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Abstract. Recently, there has been a growing interest in developing
machine learning (ML) models that can promote fairness, i.e., elim-
inating biased predictions towards certain populations (e.g., individ-
uals from a specific demographic group). Most existing works learn
such models based on well-designed fairness constraints in optimiza-
tion. Nevertheless, in many practical ML tasks, only very few labeled
data samples can be collected, which can lead to inferior fairness per-
formance. This is because existing fairness constraints are designed
to restrict the prediction disparity among different sensitive groups,
but with few samples, it becomes difficult to accurately measure the
disparity, thus rendering ineffective fairness optimization. In this pa-
per, we define the fairness-aware learning task with limited training
samples as the fair few-shot learning problem. To deal with this prob-
lem, we devise a novel framework that accumulates fairness-aware
knowledge across different meta-training tasks and then generalizes
the learned knowledge to meta-test tasks. To compensate for insuf-
ficient training samples, we propose an essential strategy to select
and leverage an auxiliary set for each meta-test task. These auxiliary
sets contain several labeled training samples that can enhance the
model performance regarding fairness in meta-test tasks, thereby al-
lowing for the transfer of learned useful fairness-oriented knowledge
to meta-test tasks. Furthermore, we conduct extensive experiments
on three real-world datasets to validate the superiority of our frame-
work against the state-of-the-art baselines.

1 Introduction

Machine learning (ML) tools have been increasingly utilized in
high-stake tasks such as credit assessments [26] and crime predic-
tions [22]. Despite their success, the data-driven nature of exist-
ing machine learning methods makes them easily inherit the bi-
ases buried in the training data and thus results in predictions with
discrimination against some sensitive groups [33]. Here, sensitive
groups are typically defined by certain sensitive attributes such as
race and gender [35, 3, 4, 19, 45]. For example, a criminal risk
assessment model can unfavorably assign a higher crime probabil-
ity for specific racial groups [33]. In fact, such undesirable biases
commonly exist in various real-world applications such as toxicity
detection [6], recommendation systems [21], loan approval predic-
tions [29], and recruitment [11].

In response, a surge of research efforts in both academia and in-
dustry have been made for developing fair machine learning mod-
els [9, 7]. These models have demonstrated their ability to effectively
mitigate unwanted bias in various applications [1, 47]. Many fair ML

methods [8, 10] incorporate fairness constraints to penalize predic-
tions with statistical discrepancies among different sensitive groups.
These methods often rely on sufficient training data from each sen-
sitive group (e.g., collecting data from a specific region with an im-
balanced population composition [49]). However, in many scenar-
ios, only very few data samples can be collected, especially for those
from the minority group. This could render existing fair ML methods
ineffective or even further amplify discrimination against the minor-
ity group. To enhance the applicability of fair ML in practice [49],
this work aims to address the crucial and urgent problem of fair few-
shot learning: promoting fairness in few-shot learning tasks with a
limited number of samples.

