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Abstract. General Game Playing (GGP), a research field aimed at
developing agents that master different games in a unified way, is
regarded as a necessary step towards creating artificial general intel-
ligence. With the success of deep reinforcement learning (DRL) in
games like Go, chess, and shogi, it has been recently introduced to
GGP and is regarded as a promising technique to achieve the goal
of GGP. However, the current work uses fully connected neural net-
works and is thus unable to efficiently exploit the topological struc-
ture of game states. In this paper, we propose an approach to applying
general-purposed convolutional neural networks to GGP and imple-
ment a DRL-based GGP player. Experiments indicate that the built
player not only outperforms the previous algorithm and UCT bench-
mark in a variety of games but also requires less training time.

1 Introduction

The ability to play games is usually regarded as a significant indicator
of the intelligence level of an agent. Over the past few decades, the
application of artificial intelligence in traditional game playing has
made significant advances [1, 2, 3]. However, it is difficult for com-
puters to generalize abilities from one game to others. The current
techniques seem to be far away from the final solution of realizing
Artificial General Intelligence (AGI). General Game Playing (GGP)
was launched by Genesereth et al. in 2005 to create intelligent agents
that can perform well in a variety of games without human interven-
tion [4]. With decades of development, GGP has been regarded as a
necessary milestone for AGI [5].

As an improved version of AlphaGo, DeepMind developed an-
other program, called AlphaZero, to master games of chess, shogi
and Go [6]. It can achieve superhuman performance in all three
games. However, AlphaZero can only play two-player zero-sum
board games, and the architecture of its neural networks, as well as
the encoding method of the input and output, is manually designed
according to the specific game rules.

To address these issues, Goldwaser and Thielscher extended Al-
phaZero to GGP and named it Generalized AlphaZero (GAZ) [7].
It removes the limitation on game type and can automatically de-
sign the neural networks according to the number of game proposi-
tions [8]. It is the first deep reinforcement learning algorithm that
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outperforms the UCT benchmark in all games [7, 9, 10], except
in multiplayer cooperative games like Babel. However, unlike Al-
phaZero, GAZ employs fully connected networks instead of convo-
lutional neural networks (CNNs). This is due to two main reasons:
One is the challenge of extracting the necessary ordering knowledge
for CNNs from Game Description Language (GDL). Another rea-
son is that the existing CNNs can only process input tensors with
known, certain dimension, while GGP games are unknown, which
makes them inapplicable to GAZ.

It is important for the agent’s network structure to align with the
input structure to enable efficient feature extraction. Fully connected
networks simply ignore the input structure, causing inefficiencies.
By using topological information from game states, new agent built
by generalized CNNs is believed to speed up the feature extraction
process and thus reduce training time. Based on the above consider-
ations, this paper implements a new DRL-based player for GGP. Our
main contributions are summarized as follows:

• CNNs have been generalized from 2D to arbitrary dimensions,
allowing them to automatically perform convolutions of different
dimensions based on the input.

• An extended version of AlphaZero for GGP has been imple-
mented, using the generalized CNNs. Only base-type propositions
representing game states in the propositional network are used as
the input of the neural networks, which is less than half the number
used in GAZ. More importantly, given the game rules, the agent’s
network structure can be adjusted automatically.

• A number of experiments have been carried out to demonstrate the
effectiveness of our approach. Experimental results show that the
proposed agent outperforms UCT benchmark and GAZ in multi-
ple games and is more efficient in training. Especially in game Ba-
bel where GAZ failed, it successfully outperforms the UCT with
a perfect score.

The structure of the rest paper is organized as follows: Section 2
presents the previous DRL-based research for GGP and the back-
ground of CNNs. Section 3 introduces our proposed approach, and
Section 4 describes experiments and results. Finally, we conclude
this paper with a discussion of future work.
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2 Background

2.1 GGP

In GGP, the game rules are written in the form of standard Game
Description Language (GDL) [11]. GDL is a logic-based language,
where a game state is described by specifying which propositions are
true in that state.

To speed up game reasoning, a GDL-defined game can be con-
verted into a propositional network (PropNet) [8]. PropNet can be
seen as a graph representation of GDL, where each node represents a
proposition or a logic gate. All propositions can be divided into three
types: input propositions, base propositions, and view propositions
[12]. The truth values of base propositions represent the state of the
game, and the values of input propositions are set when the agent
chooses the action to play. The rest are all view propositions, includ-
ing the description of the goal, terminal condition, legal actions, etc.

