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Abstract. Cell type classification serves as one of the most funda-
mental analyses in bioinformatics. It helps recognizing various cells
in cancer microenvironment, discovering new cell types and facilitat-
ing other downstream tasks. Single-cell RNA-sequencing (scRNA-
seq) technology can profile the whole transcriptome of each cell, thus
enabling cell type classification. However, high-dimensional scRNA-
seq data pose serious challenges on cell type classification. Existing
methods either classify the cells with reliance on the prior knowledge
or by using neural networks whose massive parameters are hard to
interpret. In this paper, we propose two novel attention-based mod-
els for cell type classification on single-cell RNA-seq data. The first
model, Cell Feature Attention Network (CFAN), captures the fea-
tures of a cell and performs attention model on them. To further
improve interpretation, the second model, Cell-Gene Representation
Attention Network (CGRAN), directly concretizes tokens as cells
and genes and uses the cell representation renewed by self-attention
over the cell and the genes to predict cell type. Both models show ex-
cellent performance in cell type classification; additionally, the key
genes with high attention weights in CGRAN indicate and identify
the marker genes of the cell types, thus proving the model’s biologi-
cal interpretation.

1 Introduction

Cell type classification can identify the cell type of a cell based on its
gene expression. Single-cell RNA-sequencing (scRNA-seq) [25] can
profile the whole transcriptome within individual cells, which brings
unprecedented opportunities for cell type classification [19, 23, 4].
As being crucial in recognizing tumor cells in cancer microenviron-
ment, discriminating diverse cell states in cell differentiation and fa-
cilitating many downstream tasks such as cell-cell communication
[18], cell type classification plays a key role in understanding dis-
eases and biological processes.

Despite the surging single-cell analytical methods, cell type classi-
fication remains challenging. Some methods heavily rely on the prior
knowledge of reference datasets, such as scmap [17], or marker genes
[35], which are the genes that have distinguishable expression lev-
els in different cell types. However, defining marker genes for var-
ious cell types requires extensive biological experiments which are
effort-consuming [1]. Some cell types’ marker genes even remain
unknown. Another challenge comes from the high dimensionality
and high sparsity of the scRNA-seq data. The limitation of the se-
quencing technology usually causes a large percentage of zeros or
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dropouts, up to 95% for instance [24, 15], in the data, which eas-
ily misleads any analysis and makes it hard to discriminate different
cells.

Neural networks are versatile in many tasks. For instance, neural
networks with supervised learning can automatically extract useful
patterns for classification, thus eliminating the need for prior knowl-
edge of the ’marker genes’; representation learning can reduce the
dimensionality and data sparsity. However, existing neural-network-
based methods for cell type classification are difficult to interpret,
making it hard to understand the knowledge gained from the models.
Actually, biologists are also concerned about the underlying mecha-
nisms for distinguishing two cell types besides simply correctly as-
signing all cells as ground-truth. A model that is both accurate and
interpretable, providing insights into the underlying biological mech-
anisms, is in urgent demand.

The self-attention mechanism has achieved great success in han-
dling diverse types of data including sentences [28, 11], graphs [29]
and images [12] due to its outstanding performance and vivid in-
terpretability. Usually, the self-attention layer takes a sequence of
tokens as input, and renews every token’s ’value’ by an attention-
weighted aggregation over all token values, where the attention
weights are decided by the ’query’ of the target token and the ’keys’
of all tokens. The attention weights have been shown to be a strong
indicator of the affinities among the tokens.

However, applying the self-attention mechanism to cell type clas-
sification still faces obstacles since it requires tokens of cell fea-
tures. In this paper, we first propose Cell Feature Attention Network
(CFAN) as a basic mechanism applying self-attention mechanism to
classify cells. In CFAN, several feature extractors are first built to
extract different cell features from the raw transcriptomic profile of
the cell. By viewing the features as a set of tokens, we deploy a self-
attention layer to update these features. Finally, a convolution oper-
ation is performed on the updated features to predict the cell type of
the given cell. Experiments show that CFAN is among the best mod-
els in classification accuracy, while it is still hard to produce biolog-
ical insights from the attention weights as the tokens lack concrete
meanings.

