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Abstract. The tree-based ensembles are known for their outstanding
performance in classification and regression problems characterized
by feature vectors represented by mixed-type variables from various
ranges and domains. However, considering regression problems, they
are primarily designed to provide deterministic responses or model
the uncertainty of the output with Gaussian or parametric distribution.
In this work, we introduce TreeFlow, the tree-based approach that
combines the benefits of using tree ensembles with the capabilities of
modeling flexible probability distributions using normalizing flows.
The main idea of the solution is to use a tree-based model as a feature
extractor and combine it with a conditional variant of normalizing
flow. Consequently, our approach is capable of modeling complex
distributions for the regression outputs. We evaluate the proposed
method on challenging regression benchmarks with varying volume,
feature characteristics, and target dimensionality. We obtain the SOTA
results for both probabilistic and deterministic metrics on datasets with
multi-modal target distributions and competitive results on unimodal
ones compared to tree-based regression baselines.

1 Introduction

The modern tree-based models achieve outstanding results for prob-
lems where the data representation is tabular, the number of training
examples is limited, and the input feature vector is represented by
mixed-type variables from various ranges and domains. Most of such
algorithms focus on providing deterministic predictions, paying no at-
tention to the probabilistic nature of the provided output. However, for
many practical applications, it is impossible to deliver an exact target
value based on the given input factors. Consider the regression prob-
lem of predicting the future location of the vehicle that is approaching
a roundabout [29]. Having past coordinates and other information
aggregated in current and past states, we cannot unambiguously pre-
dict which of the three remaining exits from the roundabout will be
taken by the tracked object. Therefore, it is more beneficial to provide
multimodal probability distribution for future locations instead of a
single deterministic prediction oscillating around one mode.

Due to the tractable closed-form, the standard approaches assume
to model regression uncertainty using Gaussian or parametric distribu-
tions [17]. The well-known deterministic gradient boosting machine
method adopted those approaches to tree-based structures [6, 13, 25].
Consequently, they can capture the uncertainty of the regression out-
puts with a standard family of distributions.
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The major limitation of the current approaches is modeling regres-
sion outputs using only Gaussians. Moreover, it is not trivial to extend
them to a mixture of Gaussians to capture the multi-modalities of the
predictions. Creating multivariate extensions of such models is also
ineffective, especially for higher dimensionality, due to the need to
estimate the complete covariance matrix.

To reduce the limitations of existing methods, we introduce
TreeFlow - a novel tree-based approach for modeling probabilistic
regression. The proposed method combines the benefits of using tree-
based structures as feature extractors with the normalizing flows [22]
capable of modeling flexible data distributions. We introduce the novel
concept of combining forest structure with a conditional flow variant
to model uncertainty for regression output. Thanks to that approach,
we can model complex non-Gaussian or in general non-parametric
data distributions even for high-dimensional predictions. We confirm
the quality of the proposed model in the experimental part, where we
show the superiority of our method over the baselines.

To summarize, our contributions are as follows:

• According to our knowledge, for the first time, tree-based models
are used to model non-parametric probabilistic regression for both
uni- and multi-variate predictions.

• We propose a novel approach for combining tree-based models with
conditional flows via binary representation of the forest structure.

• We obtain the SOTA results for both probabilistic (NLL, CRPS) and
deterministic (RMSE) metrics on datasets with multi-modal target
distributions and competitive results on unimodal ones compared
to tree-based regression baselines.

2 Background

Assume we have a dataset D = {(xn,yn)}n=1..N where xn =
(x1

n, . . . , x
D
n ) is a D-dimensional random vector of features and

yn = (y1
n, . . . , y

P
n ) is a P -dimensional vector of targets. We con-

sider regression problems, thus, we assume that yp
n ∈ R. Additionally,

when P = 1 we will refer to that as a univariate regression problem,
and when P ≥ 2 as a multivariate regression problem.

For the probabilistic regression task, we aim at modeling condi-
tional probability distribution p(y|x). Assuming some parametriza-
tion of the regression model θ, the problem of training the prob-
abilistic model can be expressed as minimisation of the condi-
tional negative log likelihood function (NLL) given by Q(θ) =
−∑N

n=1 log p(yn|xn,θ). During the training procedure we aim at
finding θ∗ = argminθ Q(θ).

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230570

2631



Decision Tree Ensembles Decision Tree [2] recursively partition
feature space R

D into K disjoint regions Rk (tree leaves) and for
each region assign value wk. Formally, the model can be written as
h(x) =

∑K
k=1 wk1{x∈Rk}.