In particular, the proposed agent in this work uses the optimized
PropNet implemented by [13] with a method of the OptimizingProp-
NetFactory class1 provided in the GGP-Base framework.

2.2 DRL for GGP

Deep reinforcement learning (DRL) is a subfield of machine learning
that combines reinforcement learning (RL) and deep learning. It has
had many successful applications in games [3, 6, 14, 15, 16, 17, 18]
and has been recently introduced into GGP [7, 9, 19, 20].

Initial study attempting to apply Q-learning (a RL algorithm for
learning the value of an action in a particular state) to GGP revealed
that it can eventually converge, but very slowly [20]. When com-
bined with Monte Carlo Tree Search (MCTS) [21], a fundamental
and widely used algorithm in GGP, it still failed to beat UCT bench-
mark. In 2020, GAZ was introduced as a DRL-based agent for GGP
that learns through self-play [7]. It is the first successful DRL-based
agent to surpass the UCT benchmark in most games. We will de-
scribe GAZ in details later. The same year, GGPZero [9], which fea-
tures a structure similar to GAZ but a different game reasoner, was
released. This work analyzed various factors affecting agent perfor-
mance, but its performance was inferior to GAZ.

The neural networks in the above three works only employed
fully connected layers. Most recently, based on another GGP system,
Ludii [22], and DRL framework, polygames [23], CNNs were em-
ployed in GGP [10]. It achieves very good performance on 15 board
games, but is still limited to 2D, two-player, asynchronous games.

2.3 GAZ

GAZ [7] is the first deep reinforcement learning algorithm in GGP to
outperform the UCT benchmark in most games except Babel [9, 19].
The main process of the algorithm is almost the same as in Alp-
haZero, as shown in Figure 1.

The neural networks are embedded in MCTS to guide simula-
tions. The MCTS algorithm generates training data through self-play,
which is added to the replay buffer. The constantly updated data in
the replay buffer is then used to train the neural networks. Repeat the
process until a high-quality policy is produced. The more accurate
the network predictions are, the higher the quality of the data gener-
ated by MCTS, and conversely, the higher the data quality, the more
accurate the trained networks will be.

1 https://github.com/ggp-org/ggp-base/tree/master/src/main/java/org/ggp/base
/util/propnet/factory
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Figure 1: The main process of GAZ self-play training.

Neural networks are used to guide MCTS simulations. A simu-
lation of MCTS can be divided into 4 steps: selection, expansion,
evaluation, and backtracking. The notion of Monte Carlo tree is stan-
dard, see [24]. Given a state s and an action a, each edge (s, a) in
the tree stores the data of network prior action probability p(s, a),
visit counts N(s, a), and action value Q(s, a). In the selection phase,
starting from the root node, continuously select the action a that max-
imizes the upper confidence bound until the leaf node is reached:

a = argmaxa

(
Q(s, a) + cpuct

p(s, a)×√N(s)

(1 +N(s, a))

)
(1)

where cpuct is a constant. After that, the leaf position s′ will be
passed through the neural network to obtain the prior action prob-
ability p(s′) and the prior value v(s′). In the backtracking phase, the
value Q(s, a) of each action from the leaf node upward is determined
by the mean of all the iterations that went through the node. That is,
Q(s, a) = 1

N

∑
s′|s,a→s′ v(s

′).
The action probability π actually taken in self-play is determined

by the visit counts of all actions at the root state, according to the
results of 300 MCTS simulations. That is, πa ∝ N(s, a). At the end
of the game, or when the game exceeds the maximum length, each
role will be given a score z. Then the triples (state,π, rz+(1−r)q)
will be added to the replay buffer, where r is a parameter with final
score z, which is found to perform best when set to 0.5, and q is the
Q value of each state after 300 MCTS simulations. The parameter r
is introduced to take the results of the MCTS simulation into account,
which is different from the original AlphaZero.

Regarding the structure of the neural network in GAZ, the network
input is comprised of the values of all game propositions. All the
inputs are passed through a series of fully connected layers, each
one half the size of the previous one, and the final layer is of size
50. Then, starting with that layer as a common layer, each player’s
head doubles the size of the layer until it reaches the number of legal
actions.

