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Abstract. In a multi-objective optimisation problem, when there is
uncertainty regarding the correct user preference model, max regret
is a natural measure for how far an alternative is from being necessar-
ily optimal (i.e., optimal with respect to every candidate preference
model). It can be used for recommending a relatively safe choice to
the user, or used in the generation of an informative query, and in the
decision to terminate the user interaction, because an alternative is
sufficiently close to being necessarily optimal. We consider a com-
mon and simple form of user preference model: a weighted average
over the objectives (with unknown weights). However, changing the
scale of an objective by a linear factor leads to an essentially differ-
ent set of preference models, and this changes the max regret values
(and potentially their relative ordering), sometimes very consider-
ably. Since the scaling of the objectives is often partly subjective and
somewhat arbitrary, it is important to be aware of how sensitive the
max regret values are to the choices of scaling of the objectives. We
give mathematical results that characterise and enable computation
of this variability, along with an asymptotic analysis.

1 Introduction

With a multi-objective optimisation problem, in a situation where
there is partial knowledge about the user preference model, it is com-
mon to use max regret as a measure of how far an alternative is from
being necessarily optimal, i.e., optimal with respect to each compat-
ible preference model. An alternative that minimises max regret can
seem like a natural alternative to recommend to the user, given the
current partial state of information. Also, the max regret measure is
valuable in the generation of an informative query to ask the user,
one that will improve the decision analyst system’s state of knowl-
edge about the user preferences, whichever way the user answers.

However, the value of max regret depends on the scaling (in partic-
ular, units) chosen for each objective. For example, an objective rep-
resenting monetary cost might be expressed in euros, or alternatively
in cents; as we will see in the example in the next section, chang-
ing the units can make a very large difference to max regret, and
can change which alternative minimises max regret. Furthermore, the
choices of the units/scalings of the objectives is often partly subjec-
tive and somewhat arbitrary.

In this paper we explore how max regret values vary with the ob-
jectives scaling, and we give mathematical results that characterise
and enable computation of this variability, along with an asymptotic
analysis.
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Contributions: The methods developed in this paper enable a max
regret approach for weighted average user preference models that is
robust with respect to choices of scales of the objectives. We char-
acterise the effect of rescaling the objectives, and this enables com-
putation of the bounds on the max regret, given a range of rescaling
vectors, and the determination of when the ratio of max regret to
minimax regret can become arbitrarily large.

Related work: The max regret and minimax regret measures [18]
have often been used for decision problems under uncertainty, as
non-Bayesian methods for reasoning about an unknown user pref-
erence model; in particular, for recommending alternatives, in gen-
erating queries, and in deciding when to terminate the user inter-
action, see e.g., [23, 3, 5, 12, 1, 22]. One natural way of comput-
ing max regret is using extreme points [19, 20]. Weighted average
and other linear preference models are a very commonly used spe-
cial case of Multi-Attribute Utility Theory (MAUT) [16, 11, 7]. As
a model for unknown user preferences they have been used for in-
stance in [9, 6, 21, 17, 13, 10, 2]. The effect of rescaling objectives
in the context of uncertain preferences has previously been analysed
for a support vector machine-based approach to learning preferences
in [14, 15].

Structure of the paper: Section 2 gives a motivating example,
and discusses the issue of choosing the scaling for an objective. Sec-
tion 3 gives some technical background regarding max regret, and
Section 4 determines the effect of rescaling the objectives. Section 5
characterises when ratios of max regrets can become arbitrarily large.
Section 6 derives absolute upper and lower bounds. Section 7 con-
siders the effect of rescaling the objectives when one makes a differ-
ent assumption on the user preference model: instead of being nor-
malised, it is restricted so that each component is in the interval [0, 1].
Section 8 concludes.

2 Motivating Example

Consider a simple example with p = 2 objectives, the second ob-
jective representing gain in euros (for example, expected profit per
unit sold), and the first objective being a measure of reputation
gain/loss, where alternatives are different versions of a product to
be manufactured. We have a single elicited preference that alterna-
tive α = (20, 2) is at least as good as alternative δ = (24, 1). A
non-negative vector w ∈ IRp (called a weights vector) is used to
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represent a candidate user preference model, and the utility of an al-
ternative γ ∈ IRp with respect to a weights vector w is defined to be
γ · w =

∑p
i=1 γ(i)w(i). Thus, our initial information tells us that

w · α ≥ w · δ, i.e., w · λ ≥ 0, where λ = α− δ = (−4, 1).
The max regret measure requires that the weights vectors are

bounded, and it seems very natural to assume a normalisation con-
dition

∑p
i=1 w(i) = 1. The set W1

Λ of feasible normalised prefer-
ence models (or scenarios) based on input preferences Λ = {λ} then
consists of all normalised non-negative weights vectors w such that
w · λ ≥ 0; thus, w ∈ W1

Λ if and only if w(1) + w(2) = 1 and
w(2) ≥ 4w(1) ≥ 0. Hence, W1

Λ is a line with endpoints u = (0, 1)
and v = ( 1

5
, 4
5
).

Consider set of alternatives A = {α, β}, where β = (44, 1). α
is optimal in scenario u (since α · u = 2 ≥ 1 = β · u), and β is
optimal in scenario v. The max regret of α is equal to the regret of
α in scenario v (i.e., the difference between the utility of the best
alternative and α) which equals (β − α) · v = (24,−1) · ( 1

5
, 4
5
) =

20
5

= 4. Similarly, the max regret of β equals (α−β) ·u = 1. Thus,
α has 4 times the max regret as β, so one might be inclined to say
that β is much more promising, and to recommend β.

However, we might have used different units for the monetary
gain, e.g., using cents rather than euros. The new representation α′ of
α is equal to (20, 200), and β′ = (44, 100) and δ′ = (24, 100), and
thus λ′ = (−4, 100). The extreme points of W1

Λ′ are u′ = (0, 1) and
v′ = ( 25

26
, 1
26
) leading to a max regret for α′ equalling (β′−α′)·v′ =

(24,−100) · ( 25
26
, 1
26
), i.e., around 19, and a max regret of β′ of 100.

But α′ and α represent exactly the same alternative, and similarly, β
and β′. So, now the alternative represented by α looks much more
promising than β.