One feasible solution to address fair few-shot learning is to in-
corporate fairness techniques into few-shot learning methods. Par-
ticularly, we first learn from meta-training tasks with adequate sam-
ples [32, 18, 39], and then leverage the learned knowledge and fine-
tune the model on other disjoint meta-test tasks with few samples
based on fairness constraints. We define such a step of fine-tuning as
fairness adaptation. However, there still remain two primary chal-
lenges for our problem. First, the insufficiency of samples in meta-
test tasks can result in unsatisfactory fairness adaptation perfor-
mance. Although the model can adapt to meta-test tasks with limited
samples via fine-tuning for classification, these samples may not be
sufficient to ensure fairness performance. Many fairness constraints
are designed to restrict the prediction disparity among different sen-
sitive groups. However, in fair few-shot learning, the lack of samples
in each sensitive group inevitably increases the difficulties in measur-
ing the prediction disparity. Moreover, in meta-test sets, the sensitive
attributes of data samples can often be extremely imbalanced (e.g., a
majority of individuals belonging to the same race, while other sen-
sitive groups have very few, or even no samples). In these cases, the
conventional fairness constraints are often ineffective, or completely
inapplicable. Second, the generalization gap between meta-training
tasks and meta-test tasks hinders the efficacy of fairness adaptation.
Similar to other few-shot learning studies, the key point of fair few-
shot learning is to leverage the learned knowledge from meta-training
tasks to facilitate the model performance on meta-test tasks with few
samples. In our problem, it is essential to leverage the learned knowl-
edge for fairness adaptation. However, models that manage to reduce
disparities on meta-training tasks do not necessarily achieve the same
performance in fairness on meta-test tasks [10], due to the fact that
fairness constraints are data-dependent and thus lack generalizabil-
ity [8]. As a result, it remains challenging to extract and leverage the
learned knowledge that is beneficial for fairness adaptation.
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To tackle these challenges, we devise a novel framework for
fair few-shot learning, named FEAST (Fair fEw-shot learning with
Auxiliary SeTs). Specifically, we propose to leverage an auxiliary
set for each meta-test task to promote fair adaptation with few sam-
ples while addressing the issues caused by insufficient samples. The
auxiliary set is comprised of several samples from meta-training data
and is specific to each meta-test task. By incorporating these aux-
iliary sets via a novel fairness-aware mutual information loss, the
model can be effectively adapted to a meta-task with few samples
while preserving the fairness knowledge learned during training. Fur-
thermore, to effectively leverage the learned knowledge from meta-
training tasks for fairness adaptation, our proposed framework selects
the auxiliary sets based on the fairness adaptation direction. This en-
sures that the selected auxiliary sets share similar fairness adaptation
directions and thus can provide beneficial learned knowledge. We
summarize our main contributions as follows:

• Problem. We study the crucial problem of fair few-shot learning.
We introduce the importance of this problem, analyze the chal-
lenges, and point out the limitations of existing studies. To the
best of our knowledge, this is the first work that addresses these
unique challenges in fair few-shot learning.

• Method. We develop a novel fair few-shot learning framework
that (1) can leverage auxiliary sets to aid fairness adaptation with
limited samples, and (2) can select auxiliary sets with similar op-
timization directions to promote fairness adaptation.

• Experiments. We conduct extensive experiments on three real-
world fairness datasets under the few-shot scenario and demon-
strate the superiority of our proposed framework in terms of fair-
ness compared with a couple of state-of-the-art baselines.

2 Problem Statement

In this section, we provide a formal definition for the problem of fair
few-shot learning that we study in this paper. Denote Z = X ×Y as
the input space, where X ⊂ Rn is the input space with n different
features and Y = {1, 2, . . . , N} is the label space with N discrete
classes. We consider inputs X ∈ X , labels Y ∈ Y , and sensitive
attribute A ∈ {0, 1}. In the few-shot setting, the dataset D is com-
prised of two different smaller datasets: meta-training data Dtr and
meta-test data Dte. Moreover, D = Dtr ∪ Dte and Dtr ∩ Dte = ∅,
i.e., |Dtr| + |Dte| = |D|. In general, few-shot settings assume that
there exist sufficient samples in Dtr , while samples in Dte are gen-
erally scarce [18, 34].

The proposed framework is built upon the prevalent paradigm
of episodic meta-learning [34, 32], which has demonstrated supe-
rior performance in the field of few-shot learning [18, 39]. The pro-
cess of episodic meta-learning consists of meta-training on Dtr and
meta-test on Dte. During meta-training, the model is trained on a
series of meta-training tasks {T1, T2, . . . , TT }, where each meta-
training task contains support set S as the reference and a query
set Q to be classified. T is the number of meta-training tasks.
More specifically, S = {(x1, y1), (x2, y2), . . . , (xN×K , yN×K)}
contains N classes and K samples for each of these N classes
(i.e., the N -way K-shot setting). Meanwhile, the query set Q =
{(xq

1, y
q
1), (x

q
2, y

q
2), . . . , (x

q
|Q|, y

q
|Q|)} consists of |Q| different sam-

ples to be classified from these N classes. Subsequently, our goal is
to develop a machine learning model that can accurately and fairly
predict labels for samples in Dte with limited labeled samples af-
ter training on Dtr . Formally, the studied problem of fair few-shot
learning can be formulated as follows.