The following is how the networks were trained. For each given
root state s, the neural network calculates its action probability esti-
mate p and value estimate v, with current network parameter θ:

fθ(s) = (p, v) (2)

The purpose of network training is to make the output of the neural
network p, v approximate to π and rz+(1−r)q. So the loss function
is defined as follows:

loss = ((rz + (1− r)q)− v)2 − πT logp+ c || θ ||2 (3)
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where c is a parameter controlling the level of L2 weight regulariza-
tion (to prevent overfitting). When the game is over, the reward from
GDL is between 0 and 100, and GAZ rescales it by dividing it by
100. This work also takes this setting.

As shown in Table 1, GAZ outperforms the UCT benchmark agent
significantly in the two-player, zero-sum, turn-based games Connect-
4 and Breakthrough, and is slightly better in the 3-player, mixed co-
operative / zero-sum game Pacman 3p, but fails in the 3-player pure
cooperative simultaneous game Babel.

2.4 CNNs

2D CNN has been commonly employed in feature detection and cre-
ation [25, 26, 27, 28]. 3D CNN was proposed to conduct human ac-
tion recognition [29]. The main difference between 2D and 3D CNN
is the spatial dimension of the filter sliding. 2D filters slide on the
height and width of the input layer, while 3D filters on dim depth,
height and width. Each time the filter slides a position, a convolution
operation is performed to obtain a value. As the filter slides over the
entire 3D space, the output structure is also 3D.

Note that convolution and Convolutional Neural Networks are not
interchangeable concepts. While multi-dimensional convolution has
been extensively employed in signal processing, image processing,
and computational mathematics [30, 31], its utilization in neural net-
works has been limited to no more than 3D applications.

In 2020, a novel approach known as 4D CNNs (V4D) [32] was
proposed to extract timeline information from long videos by de-
signing a specialized 3D convolution kernel. Since it did not use a
complete cubic block, the number of parameters for the convolution
kernel was greatly reduced. However, the approach to V4D is still
limited to 4D case, and the implementation process is actually done
manually using 3D kernels.

3 Method

Since the fully connected layers have no topological information,
GAZ is unable to exploit the topological information of propositions
representing states. However, if the digits representing the position
information in the description of the proposition can be extracted, the
proposition can be reasonably arranged to pass through the CNNs. At
the same time, using the extracted topology information, the agent
can automatically adjust the parameters of the network according to
different games, making the network structure more flexible and rea-
sonable.

3.1 Multi-Dimensional Convolutional Layer

Existing convolutional networks are limited to processing tensors of
certain dimensions, typically no more than 3. However, GGP lacks
advance knowledge about the types of games it will encounter. Thus,
to enable the use of CNNs in GGP, we first need to implement general
and unified CNNs, which could be performed on tensors of any un-
known dimension. The implementation process is given as follows:

Decide the shape of the input tensor. Performing an n-D convolu-
tion requires a given n+2 dimensional input tensor. Here we denote
it as [B, In, In−1, ..., I1, C], where Ik, k = 1, ..., n, represents the
length of the k-dimension of the input. The two extra dimensions B
and C respectively represent the batch size and the number of input
channels.

Algorithm 1 nD CNN operated by matrix calculation

Require: input tensor x, number of filters F , kernel size Ker = 3,
stride S = 1

1: Let [B, In, In−1, ..., I1, C] = x.shape
2: Padding 0 at the start and end of n dimensions of the input tensor

for Pad number:

Pad =

⌊
Ker

2

⌋
(4)

3: Create filters variable w of shape:

w_shape = [Ker]× n+ [C] + [F ] (5)

4: Create bias variable b in the shape of [1, F ]
5: Compute output shape [B,On, On−1, ..., O1, F ], where

Oi =

⌊
(Ii + 2× Pad−Ker)

S
+ 1

⌋
(6)

6: Flatten the w tensor into a 2D matrix Mfilter of shape [Kern ×
C,F ]

7: Extract patches from the padded input tensor input′, then form
a 2D matrix Minput of shape:

[B ×On ×On−1 × ...×O1,Kern × C] (7)

8: Compute the output matrix:

Moutput = ReLU(Minput′ ×Mfilter + b) (8)

the shape of Moutput is [B ×On ×On−1 × ...×O1, F ]
9: Reshape the Moutput into the tensor output of shape

[B,On, On−1, ..., O1, F ]
10: return output

The number of filters is represented by the parameter F . It is also
the number of output channels. The kernel size of each filter is repre-
sented by the parameter Ker. If not given, the default is 3. To make
the shape of the kernel automatically modified with dimension n, the
length of the convolution kernel is the same in each dimension. For
example, the kernel size in 2D convolution is [3, 3], and in 3D it is
[3, 3, 3].

