responsibil-
ity in their portfolio allocation. We examine settings that consider
two allocation constraints and present CAOSD which decomposes
the constrained action space into multiple unconstrained sub-action
spaces. We show that the weighted Minkowski sum of these sub-
action spaces is equivalent to the original action space if weights
are chosen properly. Based on the decomposition we introduce a
stochastic policy function that computes proper weights with an auto-
regressive pattern. To optimize the policy for a given task, we apply
a transformer-based state encoder and employ PPO [16] to train our
agent. In the experimental part, we apply our approach to a variety of
constrained portfolio optimization tasks, each characterized by a dif-
ferent set of constraints. We significantly outperform state-of-the-art
approaches from CRL on real-world market data which demonstrates
the effectiveness of our proposed method.

While this work shows decomposition with up to two allocation
constraints, we will investigate decompositions for a greater number
of constraints in future work. This increases the complexity of the
possible relationship structures between the sets of choices, necessi-
tating increasingly complex decompositions. In another line of future
work, we want to examine the application of our approach to other
tasks than portfolio optimization.
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