Definition 1. Fair few-shot learning: Given meta-training data Dtr

and a meta-test task T = {S,Q} sampled from meta-test data Dte,
our goal is to develop a fair learning model such that after meta-
training on samples in Dtr , the model can accurately and fairly pre-
dict labels for samples in the query set Q when the only available
reference is the limited samples in the support set S.

Note that the support sets and the query sets are sampled from
meta-training data Dtr . That is, for any sample (xi, yi) in a meta-
training task, (xi, yi) ∼ Ptr(X,Y ), where Ptr(X,Y ) is the meta-
training task distribution from meta-training data Dtr . We then eval-
uate the model on a series of meta-test tasks, which share the same
structure as meta-training tasks, except that the samples are now from
meta-test data Dte. In other words, for any sample (xi, yi) during
meta-test, we have (xi, yi) ∼ Pte(X,Y ), where Pte(X,Y ) is the
meta-test task distribution from meta-test data Dte. Under the meta-
learning framework [18, 51, 20], the model needs to be first fine-
tuned for several steps (i.e., fairness adaptation) using the support
set, and then performs fair classification for samples in the query set.

3 Proposed Framework

We formulate the problem of fair few-shot learning in the N -way K-
shot meta-learning framework. The meta-training process typically
involves a series of randomly sampled meta-training tasks, each of
which contains K samples for each of the N classes as the support
set, along with several query samples to be classified. Under the few-
shot scenario, it is challenging to conduct fairness adaptation on the
support set due to the insufficiency of samples and the generalization
gap between meta-training tasks and meta-test tasks. Therefore, as
illustrated in Fig. 1, we propose the use of auxiliary sets that can
enhance fairness adaptation for each meta-test task. In this section,
we first introduce the process of conducting fairness adaptation with
auxiliary sets and then discuss the strategy to select auxiliary sets.

3.1 Fairness Adaptation with Auxiliary Sets

To alleviate the issue of ineffective fairness adaptation to meta-test
tasks caused by insufficient samples, we propose to leverage the sam-
ples in meta-training tasks for fairness adaptation. Specifically, con-
sidering a target meta-test task T = (S,Q), our goal is to utilize an
auxiliary set A obtained from meta-training data that can compensate
for inadequate samples in S. However, due to the distribution dif-
ference between meta-training tasks and meta-test tasks, it remains
non-trivial to leverage the auxiliary set A, which follows a different
distribution from S. Since the data distribution in A differs from that
in S, directly conducting fairness adaptation on A can be ineffective
for fairness in S. Therefore, to enhance fairness adaptation with the
help of the auxiliary set A, we propose to maximize the mutual in-
formation (MI) between the support set S and the auxiliary set A. In
consequence, the fairness adaptation on S will benefit from A.

Generally, the support set S in T can be expressed as S =
{(x1, y1), (x2, y2), . . . , (xN×K , yN×K)}, which contains K sam-
ples for each of N classes. xi is an input sample, and yi is the corre-
sponding label. We use ai ∈ {0, 1} to denote its sensitive attribute.
In particular, we propose to construct an auxiliary set that shares the
same structure as the support set. In this way, the auxiliary set A can
be represented as A = {(x∗