The stride is represented by the parameter S. If not given, the de-
fault is 1. The mode ‘SAME’ is used to pad the input tensor. This
avoids the issue where the number of convolutional layers is affected
by the size of the game board, leading to an unreasonable network
structure.

The convolution calculation is actually taking the dot product with
the kernel and the input patch. This can be accelerated by converting
to matrix multiplication. Firstly, we need to expand each patch region
of the convolutional part of the input image into a row vector. These
row vectors together form a two-dimensional matrix in the sequence
in which the convolution kernel slides. Then reshape the convolu-
tion kernel into a 2D matrix, and multiply the input matrix and the
convolution kernel matrix to get the output matrix. Finally, reshape
the output matrix into the desired size tensor. The detailed process is
shown in Algorithm 1.

It is worth mentioning that, although this algorithm provide a uni-
fied convolutional neural network layer applicable for any dimen-
sion, it is still limited in practical use, due to the high-dimensional
convolution kernel that leads to a sharp increase in the number of
parameters to be trained. For higher-dimensional cases, we only ap-
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Table 1: Performance of GAZ

Game Game type Performance against/compared to UCT Evaluation

Connect-4 2-player, zero-sum, turn-based 70% winning rate outperform significantly
Breakthrough 2-player, zero-sum, turn-based 100% winning rate outperform significantly
Pacman 3p 3-player, mixed co-op, simultaneous 4.4 / 25 points 3.2 / 25 points slightly better
Babel 3-player, cooperative, simultaneous 12.5 / 25 points 19 / 25 points worse

ply this algorithm to TicTacToe 3d. For a 3× 3× 3 chessboard, this
algorithm is also feasible and effective.

3.2 Overall Framework

The framework of the proposed agent is roughly the same as GAZ.
The main differences are in the input and the structure of the network,
as shown in Figure 2. This agent first automatically extracts the base-
type propositions from all nodes of the proposition network. They
are then classified into two classes: CNN class and FC class, using
the sequential information extracted from GDL. Propsitions in the
CNN class go through a series of convolutional layers, and are then
flattened into a one-dimensional vector. The propositions of the FC
class are jointly input to the downstream fully connected layers.

It should be noted that the proposed agent is a general game player,
as it can automatically set relevant parameters in the network without
human intervention, according to the rules of different games, such
as the number of filters in the convolution layer, the number of hidden
layers in the MLP layer, etc. For readability, we illustrate the agent
with the game TicTacToe.

3.3 Input of the Network

In contrast to GAZ, which uses all types of propositions in PropNet,
the proposed agent only utilizes base-type propositions, resulting in a
significant reduction in network input. The consideration behind this
is that an optimal strategy is only related to the current state, and the
existence of unimportant propositions could make the network more
complex and interfere with learning. Moreover, a comparison of the
number of base-type and all-type propositions in different games is
shown in Figure 3.
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Figure 3: The number of inputs to our agent compared with the GAZ.
Only the base propositions are used in our agent.

3.4 Exploiting Topology Information in GDL

For classification and ordering, the proposed agent firstly uses regular
expressions to obtain the index information in GDL for all proposi-
tions. We illustrate this process with the game TicTacToe.

Table 2 lists each basic proposition id and its GDL description
with a total of 29 items. The GDL item true (cell 1 1 b) says that in

the current state, the cell with index (1, 1) is marked ‘b’. Item true
(control oplayer) means the current state is the turn of player ‘o’. We
next show how to automatically classify and rank these items.