The example shows that the scaling of the objectives can make a
major difference to the max regret values, and to which alternative
minimises max regret. Some kind of normalisation of the objective
scales is typically required; for instance, if the variation of values of
one objective are orders of magnitude greater than that of another ob-
jective, then the first objective will tend to be much more significant
for the value of max regret.

However, there are many different reasonable ways one could
choose to normalise. We can take a dataset including a set of multi-
objective alternatives, and we can scale it to make the difference be-
tween the max and min value for each criterion equal to 1; or we can
rescale so that the standard deviation of the values of each criterion is
equal to 1. Outliers can make a big difference, so there is a choice of
excluding certain alternatives in this normalisation computation; but
there can be subjective elements in choosing which outliers should
be excluded. Even more significantly, there can be many ways of
choosing the dataset for rescaling. It can be a dataset for the current
problem; or it can be a historical dataset, where one needs to choose
how far to go back. A further issue is that adding a very poor alterna-
tive (which might seem as if it should be irrelevant) can significantly
change the scaling, since it affects the normalisation. So one might
perhaps focus only on the better alternatives.

It is thus clear that there are many reasonable ways of normalising
a scale, and many subjective choices; we will see that these choices
can significantly affect the max regret score. This leads to a form of
imprecision in the max regret. In this paper we derive results that
allow one to reason about this imprecision, hence leading to a more
robust approach.

3 Preference Models and Regret

We consider a system assisting in solving a multi-objective maximi-
sation problem, where p is the number of objectives, and in which
(as is common) the system is not aware of the precise user prefer-
ence model, and considers a set of plausible models. Each alternative
is associated with a (multi-objective utility) vector in IRp. We con-
sider a finite set A ⊆ IRp of alternatives, and we would ideally like to
identify an alternative that the user regards as optimal. We abbreviate
the set {1, . . . , p} of indices of the objectives to [p].

The preference information available to the system is represented
in terms of a set of user preference models, parameterised by a set
(of scenarios) W where, associated with each scenario w ∈ W ,
is a (real-valued) utility function fw over alternatives. We consider
here a simple linear model of the user preferences: for all α ∈ IRp,
fw(α) = w · α =

∑p
i=1 w(i)α(i). Weights vector w is formally

an element of IRp
≥, where IRp

≥ is the set of vectors in IRp, such that
each co-ordinate is non-negative (w(i) ≥ 0 for all i ∈ [p]). Each
element w of W is viewed as a possible model of the user’s pref-
erences that is consistent with the preference information we know.
If we knew that w were the true scenario, so that fw represents the
user’s preferences over alternatives, then we would be able to choose
a best element of A with respect to fw leading to a utility value
ValA(w) =def maxα∈A α · w.

Necessarily Optimal Set NOW(A): for each w ∈ IRp
≥ and finite

A ⊆ IRp we define Ow(A) to be all elements α of A that are optimal
in A in scenario w, i.e., such that α ·w = ValA(w), i.e., such that for
all β ∈ A, α · w ≥ β · w. For W ⊆ IRp

≥ we define the set of nec-
essarily optimal elements NOW(A) of A to be

⋂
w∈W Ow(A), the

set of alternatives that are optimal in every scenario. If there is a nec-
essarily optimal element then we can recommend it to the user, since
it is optimal with respect to any of the compatible user preference
models. However, very frequently there won’t be one. We can elicit
more information from the user, to restrict the compatible preference
models; or we could recommend an alternative α ∈ A minimising
max regret.

Regret: For finite set A of alternatives, the regret DA
w(α) for alter-

native α(∈ A) in scenario w is defined by DA
w(α) = ValA(w)−w·α;

this thus measures how far α is from being optimal in A with respect
to w. Hence, α is optimal (α ∈ Ow(A)) ⇐⇒ DA

w(α) = 0.

Max and minimax regret: Let W be a compact (i.e., bounded
and topologically closed) subset of IRp

≥, representing a set of scenar-
ios, i.e., weights vectors. The max regret MR(α,A;W) for alterna-
tive α ∈ A over set of scenarios W is given by MR(α,A;W) =
maxβ∈A maxw∈W w · (β − α) = maxw∈W(ValA(w) − w · α),
which equals maxw∈W DA

w(α). The minimax regret is then defined
as follows: MMR(A;W) = minα∈A MR(α,A;W). Max regret is
always non-negative, and the max regret of α is zero if and only α is
necessarily optimal in A; max regret can be viewed as a measure of
how far α is from being necessarily optimal.

Let Ext(W) be the set of extreme points of W . Using the fact that
for compact W , maxw∈W w · (β−α) equals maxw∈CH(W) w · (β−
α), where CH(W) is the convex hull of W , and that CH(Ext(W))
contains W and so equals CH(W), we see that MR(α,A;W) =
MR(α,A;Ext(W)). Computing {MR(α,A;W) for all α ∈ A} is
O(|Ext(W)||A|p) using MR(α,A;W) = maxw∈Ext(W)(ValA(w)−
w · α). This is then a feasible method if the number of alternatives
and the number of extreme points are not too large.
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In this paper we focus on a situation in which the number of ex-
treme points is not huge. This will tend to be the case if the number of
input preferences Λ (see below) is not too large; or if the dimension
p is small.

Generation of set of user models WΛ: Let us consider, for finite
set Λ of utility vectors (each element is in IRp), the set WΛ defined
to be the set of weights vectors w such that w · λ ≥ 0 for all λ ∈ Λ.
As in the earlier example, each λ may come from a preference for an
alternative αλ over an alternative βλ, implying w · (αλ − βλ) ≥ 0,
where αλ − βλ = λ.

Consistency assumption: Throughout the paper we will assume
that Λ is consistent, i.e., that WΛ is non-empty.

3.1 Normalisations of weights vectors

Max regret cannot be applied to WΛ, because it’s an unbounded
set (or else an infinite value would be obtained). It thus seems
natural to consider normalised weights vectors, as is commonly
done. Let W1

Λ equal {w ∈ WΛ : w · 1 = 1}, which also equals
{ w
w·1 : w ∈ WΛ}, where 1 ∈ IRp is the vector of ones (1, . . . , 1).

W1
Λ consists of the elements w of WΛ that are normalised in the

sense that
∑p

i=1 w(i) = 1. This makes the utility w ·α of alternative
α a weighted average of its components α(i).