Decision Tree Ensembles are constructed of multiple, usually shal-
low decision trees, whose results are differently aggregated depending
on the training mode. In general, we distinguish two main approaches:
independent model training with average or majority voting such as
Random Forest [1], and iterative model training with additive aggre-
gation such as Gradient Boosting Machine (GBM) [8].

For the univariate probabilistic regression, GBM optimizes the loss
function given by negative log likelihood (NLL). Then it assumes the
target variable has a Gaussian distribution, i.e.,

p(y|x,θ(t)) = N (y|μ(t), σ(t)), (1)

where {μ(t), log σ(t)} = F (t)(x) and F (t)(x) is an output of t-th
tree from GBM model consisted of T trees. In the multivariate case,
it assumes Multivariate Normal distribution and uses the parametriza-
tion trick with Cholesky decomposition of the covariance matrix
which reduces the number of parameters.

In practice, NGBoost [6] supports both uni- and multi-variate Gaus-
sian distributions and estimates each parameter using one underlying
model. CatBoost [13] supports only univariate Gaussians but esti-
mates all distribution parameters using only one model. Moreover, it
provides deterministic multivariate regression with the same property,
which keeps the total number of trees relatively small. In this case, the
loss function is Multioutput Root Mean Squared Error (MultiRMSE).

Normalizing Flows Normalizing flows [22] represent the group
of generative models that can be efficiently trained via direct like-
lihood estimation thanks to the application of a change-of-variable
formula. Practically, they utilize a series of (parametric) invertible
functions: y = fn ◦ · · · ◦ f1(z). Assuming given base distribu-
tion p(z) for z, the log likelihood for y is given by log p(y) =

log p(z)−∑N
n=1 log

∣∣∣det ∂fn
∂zn−1

∣∣∣. In practical applications p(y) rep-

resents the distribution of observable data and p(z) is usually assumed
to be Gaussian with independent components.

The sequence of discrete transformations can be replaced by con-
tinuous alternative by application of Continuous Normalizing Flows
(CNFs) [3, 9] where the aim is to solve the differential equation of the
form ∂z

∂t
= gβ(z(t), t), where gβ(z(t), t) represents the function of

dynamics, described by parameters β. Our goal is to find solution
of the equation in t1, y := z(t1), assuming the given initial state
z := z(t0) with a known prior. The transformation function fβ is
defined as:

y = fβ(z) = z+

∫ t1

t0

gβ(z(t), t)dt. (2)

The inverted form of the transformation can be easily computed us-
ing the formula: f−1

β (y) = y−∫ t1
t0

gβ(z(t), t)dt. The log-probability
of y can be computed by:

log p(y) = log p(f−1
β (y))−

∫ t1

t0

Tr

(
∂gβ

∂z(t)

)
dt, (3)

where f−1
β (y) = z.

CNFs are rather designed to model complex probability distri-
butions for low-dimensional data, what was confirmed in various
applications including point cloud generation [27], future prediction
[29] or probabilistic few-shot regression [23]. Compared to models
like RealNVP [5] or Glow [11], they can be successfully applied to
one-dimensional data and achieve better results for tabular datasets.

3 TreeFlow

Tree-based methods obtain superior results on tabular datasets and
have developed multiple techniques to deal with categorical variables,
null values, etc. but are limited to distributions with explicitly provided
probability distribution functions, e.g., Gaussian. We want to over-
come this limitation by introducing TreeFlow - method for uni- and
multi-variate tree-based probabilistic regression with non-Gaussian
and multi-modal target distributions. The main idea of the solution
is to combine the benefits of using tree ensembles with the capabili-
ties of modeling flexible probability distributions using conditional
normalizing flows.

The architecture of TreeFlow is provided in fig. 1. The proposed
model consists of three components: Tree-based Feature Extractor,
Shallow Feature Extractor, and conditional CNF module. The role of
the first component is to extract the vector of binary features from the
structure of the tree-based ensemble model for a given input observa-
tion x. The problem of extracting a unified vector from the tree-based
ensemble model is non-trivial due to the complex structure and a large
number of base learners. Motivated by the fact that crucial informa-
tion extracted from input examples is stored in the leaves, we propose
a binary occurrence representation that is the most lightweight ap-
proach assuming thousands of trees. Formally it could be written as
hψ(x) = [o1, . . . ,oT], where hψ(x) is Tree-based Feature Extrac-
tor with parameters ψ and oi = [1{x∈Ri,1}, . . . ,1{x∈Ri,K}] where
Ri,k is a region of kth leaf of ith decision tree in the forest structure.