First classify the items. Using the regex:

(? <= /s)/d+ (? = /s) (9)

to select all numbers in the items and then delete them, if the rest
are exactly the same, group the items together. If a base proposition
includes two or more digits, it is classified as the CNN class. Other-
wise, a base proposition with no digit or only one digit is classified
as the FC class. It should be noted that the regular expression used
here is identical for all games and doesn’t require any game-specific
knowledge, which complies with the GGP principle.

The number of categories in the CNN class corresponds to the
number of channels of input tensor. It specifies the number of planes
needed to describe the current board state. For example, in TicTac-
Toe, the 29 base propositions are automatically divided into 5 cate-
gories:

1. true (cell b)
2. true (cell o)
3. true (cell x)
4. true (control oplayer)
5. true (control xplayer)

A total of 27 base propositions of the first three categories are used as
the CNN class, and the base propositions of the last two are used as
the FC network part. The three categories input to the CNN network
part represent the feature planes with states b,o,x respectively.

Then, sort the base propositions in the CNN class. The index of
each base proposition in the plane corresponds to the digits in GDL,
as extracted via regular expressions. Specifically, the two digits act as
two-dimensional indexes, representing height and width. The three
digits act as three-dimensional indices, representing depth, height,
and width. Considering that some game indexes start from 0, adjust
the index corresponding to each proposition accordingly. In this way,
sort all base proposition ids according to the obtained index.

Finally, input the values of all the sorted propositions into the net-
work. The base proposition in the FC class can be input into the FC
network layer in any fixed order.

3.5 Network Structure

This section explains how the proposed agent automatically design
convolution kernels and specific parameters in the network based on
the topology information obtained.

For the convolutional layer, we fix the side length of the convolu-
tion kernel to 3 (the kernel size in 2D is 3 × 3, in 3D is 3 × 3 × 3,
. . . ). Three convolutional layers are used. The number of convolution
kernels in the latter layer is twice of that in the previous layer. The
number of filters in first layer F1 is determined by the size of the
board and the number of input channels of the CNN, which is equal
to the power of 2 closest to maxi(Dim(i))× channels, for integer
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Figure 2: The overall framework of our agent.

Table 2: The ids and GDL of all base-type propositions in game TicTacToe

246 ( true ( cell 1 1 b ) ) 172 ( true ( cell 1 1 o ) ) 258 ( true ( cell 1 1 x ) )
158 ( true ( cell 1 2 b ) ) 242 ( true ( cell 1 2 o ) ) 180 ( true ( cell 1 2 x ) )
155 ( true ( cell 1 3 b ) ) 35 ( true ( cell 1 3 o ) ) 263 ( true ( cell 1 3 x ) )
234 ( true ( cell 2 1 b ) ) 245 ( true ( cell 2 1 o ) ) 145 ( true ( cell 2 1 x ) )
59 ( true ( cell 2 2 b ) ) 210 ( true ( cell 2 2 o ) ) 197 ( true ( cell 2 2 x ) )
300 ( true ( cell 2 3 b ) ) 182 ( true ( cell 2 3 o ) ) 225 ( true ( cell 2 3 x ) )
274 ( true ( cell 3 1 b ) ) 232 ( true ( cell 3 1 o ) ) 214 ( true ( cell 3 1 x ) )
13 ( true ( cell 3 2 b ) ) 276 ( true ( cell 3 2 o ) ) 127 ( true ( cell 3 2 x ) )
207 ( true ( cell 3 3 b ) ) 209 ( true ( cell 3 3 o ) ) 46 ( true ( cell 3 3 x ) )
108 ( true ( control oplayer ) ) 265 ( true ( control xplayer ) )

k. Formally:

F1 = 2k ≈ max
i

(Dim(i))× channels, k ∈ Z+ (10)

where channels means the number of planes representing the state
features. Dim(i) represents the length of the i th dim. Tabel 3 shows
the input shape and the number of filters of the three convolutional
layers for testing games. It should be noted that the agent generates
calculations for all data in the table automatically. To make the output

Table 3: CNNs structures designed by the agent for testing games.

Input shape Filters num for 3 layers
Connect-4 7× 9× 4 32 64 128
Breakthrough 6× 6× 2 16 32 64
Pacman 3p 8× 8× 4 32 64 128
Babel 8× 17× 1 16 32 64
ConnectFour 3p 6× 8× 4 32 64 128
TicTacToe 3d 3× 3× 3× 3 8 16 32

shape the same as the input, the number of filters used for Conv4 in
Figure 2 is set to channels.