1, y
∗
1), (x

∗
2, y

∗
2), . . . , (x

∗
|A|, y

∗
|A|)}. Here

|A|, i.e., the size of the auxiliary set, is set as a controllable hyper-
parameter. Moreover, based on the classification model f(·), we can
obtain the sample embedding xi ∈ Rd, and the classification prob-
abilities pi = f(xi) ∈ RN for xi. Here d denotes the embedding
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Figure 1: The overall framework of FEAST. Here different shapes denote different sensitive attributes, and colors represent sample classes.
Given a meta-task, the generator will output the estimated fairness adaptation direction, which is used to select an auxiliary set with the most
similar direction from the candidate set. Then we conduct fairness adaptation with the auxiliary set on the current meta-task and perform
predictions. The resulting fairness adaptation will be used to update the generator. Note that during training, the meta-task will be incorporated
into the candidate auxiliary sets after the optimization of one episode.

dimension of samples, and N is the number of classes in T . Particu-
larly, we maximize the fairness-aware MI between S and A by

max
θ

I(S;A) = max
θ

|S|∑
i=1

|A|∑
j=1

p(xi, x
∗
j ; θ) log

p(xi|x∗
j ; θ)

p(xi; θ)
, (1)

where θ denotes the parameters of classification model f(·). Since
the MI term I(S;A) is difficult to obtain and also intractable, it is in-
feasible to directly maximize it [27]. Therefore, we first re-formulate
the MI term to make it computationally tractable based on the prop-
erty of conditional probabilities:

I(S;A) =

|S|∑
i=1

|A|∑
j=1

p(xi|x∗
j ; θ)p(x

∗
j ; θ) log

p(xi|x∗
j ; θ)

p(xi; θ)

=

|S|∑
i=1

|A|∑
j=1

p(x∗
j |xi; θ)p(xi; θ) log

p(xi|x∗
j ; θ)

p(xi; θ)
.

(2)

Since the support set S is randomly sampled, we can assume that the
prior probability p(xi; θ) follows a uniform distribution and set it as
a constant: p(xi; θ) = 1/|S|, which thus can be ignored in optimiza-
tion. Therefore, it remains to estimate p(xi|x∗

j ; θ) and p(x∗
j |xi; θ) to

obtain the value of I(S;A).

3.1.1 Estimation of p(xi|x∗
j ; θ)

We first denote S0 and S1 as the sets of samples with sensitive at-
tributes of 0 and 1, respectively1. In other words, S = S0 ∪ S1 and
S0 ∩ S1 = ∅. Similarly, we define sets A0 and A1 for the auxiliary
set A. Then we propose to estimate p(xi|x∗

j ; θ) as follows:

p(xi|x∗
j ; θ) =

⎧⎪⎨
⎪⎩

pi(y
∗
j )∑

xk∈Sai
pk(y∗

j )
if ai = a∗

j ,

0 else.

(3)

Here pi(y
∗
j ) ∈ R denotes the classification probability of xi regard-

ing y∗j , which is the label of x∗
j . Intuitively, the probability measures

the alignment of the classification between the support sample xi and

1 For the sake of simplicity, we focus on tasks with only binary sensitive
attributes in this paper. Nevertheless, our work can be easily generalized to
tasks with multiple types of sensitive attributes.

the auxiliary sample x∗
j , which (1) shares the same sensitive attribute

with xi and (2) is also similar to xi regarding the classification out-
put. In other words, maximizing p(xi|x∗

j ; θ) can increase the fairness
adaptation consistency between sample xi and auxiliary samples that
are specifically beneficial for the fairness adaptation with xi, thus
promoting the fairness adaptation performance.