The size of vector o is significantly larger than the size of the regres-
sion variable y. If we deliver directly the large sparse binary vector
as a CNF conditioning component: (i) the number of CNF parameters
grows significantly, (ii) the conditioning component dominates train-
ing, and (iii) the ordinary differential equation (ODE) solver slows
down significantly and behaves in an unstable way. Therefore, we use
an additional Shallow Feature Extractor kφ(·), that is represented by
a neural network responsible for mapping high-dimensional binary
vector o returned by hψ(x) to low-dimensional feature representa-
tion w = kφ(o). The low-dimensional representation w of the sparse
embedding o is further passed to the conditional CNF module as a
conditioning factor. We postulate to use the variant of the conditional
flow-based model provided in [27, 23], where w is delivered to the
function of dynamics, gβ(z(t), t,w). The transformation function is
given by eq. (2) is represented as:

y = fβ(z,w) = z+

∫ t1

t0

gβ(z(t), t,w)dt. (4)

The inverse form of the transformation fβ(·) given the same
w in both directions is simply: z = f−1

β (y,w) = y −∫ t1
t0

gβ(z(t), t,w)dt. For a given model, we can easily calculate the
log-probability of regression output y, given the input x [9]:

log p(y|w) = log p(f
−1
β (y,w))−

∫ t1

t0

Tr

(
∂gβ(z(t), t,w)

∂z(t)

)
dt, (5)

where w = kφ(o), and o = hψ(x). With the model defined in
the following way, we can easily calculate the exact value of log-
probability for any possible regression outputs. We can also utilize
the generative capabilities of the model by generating samples from a
known prior p(z) and transforming them into the space of regression
outputs using the function given by eq. (4).

We aim at training the model by optimizing the NLL for a log
probability defined by eq. (5) and the set of trainable parameters
θ = {ψ,φ,β}. In the perfect scenario, we should optimize the entire
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Figure 1. TreeFlow architecture. The proposed model consists of three components: Tree-based Feature Extractor, Shallow Feature Extractor, and Conditional
CNF module. The role of the first component is to extract the vector of binary features from the structure of the tree-based ensemble model. The Shallow
Feature Extractor is a neural network responsible for mapping high-dimensional binary vectors returned by the Tree-based Feature Extractor to low-dimensional
feature space. The resulting vector is further passed to the conditional CNF module as a conditioning factor. The goal of the last component is to model complex
probability distribution.

model in an end-to-end fashion, jointly updating the parameters of the
Tree-based Feature Extractor ψ, Shallow Feature Extractor φ, and
conditional CNF β. However, the Shallow Feature Extractor needs to
have a constant size input which cannot be easily obtained from our
Tree-based Feature Extractor as it learns iteratively. To overcome this
limitation, we perform two-staged learning.

In the first stage, only the parameters of Tree-based Feature Ex-
tractor ψ∗ are trained by optimizing the surrogate criterion specific
to the type of tree-based architecture. In our work, we utilize the
CatBoost model as it out-of-the-box supports categorical features and
null values. Therefore, following [13] we train the Tree-based feature
extractor by optimizing NLL loss for a standard Gaussian regression
output given by eq. (1). For the multivariate case, we use the protocol
from [20] and train the feature extractor by optimizing MultiRMSE.

Given the Tree-based Feature Extractor parameters, we train the re-
maining components of our model in an end-to-end fashion. Formally,
given the estimated parameters ψ∗ for hψ(x) we train the model by
optimizing NLL with log-probability given by eq. (5) with respect
to remaining parameters φ and β using the standard gradient-based
approach.

The two-stage training has a couple of advantages compared to
the end-to-end approach. First, any trained tree-based ensemble can
be used as a feature extractor. Second, extracting the forest structure
together with optimizing the parameters of the remaining components
of the system in an end-to-end fashion is non-trivial and requires
handcrafting the training procedure for a particular type of tree-based
learner.

4 Related works

One of the best-known examples of gradient boosting methods is
XGBoost [4] which iteratively combines weak regression trees to
obtain accurate predictions. Further extensions to this method con-
sist of LightGBM [10] and CatBoost [20] which introduce multiple
novel techniques to obtain even better point estimates. Recently they
have been extended to a probabilistic framework to model the whole
probability distributions.