The MLP layer is designed as follows: it is first mapped to a fully
connected layer of the same size, then the nodes of fully connected
layers are halfed each time, until it falls below the size of the game
board: boardsize =

∏
i Dim(i).

The current layer is stored as the common head state for all play-
ers. Then starting from the head state, we build a fully connected
layer for each role to estimate the action probability p, and two fully
connected layers to estimate the value v, where the nodes of the hid-
den layer is boardsize. All network layers use ReLU activation,

the final output action probability used is Softmax, and the output
value used is Sigmoid.

4 Experiments

4.1 Evaluation Method

We evaluate the our agent’s performance by playing against the UCT
benchmark, whose variants have been state-of-the-art over many
years [33, 34, 35, 36], and compare the result with GAZ. Moreover,
we also conduct a direct comparison of our agent with GAZ. We do
not compare with agents built on other systems, such as Ludii [10].
On the one hand, cross-platform competitions are not supported by
the current system. On the other hand, the degree of code optimiza-
tion varies between systems, so a direct comparison is not fair.

Four different types of games were considered in GAZ: Connect-
4, Breakthrough, Pacman 3p and Babel. We evaluate our agent in all
the four games. In addition, to show the generality of our agent, we
conduct experiments in the game ConnectFour 3p and TicTacToe 3d.

Each player has 1 second simulation time per step. The win rate
for each game is calculated from 50 games (two players each go first
25 rounds). We do not set random seeds in all the experiments. Each
network was trained 3 times, starting with a randomly initialized net-
work for each game. The evaluated data represents the average of
three training sessions. The experiments were all run on an Intel Core
i7 running at 3.2GHz and used a NVIDIA GeForce GTX 1060 6GB
graphics card2.

2 https://github.com/littleWangyu/CNN-Approach-to-GGP
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Figure 4: Comparison of training time between our agent and GAZ.

4.2 Results and Analysis

The training time of GAZ and our agent for different games is shown
in Figure 4. The dotted line is the training time of GAZ, and the
solid line of the same color represents ours. It can be seen that the
training time of our agent is significantly reduced, since the fact that
our neural network has a much smaller number of inputs.

It should be noted that, the training time requied in our agent is
still more than the 10 minute startclock in GGP competitions, which
is why our agent is currently unable to participate in the GGP com-
petition. This could be accelerated by using multiple processes to
collect data, or even parallelizing the MCTS algorithm [37]. In ad-
dition, it is actually natural and necessary to provide a general agent
with enough time to learn a new game.

Figure 5: Win rate against UCT in Connect-4.

Furthermore, We conduct ablation experiments on game Connect-

4 to demonstrate the effect of using only base-type propositions as
network input. As shown from Figure 5, GAZ that only uses the base-
type proposition as the network input has increased the winning rate
against UCT benchmark by nearly 10% compared with the previous
one. And, with our CNNs, the winning rate can reach 95%.

We then evaluate the performance of our agent and GAZ against
UCT on game Breakthrough. The experiment found that our agent
and GAZ can beat UCT with a 100% winning rate after training. To
further compare them, we relax the simulation time of the opponent’s
UCT to 4s per second, while our agent and GAZ are still 1s. The
result is shown in Figure 6. As can be seen, when playing against
the more powerful UCT, our agent can still achieve complete victory,
while the GAZ winning rate is about 90%.

For DRL-based agents, under the same experimental conditions,
it is more reasonable to compare two agents with the same training

Figure 6: Win rate against UCT in Breakthrough.

time than with the same amount of self-play. As a result, we also
evaluate our agent against GAZ directly in the above two 2-player
zero-sum games with a fixed training time limit.

Figure 7: Win rate against GAZ under the same training time in
Connect-4.

Figure 8: Win rate against GAZ under the same training time in
Breakthrough.

Figure 7 and Figure 8 show the win rate of our agent directly
against GAZ. After a certain training time, our agent can beat GAZ
with a 100% win rate in both Connect-4 (after 60 hours) and Break-
through (after 18 hours).