Let σ be an element of IRp
+ = {τ ∈ IRp : ∀i ∈ [p], τ(i) > 0},

the set of vectors with strictly positive values. (We will use vectors
such as σ to represent rescalings of the objectives.) We define Wσ

Λ

to be {w ∈ WΛ : w · σ = 1}, which also equals { w
w·σ : w ∈ WΛ}

and { w
w·σ : w ∈ W1

Λ}. Wσ
Λ is the set of elements of WΛ that are

normalised with a particular weighted sum.

3.2 Max regret over a differently normalised set of
scenarios

Before explicitly focusing on rescaling the objectives we give some
mathematical results relating to max regret over Wσ

Λ , for strictly pos-
itive σ ∈ IRp

+. In the next section we will show that this is equal to
max regret over the rescaled objective space.

For arbitrary non-negative vector w ∈ IRp
≥ with w �= 0 =

(0, . . . , 0) define hσ(w) = w
w·σ . The function hσ changes the mag-

nitude but not the direction of each vector w. It can be shown1 that
hσ is a bijection from W1

Λ onto Wσ
Λ whose restriction to Ext(W1

Λ) is
a bijection onto Ext(Wσ

Λ), leading to Proposition 1.
The following result gives a method for computing the max re-

gret over the set Wσ
Λ of weights vectors, using the extreme points

Ext(W1
Λ) of the original set of weights vectors.

Proposition 1 Let E = Ext(W1
Λ) be the extreme points of W1

Λ.

Then MR(α,A;Wσ
Λ) = maxw∈E

DA
w(α)

w·σ .

Proof: DA
w(α)

w·σ = DA
hσ(w)(α), and hσ(E) = Ext(Wσ

Λ).

Then we have maxw∈E
DA

w(α)

w·σ = maxw∈E DA
hσ(w)(α), which

is equal to maxv∈hσ(E) D
A
v (α) = maxv∈Ext(Wσ

Λ) D
A
v (α) =

MR(α,A,Ext(Wσ
Λ)), which equals MR(α,A;Wσ

Λ). �

1 See the longer version of the paper available online, which also contains the
proofs of results not included here [24].

Example 1 Continuing the example in Section 2, the set E of ex-
treme points of W1

Λ equals {u, v}, where u = (0, 1) and v = ( 1
5
, 4
5
).

We have DA
w(α) = 0 and DA

v (α) = v·(β−α) = ( 1
5
, 4
5
)·(24,−1) =

4; and DA
v (β) = 0 and DA

u (β) = u · (α− β) = 1. With σ = (1, ε)
(where 0 < ε ≤ 1) we obtain u · σ = ε and v · σ = 1+4ε

5
.

Thus, maxw∈E
DA

w(α)

w·σ =
DA

v (α)

v·σ = 20
1+4ε

; and maxw∈E
DA

w(β)

w·σ =
DA

u (β)

u·σ = 1
ε

.
The set Wσ

Λ has extreme points (0, 1
ε
) and 1

1+4ε
(1, 4). We have

MR(α,A;Wσ
Λ) = (β − α) · 1

1+4ε
(1, 4) = (24,−1) · 1

1+4ε
(1, 4) =

20
1+4ε

; and MR(β,A;Wσ
Λ) = (α− β) · (0, 1

ε
) = 1

ε
.

4 Rescaling and its Effect on Max Regret

In this section we consider the effect on max regret of chang-
ing the scales of the objectives, which involves multiplying or di-
viding the objective values by real numbers. Mathematically this
can be expressed in terms of the pointwise product of vectors. For
α, β ∈ IRp, their pointwise product α 
 β (∈ IRp) is defined
by (α 
 β)(i) = α(i)β(i) for i ∈ [p]. For σ ∈ IRp

+, we de-
fine σ−1 (∈ IRp) by σ−1(i) = 1/σ(i) for each i ∈ [p]. Thus,
σ
σ−1 = 1. Pointwise product is associative and commutative, and
commutes (in a certain sense) with dot product: for α, β, γ ∈ IRp,
(α 
 β) · γ = α · (β 
 γ) =

∑p
i=1 α(i)β(i)γ(i). In the obvi-

ous way we extend to sets: if α ∈ IRp and X ⊆ IRp we define
α
X = X 
 α = {α
 β : β ∈ X}.

A rescaling vector σ has every co-ordinate strictly greater than
zero, so is an element of IRp

+ = {τ ∈ IRp : ∀i ∈ [p], τ(i) > 0}.
It is associated with a transformation Hσ on multi-objective utility
vectors defined by: Hσ(α) = α 
 σ−1 = (α(1)

σ(1)
, . . . , α(p)

σ(p)
). In the

example in Section 2, changing from euros to cents in the second
objective used the transformation Hσ with σ = (1, 0.01) (because 1
cent = C0.01). For α, β ∈ IRp, we have that Hσ(α − β) = (α −
β) 
 σ−1 = (α 
 σ−1) − (β 
 σ−1) = Hσ(α) − Hσ(β). It
is natural then to define Hσ also on the input preference vectors:
Hσ(Λ) = Λ
 σ−1 = {λ
 σ−1 : λ ∈ Λ}.

The following result relates the rescaled version of WΛ and its
normalised form to the original versions.

Proposition 2 For finite Λ ⊆ IRp and σ ∈ IRp
+, we have

WHσ(Λ) = WΛ�σ−1 = (WΛ) 
 σ, and W1
Hσ(Λ) = W1

Λ�σ−1 =

(Wσ
Λ)
 σ, and W1

Hσ(Λ) 
 σ−1 = Wσ
Λ .

Proof: w ∈ WΛ�σ−1 if and only if for all λ ∈ Λ we have w · (λ 

σ−1) ≥ 0, i.e., for all λ ∈ Λ we have (w
σ−1) ·λ ≥ 0, which is if
and only if w 
 σ−1 ∈ WΛ, which is if and only if w ∈ (WΛ)
 σ.