One such approach is NGBoost (Natural Gradient Boosting) [6] al-
gorithm, which can model any probabilistic distribution with a defined
probability density function, e.g., Univariate Gaussian, Exponential,
or Laplace. It simultaneously estimates the distribution parameters
by optimizing a proper scoring rule, e.g., negative log likelihood
(NLL) or Continuous Ranked Probability Score (CRPS). The variant
of NGBoost that utilizes Multivariate Gaussian to model multidi-
mensional predictions was presented in [19]. RoNGBa [21] is an
extension of NGBoost, which improves the performance of NGBoost
via a better choice of hyperparameters. This framework has also been
adapted to the CatBoost [13] with support to only univariate Gaus-
sian distributions, but contrary to the NGBoost, the model outputs
all distribution parameters from one model. There is also a group of
approaches that were developed in parallel to NGBoost consisting of
XGBoostLSS [15] and CatBoostLSS [16] which make a connection to
well-established statistical framework Generalized Additive Models
for Shape, Scale, and Location (GAMLSS) [26]. Like NGBoost, these
models use one XGBoost or CatBoost model per parameter, but their
training consists of two phases: independent model learning for each
parameter and iterative parameter correction. One of the most recent
approaches is Probabilistic Gradient Boosting Machine (PGBM) [25]
which treats the leaf weights in each tree as random variables. This
approach is capable to model different sets of posterior distributions
but is limited to only distributions parameterized with location and
scale parameters.

Besides the tree-based probabilistic models, several works investi-
gate the problem of probabilistic regression. In [24] the authors model
conditional density estimators for multivariate data with conditional
sum-product networks that combines tree-based structures with deep
models. In [7] the authors combine the transformer model with flows
for density estimation. The flow models were also applied for future
prediction problems in [29]. In [23] and [14] the authors propose to
integrate flows with Gaussian Processes for probabilistic regression.

TreeFlow, to our best knowledge, is the first tree-based model
for uni-, and multi-variate probabilistic regression, that is capable to
model any distribution for regression outputs.
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5 Experiments

This section evaluates our method on four different setups - univariate
regression on synthetic data, univariate regression on mixed-type data,
univariate regression on numerical data, and multivariate regression.
Our goal is a quantitative and qualitative analysis of TreeFlow in
comparison to the baseline models.

In all experiments, we measure target distribution fit using the
negative log likelihood metric in the quantitative part. It is a natural
choice as we expect to deal with heavy-tailed and multimodal distri-
butions. Additionally, we calculate the CRPS metric which is defined
as the mean squared difference between the forecasted probabilities
and the actual outcomes, over all possible thresholds. It is not the
best-suited metric for multimodal distributions, although it is often
used for probabilistic forecasting and we would like to understand dif-
ferences between TreeFlow and baselines. Moreover, we investigate
point estimates that are usually necessary from the application point
of view. For that purpose, we use the standard Root Mean Squared
Error (RMSE) metric and introduce Root Mean Squared Error at K
(RMSE@K) metric. The latter is a version of the RMSE metric that is
adjusted for multimodal distributions and takes into account multiple
predictions from the model. More details and justifications are pro-
vided in the Appendix in sec. A.1. In the qualitative part, we analyze
and discuss the characteristics of obtained probability distributions.
Finally, we perform the ablation study whose goal was to justify the
design choices. The results of this part are presented in the Appendix
in sec. D.

5.1 Univariate regression on synthetic data

This experiment is one of the motivating examples. Here, we want
to evaluate the capabilities of TreeFlow to model data when the true
probability distribution is known.

Dataset and methodology We have created a dataset with two
conditioning binary variables. For each possible combination of fea-
tures, we have proposed different continuous distributions: Normal,
Exponential, Mixture of Gaussians, and Gamma (see fig. 2 and details
in Appendix, in sec. B). After that, we trained TreeFlow and CatBoost
models. Finally, we calculated negative log likelihood and visualized
the obtained probability distributions.

Results After five repetitions of the experiment, we obtained nega-
tive log likelihood for CatBoost equal 2.52± 0.01, and for TreeFlow
equal 2.02± 0.00. We can observe, that our method effortlessly ob-
tained better results and, contrary to CatBoost, it was able to correctly
model all probability distributions (see fig. 2). This is due to its flexi-
bility in modeling probability distributions resulting from the usage
of the CNF component.

5.2 Univariate regression on mixed-type data

Our goal is to evaluate and verify our approach to univariate regres-
sion problems with mixed-type data. This experiment is the main
motivating example of this paper, as tree-based methods cannot model
non-gaussian target distributions, and normalizing flows cannot deal
with categorical variables without any additional data preparation
step.

(a) P (Y |X1 = 0, X2 = 0) (b) P (Y |X1 = 0, X2 = 1)

(c) P (Y |X1 = 1, X2 = 0) (d) P (Y |X1 = 1, X2 = 1)

Figure 2. Comparison of the estimated probability distributions for univari-
ate regression on synthetic data experiment. We can observe that contrary to
CatBoost, TreeFlow was able to correctly model all underlying true probability
distributions. Legend: Red - True probability distribution; Blue - TreeFlow;
Orange - CatBoost.