3.1.2 Estimation of p(x∗
j |xi; θ)

The term p(x∗
j |xi; θ) in Eq. (2) is conditioned on xi and denotes

the probability of x∗
j inferred by xi. Moreover, since the value of

p(xi|x∗
j ; θ) becomes zero when the sensitive attributes of xi and x∗

j

are different, we only need to estimate p(x∗
j |xi; θ) when xi and x∗

j

share the same sensitive attributes, i.e., ai = a∗
j . Therefore, since xi

and x∗
j maintain the same sensitive attributes, we can estimate the

probability p(x∗
j |xi; θ) based on the squared Euclidean distance be-

tween their embeddings without explicitly considering their fairness-
aware correlation. In particular, we further normalize the probability
with a softmax function to formulate term p(x∗

j |xi; θ) as follows:

p(x∗
j |xi; θ) =

exp
(
−‖xi − x∗

j‖22
)∑

x∗
k
∈Aa∗

j

exp (−‖xi − x∗
k‖22)

. (4)

Furthermore, to ensure the consistency of sample representations in
meta-training and meta-test data, we apply the �2 normalization on
both xi and x∗

j , which results in ‖xi −x∗
j‖22 = 2− 2x�

i ·x∗
j . In this

manner, the logarithmic term log p(x∗
j |xi; θ) becomes:

log
(
p(x∗

j |xi; θ)
)
= log

⎛
⎝ exp

(
−2 + 2x�

i · x∗
j

)
∑

x∗
k
∈Aa∗

j

exp
(
−2 + 2x�

i · x∗
k

)
⎞
⎠

= 2x�
i · x∗

j − log
∑

x∗
k
∈Aa∗

j

exp
(
2x�

i · x∗
k

)
.

(5)
Finally, the MI loss LMI can be derived as follows:

LMI =
1

|A|

|A|∑
j=1

∑
xi∈Sa∗

j

− pi(y
∗
j )∑

xk∈Sai
pk(y∗

j )

(
2x�

i · x∗
j

− log
∑

x∗
k
∈Aa∗

j

exp
(
2x�

i · x∗
k

))
.

(6)
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The overall fairness adaptation loss can be represented as the combi-
nation of fairness regularization terms on the support set S and the
auxiliary set A along with the MI loss between S and A:

LFA = LR(S) + γ (LR(A) + LMI) , (7)

where γ is an adjustable weight hyper-parameter to control the im-
portance of the auxiliary set. Specifically, LR denotes the regularized
optimization loss:

LR(S) =
1

|S|
∑

(x,y)∈S

�(f(x), y) + λR(S), (8)

where � is the classification loss, and R(S) denotes the fairness reg-
ularization term.

3.2 Auxiliary Sets Selection

The second problem of the generalization gap between meta-training
and meta-test in fair few-shot learning can also pose a significant
challenge in fairness adaptation. To address this issue, we propose
to select the auxiliary set based on its similarity in fairness adapta-
tion directions to the target meta-test task. In this way, incorporating
the auxiliary set with a similar fairness adaptation direction can po-
tentially leverage beneficial learned knowledge in meta-training to
enhance fairness adaptation in the target meta-task. However, it is
difficult to identify the fairness adaptation direction of the auxiliary
set that aligns with the target meta-task. It is possible that the aux-
iliary set holds a different or even opposite fairness adaptation di-
rection from the target meta-task. As such, the incorporation of such
an auxiliary set can even harm the fairness adaptation performance.
Therefore, to select the auxiliary set with a similar fairness adapta-
tion direction to the target meta-test task, we introduce a dynamic
dictionary, Acan, which stores all candidate auxiliary sets for se-
lection, with the keys being their corresponding fairness adaptation
directions. This allows us to efficiently identify and select an aux-
iliary set with a similar adaptation direction for the target meta-test
task, thereby improving the fairness adaptation performance in the
presence of the generalization gap.