The normalised set W1
Λ�σ−1 is, by the first part, equal to the set

of all elements w 
 σ of (WΛ)
 σ such that (w 
 σ) · 1 = 1, i.e.,
such that w ·σ = 1. Hence, W1

Λ�σ−1 = (Wσ
Λ)
σ. Applying 
σ−1

to both sides of the equality gives W1
Hσ(Λ) 
 σ−1 = Wσ

Λ . �

The user input sets Λ and Hσ(Λ) (= Λ 
 σ−1) represent ex-
actly the same information: they are just expressed differently, i.e.,
with different units. Similarly, WΛ and WHσ(Λ) (= (WΛ)
 σ) rep-
resent essentially the same set of user models. However, W1

Hσ(Λ)

(= (Wσ
Λ)
 σ) represents an essentially different set of user models

from W1
Λ; instead it represents the same set of user models as Wσ

Λ

(with the latter using the original units). W1
Λ and Wσ

Λ both corre-
spond to WΛ, but they involve a different way of normalising that
affects models differently. For example, if σ(1) = 1000 and other-
wise, σ(i) = 1, then any w ∈ W1

Λ with a relatively large value of
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w(1), will be scaled right down in Wσ
Λ ; e.g., if w(1) = 0.5 then w

will become a vector w′ = rw ∈ Wσ
Λ with r = 1

w·σ ≈ 0.002. In
contrast, a vector v ∈ W1

Λ with v(1) = 0 will be left unchanged.
With this rescaling, the new version w′ of w is likely to make much
less influence on max regret values than it did without the change of
scale.

In general, increasing a scaling factor σ(i) will tend to reduce the
influence of the ith objective on max regret values, especially when
not too many user preferences Λ have been elicited.

The next general property of rescaling max regret follows easily
from the definitions. It implies that the effect of rescaling on max re-
gret can be viewed in terms of a transformation on the set of scenarios
(as shown more explicitly by Theorem 1 below).

Proposition 3 For finite A ⊆ IRp, α ∈ A, and σ ∈ IRp
+, and for

any compact subset W of IRp
≥, we have MR(Hσ(α), Hσ(A);W) =

MR(α,A;W 
 σ−1).

Proof: MR(Hσ(α), Hσ(A);W) is equal to MR(α 
 σ−1, A 

σ−1);W) = maxβ∈A maxw∈W w · (β 
 σ−1 − α 
 σ−1) =
maxβ∈A maxw∈W w
σ−1 ·(β−α) = maxβ∈A maxv∈W�σ−1 v ·
(β − α) = MR(α,A;W 
 σ−1). �

Consider preference inputs Λ and alternative α in A, which has
associated max regret MR(α,A;W1

Λ) (assuming normalised scenar-
ios). If we rescale with σ then α, A and Λ are all transformed using
Hσ , and the associated max regret is MR(Hσ(α), Hσ(A);W1

Hσ(Λ)).
Using Proposition 3 and Proposition 2, this equals MR(α,A;Wσ

Λ),
and Proposition 1 then implies the theorem below, summarising the
results so far on the effect of rescaling on max regret.

Theorem 1 Let A and Λ be finite subsets of IRp and let α ∈ A, and
let σ ∈ IRp

+. Then the max regret MR(Hσ(α), Hσ(A);W1
Hσ(Λ))

of the rescaled space equals MR(α,A;Wσ
Λ) = maxw∈E

DA
w(α)

w·σ ,
where E = Ext(W1

Λ) is the set of extreme points of W1
Λ.

Example 2 Continuing Example 1, Hσ(λ) = (−4, 1) 
 σ−1 =
(−4, 1

ε
), and so W1

Hσ(Λ) consists of all w ∈ IRp
≥ such that w · 1 =

1 and w · (−4, 1
ε
) ≥ 0. The extreme points of W1

Hσ(Λ) are (0, 1)

and 1
1+4ε

(1, 4ε). It can be seen that MR(Hσ(α), Hσ(A);W1
Hσ(Λ))

equals Hσ(β − α) · 1
1+4ε

(1, 4ε) = (24, −1
ε
) · 1

1+4ε
(1, 4ε) = 20

1+4ε
.

Also, MR(Hσ(β), Hσ(A);W1
Hσ(Λ)) equals Hσ(α − β) · (0, 1) =

(−24, 1
ε
) · (0, 1) = 1

ε
. This tallies with Example 1, thus illustrating

Theorem 1.

Notation: To emphasise the dependence on the rescaling vector
σ, we now use the notation MRσ(α,A;W1

Λ) to mean the max re-
gret MR(Hσ(α), Hσ(A);W1

Hσ(Λ)) of the rescaled space, which, by
Theorem 1, also equals MR(α,A;Wσ

Λ).
The result below expresses the rescaled max regret in a convenient

form, when we are interested in a range of different rescaling vectors.

Proposition 4 Let A and Λ be finite subsets of IRp and let σ ∈
IRp

+. Let E = Ext(W1
Λ) and for each α ∈ A define Eα to be

{w ∈ E : Ow(A) �� α}, the set all elements w of E in which α is
not optimal with respect to w, and define for each w ∈ Eα, wα

A (ab-
breviated to wα) to be w

DA
w(α)

. Define T (α) to be {wα : w ∈ Eα}.

Then, MRσ(α,A;W1
Λ) = 0 if and only if α ∈ NOW1

Λ
(A) if

and only if T (α) = ∅. Otherwise, if α /∈ NOW1
Λ
(A), we have

1
MRσ(α,A;W1

Λ)
= minw∈Eα wα · σ = minv∈T (α) v · σ.

For α, γ ∈ A \NOW1
Λ
(A), we then have

MRσ(α,A;W1
Λ)

MRσ(γ,A;W1
Λ)

=
minv∈Eγ vγ · σ
minw∈Eα wα · σ =

minv∈T (γ) v · σ
minw∈T (α) w · σ .

Example 3 With the running example we have E = Ext(W1
Λ) =

{u, v}, where u = (0, 1) and v = ( 1
5
, 4
5
). Then, Eα = {v} and

Eβ = {u} since Ov({α, β}) = {β} and Ou({α, β}) = {α}. We
have DA

v (α) = v · (β−α) = ( 1
5
, 4
5
) · (24,−1) = 4, and thus, vα =

( 1
20
, 1
5
). We have DA

u (β) = u · (α − β) = 1, and so uβ = (0, 1).
Then, with σ = (1, ε) (where 0 < ε ≤ 1) we have 1

MRσ(α,A;W1
Λ)

=

vα · σ = 1
20

+ ε
5
= 1+4ε

20
. Also, 1

MRσ(β,A;W1
Λ)

= uβ · σ = ε.

We abbreviate MRσ(α,A;W1
Λ)

MRσ(γ,A;W1
Λ)

to MRσ(α/γ,A;W1
Λ), and similarly,

MR(α/γ,A;W1
Λ) is an abbreviation for MR(α,A;W1

Λ)

MR(γ,A;W1
Λ)

, which is equal

to MRσ(α/γ,A;W1
Λ) when σ = (1, . . . , 1).