Datasets and methodology To the best of our knowledge, there
is no established standard benchmark for regression problems with
mixed-type datasets. Thus, we propose seven datasets from the well-
known data platform - Kaggle. They have various numbers of samples
ranging from a few thousand to a hundred thousand, a different num-
ber of categorical and numerical variables. All details of the datasets
can be found in tab. 6.

In terms of the methodology, we follow the standard 80%/20%
training/testing holdout split. We also split the training dataset to
train and validation datasets in the same proportion for the best
epoch/iteration selection purposes. All experiments are run 5 times
and results are averaged.

For obtaining point estimates from TreeFlow we analyze three
approaches: (i) Samples averaging (Avg) - the simple average of
samples, (ii) RMSE@1 - usage of the most probable sample, (iii)
RMSE@2 - usage of the two most probable samples. Finally, we
provide ablation studies regarding the design of the Tree-based Feature
Extractor and the Shallow Feature Extractor (see Appendix sec. D).

Baselines Currently, the only approach to work with such problems
is a CatBoost which deals out-of-the-box with mixed-type datasets
and support modeling target variable with Gaussian distribution. Ad-
ditionally, we evaluate PGBM with one hot encoding for categorical
variables as the representative method for standard tree methods with-
out support for categorical variables. Moreover, this method is also
capable of utilizing various parametric distributions. We perform
the evaluation on both probabilistic (NLL, CRPS) and deterministic
(RMSE / RMSE@K) metrics.

Results The results of the conducted experiments for probabilis-
tic metrics are provided in tab. 1 and for deterministic metrics in
tab. 2. Our method obtains better negative log likelihood scores for
most of the datasets and for most of them better CRPS values than
reference methods. Furthermore, for the majority of datasets, there
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Table 1. Comparison of TreeFlow with existing methods in terms of negative log likelihood (NLL) and Continuous Ranked Probability Score (CRPS) on
univariate regression problems with mixed-type data. Our method outperformed both CatBoost and PGBM approaches on most of the datasets thanks to its
flexibility in modeling non-gaussian distributions. One Hot Encoding was used for categorical variables for PGBM. Extended information about datasets is
provided in tab. 6.

DATASET
NLL CRPS

CATBOOST PGBM TREEFLOW CATBOOST PGBM TREEFLOW

AVOCADO -0.40 ± 0.01 -0.45 ± 0.01 -0.47 ± 0.03 0.0992 ± 0.0018 0.0870 ± 0.0013 0.0854 ± 0.0024
BIGMART -0.05 ± 0.02 -0.10 ± 0.02 -0.08 ± 0.02 0.1270 ± 0.0021 0.1259 ± 0.0023 0.1294 ± 0.0027
DIAMONDS -1.80 ± 0.02 -1.41 ± 0.76 -1.94 ± 0.03 0.0222 ± 0.0002 0.0447 ± 0.0474 0.0210 ± 0.0005
DIAMONDS 2 -1.89 ± 0.02 -1.24 ± 0.83 -2.14 ± 0.05 0.0217 ± 0.0002 0.0461 ± 0.0504 0.0197 ± 0.0005
LAPTOP -0.89 ± 0.08 -0.97 ± 0.09 -0.74 ± 0.13 0.0572 ± 0.0049 0.0474 ± 0.0034 0.0563 ± 0.0043
PAK WHEEL -1.40 ± 0.05 -0.53 ± 0.02 -1.60 ± 0.03 0.0362 ± 0.0006 0.0813 ± 0.0009 0.0327 ± 0.0007
SYDNEY -0.54 ± 0.04 0.20 ± 1.02 -0.66 ± 0.01 0.0726 ± 0.0011 0.2383 ± 0.2646 0.0721 ± 0.0008

Table 2. Comparison of TreeFlow with existing methods in terms of root mean squared error (RMSE) on univariate regression problems with mixed-type data.
TreeFlow in approach @2 significantly outperforms other baseline methods by taking advantage of multimodal distribution modeling property.