To enhance interpretability further, the second model Cell-Gene
Representation Attention Network (CGRAN) is developed by con-
cretizing every token as a biological entity, specifically, a cell or a
gene. In detail, CGRAN first generates embedding vectors for every
gene and cell by factorizing the scRNA-seq matrix. Given a cell to
be classified, a token sequence, with the first token being the cell and
the following ones being the genes, is fed to self-attention layers. The
cell vector renewed by the attention layers is used for the final clas-

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230557

2525



sification. Besides the good classification performance of CGRAN,
it is also discovered that for a specific cell type, the genes having
large attention weights to the cells match well with the marker genes.
Furthermore, by analyzing the attention weights among the genes,
one can gather genes with high attention weights into different ’gene
sets’, indicating their close associations. These insights into the at-
tention weights demonstrate the strong interpretability of CGRAN.

The main contributions of our article are as follows. (1) The self-
attention mechanism applied in CFAN learns cell-type-specific pat-
terns from the features of the cell, which achieves a performance
gain over existing methods. (2) By concretizing the input sequence
tokens as biological entities, CGRAN learns the attention weights
among the genes and the cell, which enables direct biological in-
terpretation from the model’s attention weights. (3) Local attention
technique is proposed in CGRAN to make attention weights distin-
guishable, which helps to increase the classification accuracy. (4) Ex-
periments show that both CFAN and CGRAN have ability to discover
novel cell types and strong transferability across different datasets
with common genes and cell types.

2 Related Work

Typical solutions for cell type classification make use of prior knowl-
edge such as reference datasets or marker genes. SingleR [3] anno-
tates cells by correlating single-cell transcriptomes with a reference
dataset using Spearman coefficient and map cells to the cell types in
reference dataset. Scmap [17] builds cluster in reference dataset and
calculates three similarity measures (Pearson, Spearman and cosine)
between cells in the target dataset and cluster centroids in reference
datasets. Then it assigns cells in target dataset to the cell type with the
highest similarity value. SCINA [35] makes use of marker genes and
implement an expectation-maximization model for cell type classifi-
cation. However, models based on reference datasets may fail to clas-
sify cells when some rare target cell types do not appear in reference
datasets. Marker gene based methods require high quality markers
for every cell type in the dataset, which may be diverse in different
marker genes database. Also, when it comes to rare cell types, it is
hard to provide sufficient marker genes.

As neural networks have shown strong ability in diverse areas,
many methods deal with the noisy and high-dimensional single-cell
RNA-seq data by using neural networks. ACTINN [22] employs a
neural network with three hidden layers to predict cell type. EpiAnno
[9] uses a Bayesian neural network to embed the cells into a latent
space, where the cells follow a Gaussian mixture distribution. Cell
BLAST [7] projects the cells from the high-dimensional transcrip-
tomic space to a low-dimensional cell embedding space, and then
search for similar cells. OnClass [32] embeds cell types into a low-
dimensional space, maps each cell into the region of its cell type and
classifies cells into different cell types in Cell Ontology. ScCapsNet
[31] designs a deep learning architecture of capsule networks using
dynamic routing and analyzes the internal weights among capsules,
while it is hard to effectively interpret the biological meanings hidden
in the parameters. By contrast, the parameters in our model CGRAN
can be easily interpreted as rich biological information.

3 Methods

Given a sparse scRNA-seq matrix Mc×g depicting the expression
values of g genes in c cells, with some of the cells already annotated
with its ground-truth cell type from the set T = {t1, t2, ..., tn} con-
taining n different cell types, cell type classification is to assign the

remaining cells to their correct cell types. In this section, we elabo-
rate on two attention based models, namely the Cell Feature Atten-
tion Network (CFAN) and Cell-Gene Representation Attention Net-
work (CGRAN) for cell type classification on scRNA-seq data.