The next results give lower and upper bounds on the ratio of
MRσ(α/γ,A;W1

Λ) and MR(α/γ,A;W1
Λ); these show limits to how

much the max regret MRσ(α/γ,A;W1
Λ) is affected by the rescaling

vector σ.

Proposition 5 Let A and Λ be finite subsets of IRp and let α, γ ∈
A, and let σ ∈ IRp

+. Define U and U by for each i ∈ [p],
U(i) = minw∈W1

Λ
w(i) (which equals minw∈Ext(W1

Λ) w(i)) and

U(i) = maxw∈W1
Λ
w(i). Then for all σ ∈ IRp

+,

MRσ(α/γ,A;W1
Λ)

MR(α/γ,A;W1
Λ)

∈
[
min
i∈[p]

U(i)

U(i)
,max
i∈[p]

U(i)

U(i)

]
.

For δ > 0 and W ⊆ IRp let us say that W is δ-small if there exists
u ∈ IRp

≥ such that for all w ∈ W and for all i ∈ [p], u(i) ≤ w(i) ≤
(1 + δ)u(i).

The following result shows that once Λ is sufficiently large
to make W1

Λ δ-small for small δ then the ratio of max regrets
MRσ(α/γ,A;W1

Λ) is not much affected by the choice of rescaling σ
because it is always in the relatively narrow interval [ x

1+δ
, (1+ δ)x],

where x = MR(α/γ,A;W1
Λ).

Corollary 1 Let Λ be a finite subset of IRp such that W1
Λ is δ-small.

Then for any finite A ⊆ IRp and for all α, γ ∈ A, and all σ ∈ IRp
+,

MRσ(α/γ,A;W1
Λ)

MR(α/γ,A;W1
Λ)

∈
[

1

1 + δ
, 1 + δ

]
.

5 Extreme Rescaling

In the example in Section 2 we used rescaling vector σ = (1, ε)
with ε = 0.01. If we instead use a more extreme rescaling with
ε = 0.0001 (corresponding to a unit of a hundredth of a cent) then
it follows from Example 3 that we obtain a max regret for the al-
ternatives (corresponding with) β and α to be 10000 and around
20, respectively. In fact, with varying ε, we can make the ratio
MRσ(β/α,A;W1

Λ) (= 1+4ε
20ε

) of these max regrets unbounded, i.e.,
arbitrarily large. Define the relative max regret RMRσ(α,A;W1

Λ) to

be MRσ(α,A;W1
Λ)

MMRσ(A;W1
Λ)

, which equals maxγ∈A MRσ(α/γ,A;W1
Λ), where

MRσ(α/γ,A;W1
Λ) equals MRσ(α,A;W1

Λ)

MRσ(γ,A;W1
Λ)

. In this section we explore

when RMRσ(α,A;W1
Λ) and MRσ(α/γ,A;W1

Λ) can be made ar-
bitrarily large, giving simple characterisations. In this way we can
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reveal situations in which max regret is especially vulnerable to
changes of scale.

First we formalise extreme relative max regret. Let g(σ) be a non-
negative real-valued function of scale vector σ, where σ varies over
a subset R of IRp

+. We say that g(σ) is bounded over σ ∈ R if there
exists a number K such that for all scale vectors σ ∈ R, g(σ) ≤ K.
Otherwise, we say that g(σ) is unbounded over σ ∈ R; this is the
case if and only if there exists a sequence {σk : k = 1, 2, . . .} of
elements in R such that limk→∞ g(σk) = ∞.

In the running example, the functions MRσ(β/α,A;W1
Λ) and

RMRσ(β,A;W1
Λ) are unbounded, and MRσ(α/β,A;W1

Λ) and
RMRσ(α,A;W1

Λ) are bounded, over σ ∈ IRp
+.

We make use of the following notation.

Definition 1 (ze(w) and E(Y )) For non-negative vector w ∈ IRp
≥,

we define ze(w) to be {i ∈ [p] : w(i) = 0}, the set of components
on which w is zero. For Y ⊆ [p] we define E(Y ) to consist of all
extreme points w ∈ E (of W1

Λ) such that ze(w) ⊇ Y , i.e., such that
w is zero on every element of Y .

Typically, for many sets Y , the set E(Y ) is empty. For non-empty
E(Y ) we will be interested in the set NOE(Y )(A): these are the
alternatives that are optimal in A with respect to every extreme point
w that is zero on every element of Y .

If Y ′ ⊆ Y then E(Y ′) ⊇ E(Y ) and NOE(Y ′)(A) ⊆
NOE(Y )(A).

The following simple result connects NOE(Y )(A) and ze(w),
making use of Eγ as defined in Proposition 4.

Proposition 6 For Y ⊆ [p] such that E(Y ) �= ∅ and γ ∈ A we
have NOE(Y )(A) � γ if and only if γ ∈ Ov(A) for all v ∈ E such
that ze(v) ⊇ Y , which is if and only if for all v ∈ Eγ , ze(v) �⊇ Y .

The next result gives conditions under which a ratio of the form v·σ
w·σ

is unbounded.

Proposition 7 Let v, w ∈ IRp
≥ and suppose that Y (⊆ [p]) is such

that ze(w) ⊇ Y and ze(v) �⊇ Y . Define σY
k ∈ IRp

+ for each k =

1, 2, . . ., by σY
k (i) = 1 for i ∈ Y and σY

k (i) = 1/k for i /∈ Y . Then

limk→∞
v·σY

k

w·σY
k

= ∞.