DATASET
RMSE

CATBOOST PGBM TREEFLOW(AVG) TREEFLOW(@1) TREEFLOW(@2)

AVOCADO 0.1939 ± 0.0043 0.1624 ± 0.0024 0.1676 ± 0.0058 0.1769 ± 0.0087 0.1713 ± 0.0066
BIGMART 0.2284 ± 0.0039 0.2274 ± 0.0040 0.2335 ± 0.0045 0.2514 ± 0.0087 0.2480 ± 0.0083
DIAMONDS 0.0419 ± 0.0007 0.0403 ± 0.0006 0.0407 ± 0.0009 0.0445 ± 0.0015 0.0343 ± 0.0017
DIAMONDS 2 0.0421 ± 0.0006 0.0492 ± 0.0010 0.0398 ± 0.0006 0.0460 ± 0.0014 0.0364 ± 0.0004
LAPTOP 0.1028 ± 0.0092 0.0848 ± 0.0063 0.1014 ± 0.0082 0.1015 ± 0.0076 0.0958 ± 0.0058
PAK WHEEL 0.0783 ± 0.0009 0.1630 ± 0.0018 0.0729 ± 0.0018 0.0796 ± 0.0021 0.0654 ± 0.0047
SYDNEY 0.1528 ± 0.0057 0.1561 ± 0.0047 0.1518 ± 0.0051 0.1721 ± 0.0041 0.1361 ± 0.0066

is a substantial improvement in the results. In terms of point esti-
mates, TreeFlow in @2 approach obtains superior results in most
of the datasets by the ability to provide multiple predictions for a
particular sample that could be modeled by multimodal distributions.
The detailed discussion regarding differences between point estimates
for TreeFlow is provided in the Appendix in sec. A.1 Moreover, we
investigated that the target distributions provided by TreeFlow had
more realistic properties such as a heavy tail, multimodality, or does
not provide any probability mass for impossible values, e.g., negative
values when modeling price as a target variable. The latter example is
presented in fig. 3. We analyzed estimated probability density func-
tions for the Wine Reviews datasets for CatBoost and TreeFlow. Both
methods predicted similar values for the PDF function; however, only
TreeFlow was able to model heavy-tailed distribution and recognize
that negative price values are highly unlikely.

5.3 Univariate regression on numerical data

We focus on univariate regression problems with only numerical vari-
ables in this setup. We aim to evaluate our method on standard proba-
bilistic regression benchmarks in both probabilistic and deterministic
approach. Finally, we investigate the properties of the obtained target
distributions.

Datasets and methodology We use established in the reference
methods [6, 13] probabilistic regression benchmark with the exclusion
of the Boston dataset due to ethical issues. It contains nine varying-
size datasets from the UCI Machine Learning Repository. We follow
the same protocol as used in the reference papers. We create 20
random folds for all datasets except Protein (5 folds) and Year MSD
(1 fold). We keep 10% of samples as a test set for each of these
folds, and the remaining 90% of data we split into an 80%/20%
train/validation for the best epoch selection purposes.

Figure 3. Estimated probability density functions for the Wine Reviews
datasets from the univariate regression on mixed-type data experiment. Both
methods predicted similar values for the PDF function; however, the properties
of the obtained distributions are entirely different. Contrary to the CatBoost
approach, TreeFlow was able to model heavy-tailed distribution and recognize
that negative price values are highly unlikely.

Baselines We selected four tree-based baseline models: NGBoost
[6], RoNGBa [21], CatBoost [13], PGBM [25], and one non tree-
based method - Deep Ensemble [12] which was used in [13] as a
reference method.

Results The quantitative results for negative log likelihood (NLL)
are presented in tab. 3 and for RMSE in tab. 4. In terms of the proba-
bilistic metric, our approach outperforms baseline methods on three
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Table 3. Comparison of TreeFlow with existing methods in terms of negative log likelihood (NLL) on univariate regression problems with numerical data. Our
method outperformed the other approaches on three datasets and obtained competitive results on others. The superior results were obtained thanks to our method’s
ability to model multimodal distributions.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW

CONCRETE 3.06 ± 0.18 3.06 ± 0.13 3.04 ± 0.17 2.94 ± 0.18 2.75 ± 0.21 3.02 ± 0.15
ENERGY 1.38 ± 0.22 1.24 ± 1.28 0.60 ± 0.45 0.37 ± 0.28 1.74 ± 0.04 0.85 ± 0.35
KIN8NM -1.20 ± 0.02 - 0.63 ± 0.02 -0.49 ± 0.02 -0.60 ± 0.03 -0.54 ± 0.04 -1.03 ± 0.06
NAVAL -5.63 ± 0.05 -5.39 ± 0.04 -5.34 ± 0.04 -5.49 ± 0.04 -3.44 ± 0.04 -5.54 ± 0.16
POWER 2.79 ± 0.04 2.72 ± 0.12 2.79 ± 0.11 2.65 ± 0.08 2.60 ± 0.02 2.65 ± 0.06
PROTEIN 2.83 ± 0.02 2.73 ± 0.07 2.81 ± 0.03 2.76 ± 0.03 2.79 ± 0.01 2.02 ± 0.02
WINE 0.94 ± 0.12 0.93 ± 0.08 0.91 ± 0.06 0.91 ± 0.08 0.97 ± 0.20 -0.56 ± 0.62
YACHT 1.18 ± 0.21 0.41 ± 0.39 0.20 ± 0.26 1.03 ± 0.44 0.05 ± 0.28 0.72 ± 0.40
YEAR MSD 3.35 ± NA 3.43 ± NA 3.43 ± NA 3.46 ± NA 3.61 ± NA 3.27 ± NA

Table 4. Comparison of TreeFlow with existing methods in terms of Root Mean Squared Error (RMSE) on univariate regression problems with numerical data.