3.1 Cell Feature Attention Network

Figure 1: Cell Feature Attention Network.
The framework of Cell Feature Attention Network (CFAN) is

shown in Figure 1. Given the vector e ∈ Rg of the raw gene ex-
pression values of a cell, CFAN extracts hidden features from e by
using u feature extractors. Each feature extractor is a dense layer fol-
lowed by ReLU activation and L2 layer normalization. Formally, the
i-th feature f i is formulated as:

f i = LayerNorm(ReLU(Wie+ bi)) (1)

where Wi and bi are the weight and the bias of the dense layer from
the i-th feature extractor.

After obtaining u cell features {f1,f2, ...,fu} of the cell, CFAN
utilizes a single-head self-attention layer to renew these features. It
transforms every feature vector f i into a query vector qi, a key vec-
tor ki and a value vector vi. Let Qu×d, Ku×d and Vu×m be the ma-
trices stacked from {qi}

u
i=1, {ki}ui=1 and {vi}ui=1, with d being the

dimension of the query and the key vectors, m being the dimension
of the value vectors. Then the output matrix Fu×m can be written as:

F = LayerNorm(softmax(
QKT

√
d

)V) (2)

At last, we input F to a 1D convolution layer followed by a fully
connected layer, which finally generates the possibilities of a cell
belonging to different cell types.

Here we examine the hidden parameters of CFAN by visualizing
these parameters trained on the dataset GSE70580. The heatmaps
of the attention weights and output features are illustrated in Figure
3. It can be seen that cells from the same cell type share a similar
pattern in both attention weights and output feature matrix, and the
patterns of different cell types are distinguishable from each other. It
suggests that the hidden parameters, especially the attention weights,
could serve as a reasonable indicator for biological knowledge, as
discussed in our second model CGRAN.

3.2 Cell-Gene Representation Attention Network

Here we present Cell-Gene Representation Attention Network
(CGRAN) that concretizes the attention tokens as the cells and the
genes. The architecture of CGRAN is presented in Figure 2. CGRAN
first learns the representation vectors for cells and genes through ma-
trix factorization on the scRNA-seq matrix M. Then, for each cell,
a token sequence with the first one being the cell itself and the re-
maining ones being the genes are fed to the following multi-head
local attention layers. The final output of the cell token is used for
the classification. The details of CGRAN are as follows.
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Figure 2: Cell-Gene Representation Attention Network.

Figure 3: The attention weights and the output features produced by
CFAN. On GSE70580, three random cells are sampled for each cell
type, with their attention weights shown in the left three columns and
the output features shown in the right three columns.

3.2.1 The Embeddings of Cells and Genes

The model first obtains the cell embedding vectors Ac×m and gene
embedding vectors Bg×m by factorizing the scRNA-seq matrix M,
where m is the embedding dimension. Two different ways of matrix
factorization have been evaluated.

The first way is Singular Value Decomposition (SVD), which fac-
torizes the input scRNA-seq matrix as:

M = XΣYT (3)

where Xc×c and Yg×g are real orthogonal matrices, and Σc×g is
a rectangular diagonal matrix with r non-negative real numbers in
descending order on the diagonal, where r is the rank of M. Here
we denote Σs as the rectangular diagonal matrix of size c × g
with the diagonal values being the square roots of the values in Σ.
Then, cell SVD vectors can be obtained as XΣs and gene SVD
vectors as YΣs

T . We choose the first m dimensions from the
SVD vectors since they correspond to top m biggest singular val-
ues. Therefore, the final embedding vectors for cells and genes are
A = (XΣs):,:m,B = (YΣs

T ):,:m.
The second way of matrix factorization is by gradient descent. It

first randomly initializes the cell embedding vectors Ac×m and the
gene embedding vectors Bg×m, and optimizes them by gradient de-
scent using Mean Square Error (MSE) loss:

argmin
A,B

MSE(M,ABT ) (4)

Matrix Factorization using Gradient Descent (GD) is only adopted
as comparison in Table 4, and the embeddings obtained by GD are

normalized. As GD-based method may be influenced by the initial-
izations of neural networks, we recommend SVD-based method for
matrix factorization.