Notably, this dictionary will be dynamically updated by adding a
new auxiliary set after each meta-training step and meanwhile re-
moving the oldest auxiliary set, of which the fairness adaptation di-
rection is the most outdated. In this manner, the dictionary also acts
like a queue, which means that the size can be flexible and indepen-
dent to fit various scenarios. Specifically, after each step on a meta-
training task T = {S,Q}, we will enqueue the support set S as a
candidate auxiliary set2 into Acan and remove the oldest auxiliary
set. The key of enqueued S, which is the fairness adaptation direc-
tion of S, is set as the gradient of LR(S), i.e., ∇θLR(S), where θ
denotes the model parameters of f(·).
Identifying the true fairness adaptation direction. With the help of
the dynamic dictionary as a queue during meta-training, it may still
remain difficult to obtain the fairness adaptation direction of the tar-
get meta-test task T . This is because the fairness adaptation direction
of S cannot faithfully reveal the true direction due to potentially im-
balanced sensitive attributes. Therefore, to identify the true fairness
adaptation direction without directly conducting fairness adaptation
on the support set S, we propose the use of a generator g(·), pa-
rameterized by φ, to estimate the fairness adaptation results for each
meta-test task. In particular, the generator g(·) takes the support set

2 Note that the auxiliary set size is controllable via randomly removing sam-
ples in S or incorporating new samples before enqueuing.

Algorithm 1 Detailed training process of our framework.

Input: Meta-training task distribution Ptr from the meta-training
data Dtr , number of meta-training tasks T , number of fine-
tuning steps τ .

Output: A trained fairness-aware classification model f(·) and a
generator model g(·).

1: Randomly initialize the dictionary queue Acan;
2: for i = 1, 2, . . . , T do

3: Sample a meta-training task Ti = {S,Q} ∼ Ptr;
4: Obtain the fairness adaptation direction via Eq. (10);
5: Select an auxiliary set A from the candidate auxiliary set dic-

tionary Acan based on Eq. (11);
6: for t = 1, 2, . . . , τ do

7: Conduct one step of fairness adaptation according to Eq. (7)
and Eq. (12);

8: end for

9: Meta-optimize classification model f(·) and generator g(·)
based on Eq. (13) and Eq. (14), respectively;

10: Enqueue support set S into the dictionary queue Acan and
remove the oldest candidate auxiliary set in Acan;

11: end for

S as input and outputs an estimation of the gradient of LR(S), i.e.,
∇θLR(S). To optimize the generator g(·), we introduce the Mean
Squared Error (MSE) loss as the objective function as follows:

LE = ‖g(S)−∇θLR(S)‖22 , (9)

where g(S) ∈ Rdθ is the generator output, and dθ is the size of the
classification model parameter θ. It is worth mentioning that the input
of the generator g(·) is an entire support set S, which means that
the generator should be able to capture the contextual information
within the support set. For this reason, we propose to leverage the
transformer encoder architecture [38] followed by a Multiple Layer
Perceptron (MLP) as the implementation of the generator. In specific,
the output of the generator can be expressed as:

g(S) = MLP
(
Mean

(
Transformer

(
x1,x2, . . . ,x|S|

)))
. (10)

In this manner, the generator can estimate the corresponding fairness
adaptation direction from S, where the result can be used for select-
ing an auxiliary set.

After the meta-training process on a series of meta-training tasks
{T1, T2, . . . , TT }, we can obtain a dictionary of candidate auxiliary
sets in Acan = {A1,A2, . . . ,A|Acan|} along with their fairness
adaptation directions as keys. Here we denote their corresponding
keys as k(A) ∈ Rdθ . Then given a new meta-test task Ttest =
{Stest,Qtest}, the corresponding selected auxiliary set A∗ can be se-
lected via the following criterion:

A∗ = argmin
A∈Acan

dist (g(Stest),k(A)) , (11)

where dist(·, ·) is a function to measure the distance between two
vectors. In the experimentation, we implement it as the Euclidean
distance. We can then efficiently select an auxiliary set from a sig-
nificantly large dictionary based on the keys. It is noteworthy that to
keep consistency between meta-training and meta-test, we will also
select an auxiliary set for each meta-training task for optimization.