DATASET DEEP. ENS. CATBOOST NGBOOST RONGBA PGBM TREEFLOW (AVG) TREEFLOW (@1) TREEFLOW (@2)

CONCRETE 6.03 ± 0.58 5.21 ± 0.53 5.06 ± 0.61 4.71 ± 0.61 3.97 ± 0.76 5.33 ± 0.65 5.41 ± 0.72 5.41 ± 0.71
ENERGY 2.09 ± 0.29 0.57 ± 0.06 0.46 ± 0.06 0.35 ±0.07 0.35 ± 0.06 0.64 ± 0.11 0.66 ± 0.13 0.65 ± 0.12
KIN8NM 0.09 ± 0.00 0.14 ± 0.00 0.16 ± 0.00 0.14 ± 0.00 0.13 ± 0.01 0.09 ± 0.00 0.10 ± 0.01 0.10 ± 0.01
NAVAL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
POWER 4.11 ± 0.17 3.55 ± 0.27 3.70 ± 0.22 3.47 ± 0.19 3.35 ± 0.15 3.71 ± 0.26 3.79 ± 0.26 3.79 ± 0.25
PROTEIN 4.71 ± 0.06 3.92 ± 0.08 4.33 ± 0.03 4.21 ± 0.06 3.98 ± 0.06 4.00 ± 0.27 4.79 ± 0.52 3.01 ± 0.06
WINE 0.64 ± 0.04 0.63 ± 0.04 0.62 ± 0.04 0.62 ± 0.05 0.60 ± 0.05 0.66 ± 0.05 0.73 ± 0.06 0.41 ± 0.09
YACHT 1.58 ± 0.48 0.82 ± 0.40 0.50 ± 0.20 0.90 ± 0.35 0.63 ± 0.21 0.75 ± 0.26 0.75 ± 0.25 0.75 ± 0.26
YEAR MSD 8.89 ± NA 8.99 ± NA 8.94 ± NA 9.14 ± NA 9.09 ± NA 9.29 ± NAN 10.97 ± NAN 8.64 ± NA

datasets: Protein, Wine, Year MSD, and obtains competitive results
on others. For deterministic metrics, we obtain SOTA results for the
same three datasets, and for two (kin8nm and naval) we achieve the
same results as the current best methods.

To understand the results, we have investigated target distributions.
We have compared them with the CatBoost model with default hyper-
parameters and presented them in fig. 4.

The first subfigure presents results for the Protein dataset. TreeFlow
method has discovered that the underlying target distribution has a
bimodal character and was able to correctly estimate the high value
of the probability density function for the true value. In contrast, the
Gaussian-based method did not have such an ability and incorrectly
estimated the center of probability mass between two modes. The
second subfigure is a representative of naturally occurring integer
value datasets: Wine Quality and Year MSD. In this example, our
method proposes a multimodal distribution consisting of Gaussian-
like and heavy-tailed distributions. Such estimation gives us very
rich information for the decision-making process compared to the
Gaussian-based approach, which only estimated values around the
highest mode and completely ignored information about a minor
mode around 5 and a heavy tail for values 8 and 9. The last subfigure
is a representative example of the rest of the datasets for which our
method obtained similar results to baselines. Both methods proposed
Gaussian distribution as a target distribution and assuming that this
is a correct target distribution, there is no possibility of obtaining
significantly better results.

The above-mentioned analysis also explains the results of the deter-
ministic metrics. We incorporated into the decision-making process
additional information about the second modality and it resulted in
significant gains in prediction accuracy. To the best of our knowledge,
it is the first time when these properties were noticed and exploited.

5.4 Multivariate regression

In the last setup, we focus on multivariate regression problems. Our
goal is to quantitatively evaluate our method on datasets with var-
ious target dimensionality and examine the properties of obtained

distributions.

Datasets and methodology Currently, the only tree-based proba-
bilistic multivariate regression problem was approached by [19] which
proposes a task of two-dimensional oceanographic velocities predic-
tion [18]. Moreover, we evaluate our method on five more datasets
with a broad range of target and feature dimensionality introduced in
[28].