3.2.2 Multi-Head Local Attention

After obtaining the embedding vectors of cells and genes, an input
sequence can be generated based on the learned embedding vectors.
Specifically, given cell i in M, the input embedding sequence S =
{s0, s1, ..., sg} can be presented as:

s0 = Ai,:, sj = Bj,: + s0, j ∈ {1, 2, ..., g}, (5)

where s0 represents the cell token and {sj}gj=1 represents the g gene
tokens with regard to this cell.

The sequence is then fed to two sequential attention blocks. Each
block consists of a multi-head attention layer, a residual connection
using fully connected network and L2-normalization on the outputs.
The attention blocks update these embedding vectors and more im-
portantly, learn the hidden relationships among the cells and genes
by renewing the attention weights among them.

However, the problem of over-fitting arises when using fully-
attention on a long sequence, leading to a low classification accu-
racy. To be specific, let Q(g+1)×d and K(g+1)×d be the queries and
the keys of {s0, s1, ..., sg}. Then the fully-attention weight matrix
can be written as softmax(QKT

√
d

). Due to large g, the softmax opera-
tion will be performed on a large number of tokens, causing most of
the attention weights very close to zero. Therefore, the fully attention
mechanism may learn distorted relationships among the entities.

To solve this problem, local attention mechanism is introduced.
The gene tokens are first divided into several groups, and only the at-
tention weights among the genes from the same group are preserved,
whereas those from different groups are neglected. Two different
ways are proposed for the grouping. The first way is uniform group-
ing, where every hundred genes in M are treated as a group, which is
simple for implementation. Besides, every group has the same num-
ber of genes, making the blocks of attention weights comparable with
each other. The second way groups the genes by K-Means clustering
algorithm and is named as gene cluster grouping. This grouping strat-
egy is based on the similarities of genes’ expression. However, it may
lead to an imbalanced grouping since the size of the gene groups can
be of great difference.

To implement the local attention mechanism, a mask matrix
H(g+1)×(g+1) is applied to the attention weights softmax(QKT

√
d

).
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Let Group(i, j), i, j ∈ {1, 2, ..., g} be a Boolean function which
equals 1 when the i-th gene token and the j-th gene token are from
the same group, and 0 otherwise. Then, H can be written as:

Hi,j =

{
1, if i = 0 or j = 0

Group(i, j), else
(6)

The output F of a single-head local attention is formed as:

F = LayerNorm(H� softmax(
QKT

√
d

))V, (7)

where � denotes Hadamard product, LayerNorm(·) is L2-
normalization and V are the values of the tokens. The local atten-
tion preserves the weights between: 1) the cell and all the genes; 2)
the genes from the same group. In CGRAN, multiple heads are used
in each local attention block. The final output embedding of the cell
token will be passed into a fully connected layer to generate the pos-
sibilities of a cell belonging to different cell types.

4 Experiments

In this section, we illustrate the interpretability of CGRAN. Then,
the classification performance of CFAN, CGRAN and other base-
line methods will be evaluated. Finally, transferability across diverse
datasets and the ability to discover novel cell types of CFAN and
CGRAN will be evaluated.

4.1 Datasets and Settings

Datasets. Nine scRNA-seq datasets are used for experiments,
namely CRC [33], GSE70580 [5], GSE72056 [26], GSE75688 [10],
GSE96993 [2], NSCLC [14], PBMC 1, Spleen human [6] and Spleen
mouse [6]. Table 1 presents the details of the datasets. Every dataset
is first preprocessed, and the top 1000 variable genes are consid-
ered as the input M. We use five-fold cross validation on all of our
datasets. 80% of the cells are used for training and validation, and
the rest 20% for testing. Evaluations on classification are conducted
for three times.

Table 1: Descriptions of Single-Cell RNA-Seq Datasets.