3.3 Meta-optimization

Our framework is optimized under the episodic meta-learning
paradigm [18]. Specifically, let θ denote the total parameters of the
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classification model f(·). In order to perform fairness adaptation, we
first initialize the model parameters as θ0 ← θ. After that, given a
specific meta-task T = {S,Q}, we conduct τ steps of gradient de-
scent based on the fairness adaptation loss LFA calculated on the
support set S. Thus, the fairness adaptation process in T can be for-
mulated as follows:

θt ← θt−1 − α∇θt−1LFA (S; θt−1) , (12)

where t ∈ {1, 2, . . . , τ} and L(S; θt−1) denotes the loss calculated
based on the support set S with the parameters θt−1. τ is the number
of fine-tuning steps applied, and α is the learning rate in each fine-
tuning step. After conducting τ steps of fine-tuning, we will meta-
optimize the classification model f(·) with the loss calculated on the
query set Q. In specific, we meta-optimize the model parameters θ
with the following update function:

θ =: θ − β1∇θLFA(Q; θτ ), (13)

where β1 is the meta-learning rate for the classification model f(·).
For the optimization of the generator g(·), parameterized by φ, the

update can be formulated as follows:

φ =: φ− β2∇φLE(S; θτ ), (14)

where LE is the MSE loss introduced in Eq. (9), and β2 is the meta-
learning rate for the generator g(·). In this way, the model parameters
φ of g(·) will be updated based on loss LE after the fairness adapta-
tion of the classification model f(·). The detailed training process of
our framework is demonstrated in Algorithm 1.

4 Experimental Evaluations

4.1 Datasets

In this subsection, we introduce the datasets used in our experi-
ments. To evaluate the performance of FEAST on fair few-shot learn-
ing, we conduct experiments on three prevalent real-world datasets:
Adult [15], Crime [22], and Bank [26]. The detailed dataset statistics
are provided in Table 1.

• The Adult dataset contains information from 48,842 individuals
from the 1994 US Census, where each instance is represented by
14 features and a binary label. Here the label indicates whether
the income of a person is higher than 50K dollars. Following the
data split setting in PDFM [49], we split the dataset into 34 subsets
based on the country information of instances. We consider gender
as the sensitive attribute.

• The Crime dataset includes information on 2,216 communities
from different states in the U.S., where each instance consists of
98 features. Following [31], the binary label of each instance is ob-
tained by converting the continuous crime rate based on whether
the crime rate of a community is in the top 50% within the state.
The sensitive attribute is whether African-Americans are among
the highest or second highest populations in each community. We
further split this dataset into 46 subsets by considering each state
as a subset.

• The Bank dataset consists of 41,188 individual instances in total.
Specifically, each instance maintains 20 features along with a bi-
nary label that indicates whether the individual has subscribed to
a term deposit. Here, we consider marital status as the binary sen-
sitive attribute. Moreover, the dataset is split into 50 subsets based
on the specific date records of instances.

Table 1: Statistics of three real-world datasets.

Dataset Adult Crime Bank

Sensitive Attribute Gender Race Marital Status
Label Income Crime Rate Deposit

# Instances 48,482 2,216 41,188
# Features 12 98 17
# Subsets 34 46 50

# Training Subsets 22 30 40
# Validation Subsets 6 8 5

# Test Subsets 6 8 5

4.2 Experimental Settings

To achieve a fair comparison of FEAST with competitive baselines,
we conduct experiments with the state-of-the-art fair few-shot learn-
ing methods and other few-shot learning methods with fairness con-
straints. The details are provided below.

• MAML [18]: This method utilizes a classic meta-learning frame-
work to deal with the fair few-shot learning problem without ex-
plicitly applying fairness constraints.

• M-MAML [18]: This method uses the same framework as MAML
while modifying datasets by removing the sensitive attribute of
each instance to enhance fairness during optimization.

• Pretrain [49]: This method learns a single model on all meta-
training data without episodic training. Moreover, a fairness con-
straint is added to the training objective.