Pacman 3p3 is a three-player, mixed cooperative / zero-sum, non-
board game. One player controls Pacman and two other players,
each controlling a ghost, collaborate against the Pacman. Experi-
ments show that before being caught by two UCT-played ghosts, our

3 http://games.ggp.org/base/games/pacman3p/pacman3p.kif
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Figure 9: Total score over 25 games when playing as Pacman in Pac-
man 3p.

agent-played Pacman scored higher than GAZ. Figure 9 shows the
Pacman’s total score over 25 games. Since the ghosts caught Pacman
on all runs and scored full points, the scores for the ghosts are not
shown in the figure.

Figure 10: Score for each player over 25 games in Babel.

Babel4 is a tower building game for 3 people. It is a pure coopera-
tive, simultaneous, non-board game. Each player gets the same score
(between [0, 1]) at the end of each game.

Figure 10 shows that our agent achieves a perfect score stably after
5000 rounds training, significantly outperforming UCT and GAZ.
The game process, which is visualized in the appendix, shows that
different players played by our agent have learnt to work together, so
that they can get full marks, while those played by UCT and GAZ
have not.

ConnectFour 3p5 is a 3-player, assistant variant of the game
Connect-4. The three roles are ‘Red’, ‘Yellow’ and ‘Blue’. ‘Red’ is
the ‘Yellow’ assistant, and ‘Yellow’ is the ‘Blue’ assistant. A line of
four cells is worth 100 points to the role that fills them first, 50 points
to the assistant, and 0 points to the failure.

We observe the player’s performance through the score of ‘Red’,
this is because ‘Red’ has no assistant and is the most disadvantaged
side. Figure 11 shows the total score over 25 games when playing as
‘Red’. According to experiments, our agent outperforms GAZ, while
GAZ outperforms the UCT benchmark.

TicTacToe 3d6 is a two-player simple game in 3D space. Both
our agent and GAZ can quickly learn the strategy of being the first

4 http://games.ggp.org/dresden/games/babel/rulesheet.kif
5 http://games.ggp.org/base/games/3pConnectFour/3pConnectFour.kif
6 http://games.ggp.org/base/games/tictactoe_3d_2player/tictactoe_3d_2player.kif

Figure 11: Total score over 25 games when playing as ‘Red’ in Con-
nectFour 3p.

to win. As a back-hand, they also have a strong counterattack abil-
ity when playing against the UCT benchmark. Moreover, when they
play against each other directly, it is a draw.

5 Conclusion and Discussion

This paper has proposed a convolutional neural network approach to
GGP, considering that fully connected networks in GAZ could not
utilize the semantic and topology information present in game de-
scription language (GDL). We first generalize CNNs from two to
arbitrary spatial dimensions, and then use them to implement an ex-
tended version of AlphaZero for GGP. Following that, using generic
regular expressions, we extract the ordering and semantic informa-
tion in GDL, allowing CNNs to be applied to GGP. The network
structure of the proposed agent can be automatically adjusted ac-
cording to game rules, making it more adaptable and suitable for
a wide range of games. Furthermore, only base propositions repre-
senting the current game state in the propositional network are used
as neural network inputs, greatly accelerating network training. Ex-
perimental results indicate that the proposed agent outperforms the
UCT benchmark and GAZ in all games tested, with a more efficient
training speed.

Multi-dimensional convolution has been widely used in the fields
of signal processing, image processing, and computational mathe-
matics [30, 31], but before our work, only 2D and 3D convolutions
had been used in neural networks. To the best of our knowledge,
this work is the first one which uses high-dimensional convolution in
neural networks.

There is much work to be done in the future. Firstly, the proposed
agent could be improved with further fine-tuning, e.g., adjusting the
number of filters, network layers, and simulations in the MCTS dur-
ing training. Secondly, the proposed agent is currently limited to pro-
cessing GDLs that represent location information numerically. For
games such as chess that use a letter and a number to represent a
cell, the game rules need to be manually rewritten first. However,
this could be addressed by identifying the succession relationship
in GDL, for example, ‘(succ a b)’, as described in [38]. Thirdly,
while the agent is no longer limited to playing 2D, two-player, asyn-
chronous board games, it is still constrained to games with a fixed
plane size and a regular, grid-like structure. Further work can be done
to remove this restriction and allow the agent to play games with
more flexible structures. Lastly, exploring other scenarios where n-
D CNNs could be applied could also be an interesting avenue for
future research.
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