Dataset Cell
Number

Gene
Number

Cell Type
Number

CRC 8496 12547 20
GSE70580 647 26087 4
GSE72056 4636 22280 7
GSE75688 515 27420 5
GSE96993 334 10827 4

NSCLC 9051 12415 16
PBMC 5356 14218 5

Spleen human 4406 14064 7
Spleen mouse 4432 12699 7

Settings. For CFAN, the number of feature extractors is set to
u = 16. Each feature vector fi has 128 dimensions. The dimen-
sion of the attention layer output embedding is m = 16. A dropout
rate of 0.2 is used on all layers to prevent over-fitting. For CGRAN,
the dimension of both cell embedding and the gene embedding is set

1 https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.
0/pbmc6k

to 128. Ten heads are used in both local attention blocks. The dimen-
sions of output embeddings in the first and second block for each
head are respectively 8 and 4. The dropout rate of all layers is set to
0.1. Cross entropy loss is used as loss function and adam optimizer
is adopted with learning rate of 0.0001.

4.2 The Interpretation of CGRAN

As mentioned, CGRAN is intended for providing biological insights
from the learned attention weights among the cells and the genes.
In this part, the crucial interpretability of CGRAN will be addressed
from three perspectives as follows.

4.2.1 Identification of Marker Genes

It is found that for the cells from a specific cell type, there exist cer-
tain genes that have distinctively large attention weights with these
cells, and match with the known marker genes of this cell type.

Specifically, for each cell and its input sequence S =
{s0, s1, ..., sg}, consider the attention weights of the gene tokens
{s1, ..., sg} to the cell tokens s0 in the first attention block of
CGRAN (summing up attention weights of all attention heads). A
gene is ’picked’ by a cell if it is among the top-50 genes with the
highest attention weights to the cell. If a gene is picked by most of
the cells from a certain cell type exclusively, then the gene is called
as a ’highly differential gene’ of this cell type.

Figure 4(a) displays the highly differential genes found in PBMC
dataset. Given a gene and a cell type, the size of the circle reflects the
proportion of the cells in which the gene expresses in this cell type,
while the color of the circle corresponds to the mean expression val-
ues of the gene in this cell type. As observed, for a gene exclusively
picked by a cell type according to the high attention weights, its aver-
age expression level in this cell type tends to be high, indicating high
probability of being marker gene of the cell type. Actually, most of
the highly differential genes displayed in Figure 4(a) match with the
ground-truth marker genes provided by CellMarker [34] and Panglao
database [13], proving that CGRAN has a strong capability of iden-
tifying the marker genes by using the learned attention weights be-
tween the cells and genes.

To further illustrate the effectiveness of using attention scores
among cell embeddings and gene embeddings for identification of
marker genes, we also compare the interpretability of CGRAN with
that of CFAN by using input perturbation. Given CFAN trained on
PBMC, for each cell, the negative partial derivatives of the loss func-
tion on the expression input are calculated. Then for every cell type
ti, the partial derivatives of cells belonging to it are averaged to a
vector fi containing g elements, with each revealing the contribution
of a certain gene to the accurate classification of ti. Figure 4(b) visu-
alizes the contribution of the genes to the classification of the five cell
types on PBMC. Some of the genes, such as CD3D,CD3E for T cells,
GZMB for NK cells revealed by lighter colors in Figure 4(b) are in-
deed marker genes for their cell types. However, Figure 4(a) indicates
that CGRAN can provide more clear interpretations about potential
markers, demonstrating the necessity of using attention scores to find
markers.

4.2.2 Analysis on Gene Sets

The attention weights among the genes may provide rich information
about the relationships of the genes. Specifically, genes with high at-
tention weights to each other may have similar functions and close
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Figure 4: (a) The highly differential genes in PBMC chosen by the attention weights of CGRAN. (b) The contributions of the genes to the cell
type classification on PBMC revealed by input perturbation on CFAN.

Figure 5: (a) The attention weights among the highly differential genes in PBMC. (b) The output embedding vectors of all cells visualized by
t-SNE on PBMC.

associations. Figure 5(a) illustrates the attention weights among all
highly differential genes identified by CGRAN in PBMC. The highly
differential genes of the same cell type tend to have large attention
weights to each other. Moreover, from literature search, we find that
genes with high attention to each other tend to have similar func-
tions and form a ’gene set’. For example, CD3D and CD3E are two
highly differential genes of T cells. The proteins encoded by CD3D
and CD3E are parts of the T-cell receptor/CD3 complex (TCR/CD3
complex) and are involved in T-cell development and signal trans-
duction [20].