Proof: There exists some j in Y \ ze(v), and we have, for every k,
v · σY

k ≥ v(j) > 0. Also, because ze(w) ⊇ Y we have w · σY
k =∑

i∈[p]\ze(w)
w(i)
k

= 1
k

∑
i∈[p] w(i). Thus, v·σY

k

w·σY
k

≥ k v(j)∑
i∈[p] w(i)

,

which tends to infinity as k tends to infinity. �

Suppose that σ1, σ2, . . . is a sequence of rescaling vectors con-
verging to a vector σ∞ ∈ IRp

≥, and let Y be the set of components
i such that σ∞(i) > 0, like in the sequence defined in Proposi-
tion 7. Then w · σk tends to zero if and only if ze(w) ⊇ Y ; and,
if ze(w) ⊇ Y and ze(v) �⊇ Y , then v·σk

w·σk
tends to infinity. Propo-

sition 4 then implies that MRσk (α/γ,A;W1
Λ) tends to infinity if

and only if for all v ∈ Eγ , ze(v) �⊇ Y and there exists w ∈ Eα

such that ze(w) ⊇ Y . Proposition 6 implies that this is if and
only if α /∈ NOE(Y )(A) � γ. This is the basic idea behind The-
orem 2, which gives characterisations of when MRσ(α/γ,A;W1

Λ)
is unbounded over σ ∈ IRp

+. In particular the characterisation (b) is
that there exists an extreme point w (of the set of normalised weights
vectors) for which α is non-optimal, and γ is optimal with respect to
every extreme point v that is zero whenever w is zero.

Theorem 2 Let A and Λ be finite subsets of IRp and let α, γ ∈ A,
and let E = Ext(W1

Λ). The following four conditions are equivalent.

(a) MRσ(α,A;W1
Λ)

MRσ(γ,A;W1
Λ)

is unbounded over σ ∈ IRp
+.

(b) There exists w ∈ E such that α /∈ Ow(A) and γ ∈ Ov(A) for all
v ∈ E such that ze(v) ⊇ ze(w).

(c) There exists w ∈ E such that α /∈ NOE(ze(w))(A) � γ.
(d) There exists Y ⊆ [p] such that α /∈ NOE(Y )(A) � γ.

Example 4 Continuing the running example, where A = {α, β} we
have O(0,1)(A) = {α}, i.e., α is optimal with respect to w = (0, 1).
We have ze((0, 1)) = {1}, since the first component of (0, 1) is
zero. We have E(ze((0, 1))) = {(0, 1)} since (0, 1) is the only ex-
treme point that is zero on its first component. NOE(ze((0,1)))(A) =
O(0,1)(A) = {α}.

With this example, Condition (a) of Theorem 2 holds for β/α
because, with σ = (1, ε), MR(β/α,A;Wσ

Λ) equals 1+4ε
20ε

, which
tends to infinity as ε tends to zero. Condition (b) holds for β/α,
since α ∈ O(0,1)(A) �� β. Condition (c) holds because α ∈
NOE(ze((0,1)))(A) �� β. For Condition (d), putting Y = {1} we
have α ∈ NOE({1})(A) �� β.

Corollary 2 below characterises when the relative max regret
RMRσ(α,A;W1

Λ) is unbounded over σ ∈ IRp
+. Part (i) easily fol-

lows from Theorem 2, and (ii) follows from (i).

Corollary 2 Let α ∈ A.

(i) The relative max regret RMRσ(α,A;W1
Λ) is unbounded over σ ∈

IRp
+ if and only if there exists w ∈ E such that NOE(ze(w))(A) is

non-empty and does not contain α.
(ii) RMRσ(α,A;W1

Λ) is bounded over σ ∈ IRp
+ if and only if α ∈

NOE(ze(w))(A) for all w ∈ E such that NOE(ze(w))(A) is non-
empty.

For all w ∈ E and all α ∈ A we can compute if for all u ∈ E
such that ze(u) ⊇ ze(w) we have α ∈ Ou(A); this computes
NOE(ze(w))(A) for each extreme point w ∈ E. Corollary 2 and
the equivalence of (a) and (c) in Theorem 2 enable one then to ef-
ficiently determine for which alternatives α the relative max regret
RMRσ(α,A;W1

Λ) is unbounded, and when MRσ(α/γ,A;W1
Λ) is

unbounded.

Example 5 Suppose that there exists an extreme point w12 (of W1
Λ)

with ze(w12) = {1, 2}, and extreme points w1 and w2 such that
ze(w1) = {1} and ze(w2) = {2}, and for all other extreme
points u we have ze(u) = ∅. Suppose that Ow12(A) = {α} and
Ow1(A) = Ow2(A) = {β}. Then NOE(ze(w))(A) is empty unless
w = w12, and since NOE(ze(w12))(A) = Ow12(A) = {α}, the
theorem and corollary imply that MRσ(x/y,A;W1

Λ) is unbounded
if and only if [y = α and x ∈ A \ {α}], and RMRσ(x,A;W1

Λ) is
unbounded unless x = α.

Now assume that there exists, as well as w12, w1 and w2, an
extreme point v12 with ze(v12) = {1, 2} and Ov12 = {β}.
Then NOE(ze(w))(A) is empty for all extreme points w, and
so MRσ(x/y,A;W1

Λ) and RMRσ(x,A;W1
Λ) are bounded for all

x, y ∈ A.

6 The Maximum and Minimum of Max Regret
Over a Compact Set R of Rescalings

As argued in Section 2, the choice of scale for an objective, and thus,
the range of a reasonable rescaling of it, can be fairly subjective.
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However, there may be more uncertainty about an appropriate scale
for one objective than another, because of less data about that objec-
tive, or e.g., because in the dataset there are several clusters of the
values of that objective and it may be unclear whether all (or which)
of the clusters should be used to normalise the scale. In this way,
a decision analyst may choose some set R of reasonable rescaling
vectors σ. Section 6.1 considers simple and natural forms of R. It is
desirable to be able to compute how large and how small the max
regret of an alternative can be, if we vary the rescaling σ over a set
R; we consider these tasks in Sections 6.2 and Section 6.3.

6.1 Particular forms of the rescaling range R

In this paper our focus is how max regret varies when one considers
a range R of rescalings σ. Although one can consider fairly general
forms of R, and their expression in terms of a set of linear inequali-
ties, the most obvious representations are based on a rectangular rep-
resentation, which involves lower and upper bounds for each objec-
tive. We say that R is rectangular if for each i ∈ [p] there exists
values ai, bi ∈ IR such that σ ∈ R if and only if for all i ∈ [p],
ai ≤ σ(i) ≤ bi.