For both groups of datasets, we follow the proposed for these
datasets experiment methodology. For the Oceanographic dataset, it
is the same protocol as in the univariate regression on numerical data
experiment. For the second group, it is a standard training/testing
holdout split similar to the univariate regression on the mixed-type
data experiment. The exact number of samples is provided in the tab.
5.

Baselines For this setup, we selected two baseline models. The
first approach uses NGBoost, which assumes Multivariate Gaussian
distribution and models correlation between target variables. The
second approach also uses NGBoost, but the separate model models
each target dimension; thus, it assumes independence between targets.
We do not consider other Independent Gaussian approaches as they
similarly model target distribution.

Results The results of the experiments are provided in tab. 5. Our
method outperforms baselines by a large margin on three datasets.
In contrast to NGBoost-based methods, TreeFlow was able to cap-
ture non-gaussianity in the target distributions. It can be evident on
Parkinsons and US Flight datasets where differences between Inde-
pendent NGBoost and Multivariate NGBoost were significant. They
were probably caused by the ability to model the correlation between
target variables and TreeFlow utilized its flexibility to obtain even
better results. The other situation is for the Oceanographic dataset,
where all results are close. Here, probably true target distribution is
similar to the Independent Gaussian distribution; thus, NGBoost and
TreeFlow can not achieve better results. In the last dataset - Energy,
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(a) Multimodal distribution (b) Multimodal, heavy-tailed dist. (c) Gaussian distribution

Figure 4. Estimated probability density functions for three datasets (Protein, Wine Quality, Power Plant) from the univariate regression on numerical data
experiment. Depending on the dataset, TreeFlow is able to model distributions with various properties.

Table 5. Comparison of TreeFlow with existing methods in terms of negative
log likelihood on multivariate regression problems. Our method obtains SOTA
results on four out of the six datasets thanks to its flexibility in modeling
complex distributions. Baseline results for the Oceanographic are taken from
the reference paper.

DATASET IND NGBOOST NGBOOST TREEFLOW

PARKINSONS 6.86 5.85 5.26
SCM20D 94.40 94.81 93.41
WINDTURBINE -0.65 -0.67 -2.57
ENERGY 166.90 175.80 180.00
USFLIGHT 9.56 8.57 7.49

OCEANOGRAPHIC 7.74±0.02 7.73±0.02 7.84±0.01

the best performing model was Independent NGBoost. We suspect
that the high dimensionality of the target distribution was too hard to
learn for both NGBoost and TreeFlow methods.

Figure 5. Estimated probability density functions for the Parkinsons datasets
from the multivariate regression experiment. TreeFlow is the most flexible
method which enables target distribution to correlate between dimensions and
has multiple modes.

Moreover, we investigated target distributions for the Parkinsons
dataset. The results of all methods are presented in fig. 5. We can easily
observe how consecutive methods allow for more flexible distributions.
Multivariate NGBoost enables correlation between target variables,
while TreeFlow adds multimodality property.

6 Conclusions

In this work, we proposed a novel tree-based approach for proba-
bilistic regression. Our method combines the benefits of ensemble
decision trees with the capabilities of flow-based models in modeling
complex non-Gaussian, multimodal distributions. We evaluated our
approach using four experimental settings for both probabilistic and

deterministic metrics and achieve SOTA or comparable results on
most of them. We also illustrate some properties of TreeFlow that
show the benefits of our approach compared to reference baselines.

Limitations The main trade-off introduced by our method is be-
tween computational time and the flexibility of the target distribution.
Resource-demanding CNF component limits the scalability of our
method, but despite this, we were able to deal with datasets of up to
half a million observations. Additionally, our method has multiple
hyperparameters, which may be challenging to tune in some cases, but
we hope that a broad range of experiments provides good intuitions
for end users (see sec. C). Lastly, TreeFlow performs two-staged
learning, which might sometimes lead to sub-optimal results. Even so,
our method outperforms current baselines, and we hope that TreeFlow
will serve as a strong starting point for future end-to-end approaches.

Broader Impact The tree-based models are widely applied in re-
search and industry and often achieve SOTA results. TreeFlow can be
seen as an extension of such models, and all ethical considerations,
both positive and negative, regarding regression problems apply to
our work. However, as we consider target distribution more com-
plex than parametric, our method can better assess uncertainty in the
decision-making process or provide realistic probability distributions
(see examples in fig. 3, 4, 5). Such properties might be crucial, for ex-
ample, in medicine or finance applications, and have a largely positive
societal impact.
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Appendix and Code

The code and appendix are available under the GitHub repository:
https://github.com/pfilo8/TreeFlow.
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