4.2.3 Classification-Friendly Embedding

In CGRAN, the output embedding vectors of the cells catch the char-
acteristics of their cell types, which not only enable accurate classifi-
cation, but may also serve as high quality representations of cells for
other downstream tasks.

Figure 5(b) shows a t-SNE [27] visualization of the cell embed-
dings output by CGRAN. Every dot corresponds to a cell in the
dataset and is colored with its ground-truth cell type. Cells from the
same cell type are closely clustered, which accounts for the accurate
classification performance mentioned in the following part. There-
fore, CGRAN can effectively learn the classification-friendly embed-
dings for the cells.

4.3 Classification Performance

We first compare CFAN and CGRAN with baseline methods, in-
cluding Support Vector Machine (SVM), Random Forest (RF), sc-
CapsNet [31], ACTINN [22], Cell Blast [7], scVI [21], Moana [30],
XGBoost [8], scnym [16], singleR [3], scmap [17] and SCINA [35],
ranging from methods using prior knowledge to methods based on
machine learning and deep learning algorithm.

Table 2 and 3 collectively present the evaluations of all methods,
with top three ones on each dataset shown in bold. Each method is
tuned to its best. CFAN and CGRAN are in the top three on most
of the datasets, showing their robustness and excellent performance.
For SVM, we adopt scikit-learn implementation. In fact, SVM im-
plementation in scikit-learn adopts “one-versus-one” approach for
multi-class classification. As a result, classification accuracy of SVM
might be high due to the integration on all sub-models. For SCINA on
Spleen human and Spleen mouse datasets, lacking sufficient marker
genes for every cell type in these datasets leads to the unevaluated
results.

Performances of CGRAN under different settings are listed in Ta-
ble 4. From the table, we can see that SVD with Uniform Grouping
(SVD + UG) and matrix factorization via Gradient Descent with Uni-
form Grouping (GD + UG) have better performance than the other
two settings. CGRAN models with local attention have better perfor-
mances than fully attention, which proves the effectiveness of local
attention.

To further test robustness of different models, we split datasets
according to different ratios of training set and test set and evaluate

T. Wang et al. / Attention Based Models for Cell Type Classification on Single-Cell RNA-Seq Data 2529



Table 2: Accuracy of CFAN, CGRAN and baseline methods.

CFAN CGRAN SVM RF scCapsNet ACTINN Cell
Blast scVI Moana XGBoost

CRC 88.20% 88.12% 89.64% 81.47% 83.80% 86.29% 68.79% 84.71% 45.29% 85.47%
GSE70580 96.92% 97.30% 96.92% 94.15% 96.15% 96.15% 95.52% 91.54% 93.84% 96.15%
GSE72056 93.75% 92.78% 92.34% 91.59% 92.21% 92.56% 87.62% 91.59% 78.44% 93.53%
GSE75688 94.17% 93.20% 92.23% 92.23% 90.77% 91.26% 79.61% 92.23% 91.26% 93.20%
GSE96993 82.83% 80.59% 82.08% 82.08% 77.61% 79.10% 70.96% 80.60% 56.71% 79.10%

NSCLC 83.26% 84.10% 83.26% 79.01% 79.14% 82.72% 69.14% 83.99% 34.67% 83.05%
PBMC 97.94% 97.39% 97.57% 98.00% 97.94% 97.85% 91.86% 97.57% 97.94% 97.76%

Spleen human 91.49% 92.29% 91.26% 87.64% 90.28% 91.04% 87.20% 89.23% 39.45% 91.72%
Spleen mouse 96.73% 96.39% 97.29% 92.33% 95.38% 96.73% 91.54% 95.26% 95.60% 96.28%

Figure 6: (a) Classification accuracy with different test set proportion on CRC dataset. (b) Classification accuracy with different number of
genes.