However, a rectangular representation includes elements that are
scalar multiples of each other. If σ′ = cσ for some real value
c with say, c > 1 then, by Proposition 4, MRσ′(α,A;W1

Λ) =
1
c

MRσ(α,A;W1
Λ) for all α ∈ A: the max regret function is just

scaled down. This suggests that it is perhaps not so interesting to
consider both σ and σ′ here. It thus seems natural to consider R in
which every element is normalised, i.e., every element has the same
value of σ · 1 =

∑p
i=1 σ(i). Since we will very often want to in-

clude the vector 1 in R, and 1 · 1 = p, the normalisation condi-
tion is that σ · 1 = p. To avoid confusion with normalisation of
weights vectors, we call this sigma-normalisation. Let N be the set
of all sigma-normalised rescaling vectors. The sigma-normalisation
operation σ �→ σ̂ is defined by σ̂ = p

σ·1σ, so that σ is multiplied
by the scalar p

σ·1 to form the sigma-normalised vector σ̂. We define
R̂ = {σ̂ : σ ∈ R}.

We say that R′ is a sigma-normalised rectangular (SNR) range set
if there exists a rectangular set R such that R′ = R̂. We say that R′

is rectangular intersection sigma-normalised (RISN) if there exists
a rectangular set R such that R′ = R ∩ N , i.e., R′ is the set of
normalised vectors in R.

6.2 Minimising max regret over rescalings

We consider here the computation of minσ∈R MRσ(α,A;W1
Λ),

which we abbreviate to MRmin. Using Proposition 4 and its nota-
tion we have that MRmin = 0 if and and only if α ∈ NOW1

Λ
(A);

and if α /∈ NOW1
Λ
(A) then the reciprocal of MRmin equals

maxσ∈R minv∈T (α) v · σ, which is equal to the maximum value
x ∈ IR such that there exists some σ ∈ IRp with the following
set of constraints being satisfiable:

σ ∈ R and {∑p
i=1 v(i)σ(i) ≥ x : ∀v ∈ T (α)}.

Thus, if R is expressed in terms of linear constraints then we can
compute MRmin using a single call of a linear programming solver
on a problem with p+1 variables and |E|+L+1 constraints, where
L is the number of constraints defining R; e.g., L = 2p+ 1 if R is a
RISN representation.

A somewhat trivial case is if R is rectangular. Let σmax be the
unique Pareto-maximal point in R, taking the largest value for each
objective. Then, MRmin equals MRσmax(α,A;W1

Λ).

6.3 Maximising max regret over rescalings

Given a range R of rescalings, let V =
⋃

σ∈R Wσ
Λ , which corre-

sponds with the set of user preference models that are obtained from
W1

Λ with any of the rescalings σ in the range R (when translated
back into the original units). We consider max regret over w ∈ V .
Theorem 1 implies that this is equal to the maximum max regret over
all rescalings σ in R. The following result shows that this can be ex-
pressed in a relatively simple way. For each extreme point v ∈ E
we only need to consider the maximum scalar multiple 1

sv
that is ob-

tained over all elements of R, and which corresponds with a σ ∈ R
that minimises v · σ.

Theorem 3 Let E = Ext(W1
Λ), and for v ∈ E, let sv = minσ∈R v ·

σ, and let E′ be the set { v
sv

: v ∈ E}. Then MR(α,A;V)
is equal to maxσ∈R MRσ(α,A;W1

Λ) = MR(α,A;E′) =

maxw∈E′ DA
w(α) = maxv∈E

DA
v (α)

sv
.

Proof: By Theorem 1 and Proposition 1, we have MR(α,A;Wσ
Λ)

equals MRσ(α,A;W1
Λ) which is equal to maxv∈E

DA
v (α)

v·σ . Now,
MR(α,A;V) equals supσ∈R MR(α,A;Wσ

Λ), which thus equals

supσ∈R maxv∈E
DA

v (α)

v·σ = maxv∈E supσ∈R
DA

v (α)

v·σ which equals

maxv∈E
DA

v (α)

sv
= maxw∈E′ DA

w(α), which equals MR(α,A;E′).
�

If R is expressed in terms of a set of linear inequalities then for
each extreme point v ∈ E we can compute sv using a linear min-
imisation. The computation can be made much faster for the cases of
rectangular, SNR and RISN sets. For rectangular R we again have a
rather trivial case, with MR(α,A;V) = MRσmin(α,A;W1

Λ), where
σmin is the unique Pareto-minimal element of R, with minimum
value of each co-ordinate.

The following result expresses the property that, for a RISN set
R′, a σ ∈ R′ minimising u · σ has a very simple form, enabling the
minimum to be found very efficiently.

Proposition 8 Let R′ be a RISN set, so it can be written as R ∩ N
for rectangular set R, where R′ achieves the bounds of R. Let [ai, bi]
for i ∈ [p] be the intervals defining R. Consider any vector u. There
exists an element σ ∈ R′ that minimises u · σ among σ ∈ R′ with
the following property: there exists some real value x such that, for
all i ∈ [p] with u(i) < x we have σ(i) = bi; and for all i ∈ [p] with
u(i) > x we have σ(i) = ai.

For the case of a SNR set equalling R̂ for some rectangular set
R, we have a similar characterisation for σ minimising v · σ, which
again leads to an efficient method for computing each coefficient sv
for v ∈ E. The overall computation for computing MR(α,A;V) =
maxσ∈R MRσ(α,A;W1

Λ) when R is either a SNR set or a RISN set
is O((|A|+ log p)p|E|).

7 Upper Bounded Sets of User Preference Models

In earlier sections we restricted attention to weights vectors that sat-
isfy the normalisation condition that all their components sum to one.
An alternative is to consider a set of user preference models defined
by an upper bound for each objective; for instance, where the re-
striction is only that each component is in the interval [0, 1]. In this
section we show how to extend some of the results to this case.

For topologically closed W ⊆ IRp
≥ and strictly positive vector

σ ∈ IRp
+ we define W(σ) as {w ∈ W : ∀i ∈ [p], w(i)σ(i) ≤ 1}.
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In particular, W(1) is the subset of W such that each co-ordinate
is bounded above by 1. For finite subset Λ of IRp we abbreviate
(WΛ)

(σ) to W(σ)
Λ .

Instead of the normalised set W1
Λ we can consider the upper-

bounded set W(1)
Λ , which consists of all w ∈ WΛ such all of

its co-ordinates are bounded above by 1. We can thus consider
the max regret function MR(α,A;W(1)

Λ ). Clearly, W1
Λ ⊆ W(1)

Λ ,
and so, MR(α,A;W1

Λ) ≤ MR(α,A;W(1)
Λ ). Of interest then is

how this is affected by rescaling of the objectives. That is, we
can consider the effect of applying rescaling vector σ, leading to
MR(Hσ(α), Hσ(A);W(1)

Hσ(Λ)).
Proposition 2 shows that W1

Hσ(Λ) = (Wσ
Λ)
σ. We have a similar

result with bounding instead of normalisation.