Table 3: Accuracy of CFAN, CGRAN and baseline methods.

scnym singleR scmap SCINA
CRC 88.12% 80.52% 84.17% 43.56%

GSE70580 96.15% 97.69% 96.92% 61.70%
GSE72056 92.34% 86.85% 89.22% 79.80%
GSE75688 91.26% 87.37% 86.40% 81.55%
GSE96993 83.58% 73.13% 73.13% 50.93%

NSCLC 84.04% 76.03% 80.56% 26.13%
PBMC 97.39% 97.57% 96.82% 70.70%

Spleen human 92.06% 83.56% 84.80% -
Spleen mouse 96.27% 90.98% 94.81% -

Table 4: Accuracy of CGRAN under different settings, abbreviations
in table: matrix factorization via Gradient Descent (GD), Fully At-
tention (FA), Uniform Grouping of local attention (UG), gene Clus-
ter Grouping of local attention (CG).

Dataset GD + FA GD + UG GD + CG SVD + UG

CRC 77.58% 85.52% 84.88% 88.12%
GSE70580 95.38% 97.30% 96.92% 96.15%
GSE72056 88.68% 92.78% 92.45% 92.62%
GSE75688 86.40% 93.20% 93.20% 93.20%
GSE96993 73.13% 80.59% 79.10% 77.61%

NSCLC 75.15% 81.15% 79.95% 84.10%
PBMC 97.35% 97.39% 97.29% 97.13%

Spleen human 89.79% 91.38% 91.72% 92.29%
Spleen mouse 88.38% 95.15% 93.79% 96.39%

their performance. As shown in Figure 6(a), both CFAN and CGRAN
perform consistently well when test set proportion is smaller than 0.8
on CRC. Accuracy of CGRAN drops when the proportion of training
set becomes smaller because of its deep architecture. More data are
needed for training the embeddings of cells and genes as well as the
attention weights. Also, it is not a common option to set training set
proportion to 0.2 for cell type classification as cells from rare cell
type may never appear in training set.

Moreover, the number of genes input to CGRAN can also affect
its performance. Since the number of tokens is equal to the number
of highly variable genes plus one, the more genes are selected, the
more information of cells and genes are fed into the models. Due to
computational cost and limitations of devices, we here provide ex-
perimental results with gene number varying from 200 to 1000. As
shown in Figure 6(b), the more genes are involved, the higher clas-
sification accuracy becomes. In this paper, we use the top 1000 most
variable genes for cell type classification. If computationally feasi-
ble, we expect CGRAN will achieve higher classification accuracy
with more genes.

4.4 Experiments on Transferability of Models across
Datasets

In this section, we demonstrate transferability of our models across
datasets. GSE72056 and PBMC have genes and cell types in com-
mon, which makes transfer learning feasible across two datasets. Ta-
ble 5 lists the common cell types (T cells, B cells and NK cells)
between the two datasets, as well as the distinct cell types of each
dataset. Here we mainly focus on transferability of CGRAN.

We select the top 1000 most variable genes in PBMC which also
appear in GSE72056. Then CGRAN is pretrained on GSE72056 for
a nine-cell-type classification task, which includes all the cell types
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Table 5: GSE70256 and PBMC cell types.

Tumor
cells

T
cells

B
cells

Macrop
-hages

Endoth
-elial

Cancer-
associated
-fibroblasts

NK
cells

Monoc
-ytes

Megakary
-ocytes

GSE72056 1751 2066 515 126 65 61 52 0 0
PBMC 0 2660 696 0 0 0 583 1398 19

Table 6: Transferability of CGRAN from GSE72056 to PBMC.
Accuracy of the finetuned CGRAN model on PBMC dataset is
shown. Pretrained CGRAN model achieves an accuracy of 92.13%
on GSE72056. 80% of PBMC is used for finetune and 20% for test.

Epoch setting A setting B setting C

1 19.59% 29.66% 67.63%
25 74.72% 92.72% 96.18%
75 83.40% 97.39% 96.83%

in the two datasets. With regard to whether finetuning on the last
fully connected layer or the whole model, and whether initializing
the embeddings from GSE72056 or PBMC, we define three differ-
ent settings. Setting A takes embeddings using SVD on PBMC as
input into the attention blocks and finetunes on the last fully con-
nected layer; setting B takes the same embeddings as A while fine-
tunes on the whole CGRAN; setting C takes the gene embeddings on
GSE72056, whereas the cell embeddings are initialized by gradient
descent with the goal to minimize MSE loss. We finetune the whole
CGRAN model in setting C.

Table 6 shows the transferability of CGRAN from GSE72056 to
PBMC. Finetuning on the whole model leads to higher accuracy than
only finetuning the last FC layer. The finetuning process converges
faster as test accuracy exceeds 90% using only 25 epochs when fine-
tuning the whole model.

Furthermore, in setting C, the highly differential genes identified
by the pretrained model on GSE72056 match with that of PBMC
identified by the finetuned model. They both point out that CD3D,
CD3E, CD2 and CD3G are highly differential genes for T cells;
CD79A and CD79B are for B cells. These genes are well recognized
marker genes for T cells and B cells. This not only indicates that
CGRAN has strong transferability across datasets, but also proves
that CGRAN provides reasonable interpretations and helps to dis-
cover marker genes.

4.5 Novel Cell Type Discovery

We provide two strategies for CFAN and CGRAN to discover novel
cell types. The first strategy is visualizing the hidden cell embedding
vectors. Figure 7 provides visualizations of the cell embeddings pro-
duced by CFAN and CGRAN trained on four cell types other than
the type in blue. Although lacking the knowledge of the cell type in
blue, both models generate distinguishing embedding vectors for the
blue cell type that can be easily recognized and separated as a new
cell type.

The second strategy is based on statistical analysis. For each cell,
both CFAN and CGRAN output a softmax vector containing ele-
ments referring to the probabilities of the known cell types. A cell is
called ’ambiguous’ if the maximal element value of its softmax vec-
tor is below a threshold t. The proportion of the ambiguous cells in
the sample of cells from known types is first calculated as pref for
reference. When predicting the cell types for a new sample of cells,
the proportion of the ambiguous cells in the new sample is calculated

Figure 7: The t-SNE visualization of the PBMC cells produced by
training CFAN (left) and CGRAN (right) with one cell type masked.
as p. Novel cell types may exist in the new sample if p is significantly
higher than pref . This strategy is tested on GSE70580 with 4 cell
types as shown in Table 7. In each setting, one cell type is masked,
and both CFAN and CGRAN are trained on the remaining three cell
types. The threshold t is set to 0.995 and 0.7 for CFAN and CGRAN
(t can be set to a value that results in a small pref ). pref and p are
then calculated in the sample of the three known types and the un-
known type respectively. Both models produce significantly higher
p compared to pref , illustrating their effectiveness in detecting new
cell types.

Table 7: p and pref of CFAN and CGRAN on GSE70580.

Settings

Masked Type NK ILC1 ILC2 ILC3

Masked Cells 74 126 139 308
Known Cells 573 521 508 339

CFAN
pref (%) 5.24 5.95 6.50 43.07
p(%) 83.78 58.73 81.29 100.00

CGRAN
pref (%) 26.18 17.47 39.57 4.72
p(%) 50.00 71.43 63.31 75.00

5 Conclusion

In this article, we propose two attention-based models for single-
cell RNA-seq data cell type classification. Cell Feature Attention
Network has higher classification accuracy compared with previous
models. To further uncover the underlying mechanism behind the
black box and figure out which genes make most contribution to cell
type classification, we propose Cell-Gene Representation Attention
Network. CGRAN learns embeddings for every cell and every gene
as well as attention weights among cells and genes. With the help
of local attention, CGRAN achieves satisfying classification perfor-
mance on diverse datasets. By comparing the attention weights be-
tween genes and cells, CGRAN can find out highly differential genes
for different cell types, which match well with the acknowledged
marker genes. Moreover, by visualizing attention weights, we dis-
cover that highly differential genes from the same cell type have
closer relationships, which may be an indication of their interac-
tions in biological process. It is also worthy mentioning that CGRAN
not only has outstanding classification performance and model inter-
pretability, but also has strong transferability across different datasets
and capability of discovering novel cell types, making it a strong tool
for cell type classification on single-cell RNA-seq data.
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