Proposition 9 For any rescaling vector σ ∈ IRp
+, W(1)

Hσ(Λ) =

W(σ)
Λ 
 σ, and thus, W(1)

Hσ(Λ) 
 σ−1 = W(σ)
Λ .

Applying Proposition 3 to W = W(1)
Hσ(Λ) and applying Proposi-

tion 9 gives the following result. This is analogous to the property
that MR(Hσ(α), Hσ(A);W1

Hσ(Λ)) equals MR(α,A;Wσ
Λ), from

Theorem 1.

Theorem 4 Let A and Λ be finite subsets of IRp and let α ∈ A, and
let σ ∈ IRp

+. Then the max regret MR(Hσ(α), Hσ(A);W(1)
Hσ(Λ)) of

the rescaled space is equal to MR(α,A;W(σ)
Λ ).

Example 6 Continuing the running example, again with rescaling
vector σ = (1, ε), we have that W(σ)

Λ consists of all w ∈ IRp
≥ such

that w(1) ≤ 1, and w(2) ≤ 1/ε, and w(2) ≥ 4w(1). When 0 <
ε < 1/4 we have four extreme points: (0, 0), (0, 1/ε), (1, 4), and
(1, 1/ε). Recall β − α = (24,−1); we obtain MR(α,A;W(σ)

Λ ) =

(1, 4) · (β −α) = 20, and MR(β,A;W(σ)
Λ ) = (0, 1/ε) · (α− β) =

1/ε.
When 1

4
≤ ε ≤ 1 we have three extreme points: (0, 0), (0, 1

ε
) and

( 1
4ε
, 1
ε
). Then MR(α,A;W(σ)

Λ ) = ( 1
4ε
, 1
ε
) · (β − α) = 5

ε
, which

equals 5 when ε = 1. MR(β,A;W(σ)
Λ ) = (0, 1/ε) · (α− β) = 1/ε,

which equals 1 when ε = 1.
Comparing with Example 2 shows that these results for the

bounded preference vectors are fairly close to those for the nor-
malised preference vector case, especially when ε is small. For in-
stance, we have MR(Hσ(α), Hσ(A);W(1)

Hσ(Λ)) = min(20, 5/ε) for
ε > 0, and we have MR(Hσ(α), Hσ(A);W1

Hσ(Λ)) =
20

1+4ε
.

This example illustrates that, for the bounded case, the number of
extreme points of the space of scenarios can vary with the rescal-
ing vector σ, and so we do not have a simple bijection between the
extreme points for W(σ)

Λ and those of W(1)
Λ , in contrast with the nor-

malised case (see Section 3.2).
However, the limiting behaviour for the bounded scenarios case is

the same as that for the normalised scenarios case given in Section 5.
The result below shows that, for arbitrary rescaling vectors σ, the

ratio, MR(α,A;W(σ)
Λ )

MR(α,A;Wσ
Λ)

is always within the interval [1, p].

Proposition 10 Let A and Λ be finite subsets of IRp and let α ∈ A,
and let σ ∈ IRp

+. Then

MR(α,A;Wσ
Λ) ≤ MR(α,A;W(σ)

Λ ) ≤ pMR(α,A;Wσ
Λ).

This then leads to the following result, which means that Theorem 2
in Section 5 can also be used for the bounded preferences case, to
determine under which situations the ratios of max regrets can tend
to infinity.

Proposition 11
MR(Hσ(α),Hσ(A);W(1)

Hσ(Λ)
)

MR(Hσ(γ),Hσ(A);W(1)
Hσ(Λ)

)
(= MR(α,A;W(σ)

Λ )

MR(γ,A;W(σ)
Λ )

) is un-

bounded over σ ∈ IRp
+ if and only if MRσ(α,A;W1

Λ)

MRσ(γ,A;W1
Λ)

is unbounded

over σ ∈ IRp
+.

Proof: Let f(σ) =
MR(Hσ(α),Hσ(A);W(1)

Hσ(Λ)
)

MR(Hσ(γ),Hσ(A);W(1)
Hσ(Λ)

)
=

MR(α,A;W(σ)
Λ )

MR(γ,A;W(σ)
Λ )

, and

let g(σ) = MRσ(α,A;W1
Λ)

MRσ(γ,A;W1
Λ)

=
MR(α,A;Wσ

Λ)

MR(γ,A;Wσ
Λ)

. Proposition 10 implies that

for any σ, f(σ)
g(σ)

is in the interval [1/p, p], which implies the result.�

8 Summary and Discussion

We pointed out an issue concerning max regret for weighted average
preference models, with it being dependent on somewhat arbitrary
choices of objective scales. We characterise the extreme cases, when
the relative max regret (the ratio of max regret of an alternative to
minimax regret) can become arbitrarily large (even for an alternative
that initially minimises max regret).

This issue means that the foundations of max regret are weaker
than might have been assumed. The situation is somewhat analogous
to issues with Bayesian inference, especially when there is weak in-
formation about the prior, and where the issues can be ameliorated
with robust methods, by considering a range of reasonable prior dis-
tributions.

Similarly, for max regret, a principled approach should thus con-
sider reasonable ranges of rescalings. Our methods, in particular, in
Section 6, then allow one to calculate the consequent upper and lower
bounds on max regret for each alternative under consideration. They
also allow one to determine how large the relative max regret can be,
which can enable one to show that an alternative is never far from
minimising max regret (assuming a given rescaling range).

A natural next step is to adapt max regret methods, such as for gen-
erating queries and conditions for terminating a dialogue, to be more
robust to reasonable changes of objective scales, using the results
developed here. It would also be interesting to explore the applica-
tion of the technique from Section 6.3, replacing max regret with
the maximum max regret over a normalised rectangular rescaling
range, so that regret is maximised over both scenarios and rescal-
ings. Like standard max regret, this could be used in the generation
of queries (such as the current-solution strategy, e.g., page 3 [22]) or
in a stopping condition in interactive preference elicitation, i.e. when
the modified max regret is smaller than some threshold.

The issues with choices of scales of objectives analysed here
clearly apply also to more general preference models such as
MAUT [11] or GAI models [8, 4], and it would be worthwhile con-
sidering the extension of our results to those cases.
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