• F-MAML [50]: This method applies a fairness constraint in each
episode and tunes a Lagrangian multiplier shared across different
episodes for fair few-shot learning tasks.

• FM-dp and FM-eop (Fair-MAML) [31]: These two baselines pro-
vide a regularization term for each episode based on demographic
parity (DP) and equal opportunity (EOP), respectively.

• PDFM [49]: This method leverages a primal-dual subgradient ap-
proach to ensure that the learned model can be fast adapted to a
new episode in fair few-shot learning.

Particularly, we use the average classification accuracy (ACC) over
Ttest meta-test tasks to evaluate the prediction performance. For fair-
ness performance, we propose to utilize demographic parity (DP)
and equalized odds (EO), which are commonly used in existing
works [8, 48, 16, 44]. Since we consider the binary classification
datasets, the output f(x) ∈ R denotes the prediction score of a spe-
cific sample x. In this manner, the metrics can be calculated over
Ttest meta-test tasks sampled from the meta-test task distribution Pte

as follows:

ΔDP = ET ∼Pte

∣∣∣∣∣ 1

|Q0|
∑
x∈Q0

f(x)− 1

|Q1|
∑
x∈Q1

f(x)

∣∣∣∣∣ , (15)

ΔEO = ET ∼Pte

∑
y∈{0,1}

∣∣∣∣∣∣
1

|Qy
0 |

∑
x∈Qy

0

f(x)− 1

|Qy
1 |

∑
x∈Qy

1

f(x)

∣∣∣∣∣∣ ,
(16)

where Q0 and Q1 denote the query samples with a sensitive at-
tribute of 0 and 1, respectively. Similarly, Qy

0 (or Qy
1) denotes

the query samples in Q0 (or Q1) with label y. Pte is the meta-
test task distribution of meta-test sets Dn. Our code is released at
https://github.com/SongW-SW/FEAST.
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Table 2: Results w.r.t. fairness and prediction performance of FEAST and baselines under different settings for all three datasets.

Dataset Adult Crime Bank

Setting 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Metric ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC ΔDP ΔEO ACC

MAML 0.473 0.706 0.801 0.409 0.584 0.886 0.558 0.952 0.718 0.443 0.832 0.792 0.214 0.573 0.603 0.185 0.496 0.619

M-MAML 0.447 0.689 0.826 0.381 0.555 0.857 0.359 0.732 0.711 0.300 0.569 0.757 0.214 0.544 0.600 0.175 0.459 0.619

F-MAML 0.339 0.432 0.825 0.310 0.353 0.840 0.503 0.871 0.719 0.463 0.707 0.762 0.207 0.585 0.575 0.181 0.528 0.650

FM-dp 0.313 0.502 0.814 0.241 0.438 0.844 0.385 0.722 0.741 0.329 0.604 0.771 0.238 0.614 0.586 0.187 0.553 0.604

FM-eop 0.430 0.703 0.812 0.370 0.601 0.846 0.352 0.706 0.739 0.311 0.591 0.804 0.289 0.683 0.581 0.245 0.600 0.640

Pretrain 0.365 0.513 0.806 0.310 0.450 0.885 0.390 0.692 0.746 0.354 0.582 0.776 0.248 0.659 0.594 0.208 0.539 0.642

PDFM 0.261 0.461 0.815 0.276 0.401 0.869 0.402 0.784 0.722 0.325 0.669 0.816 0.210 0.585 0.589 0.180 0.493 0.645

FEAST 0.258 0.355 0.820 0.235 0.256 0.861 0.203 0.309 0.739 0.164 0.217 0.797 0.190 0.524 0.583 0.154 0.414 0.641

Figure 2: Ablation study on our framework FEAST on three datasets
under the 5-shot setting.

4.3 Performance Comparison

Table 2 presents the fairness and prediction performance comparison
of FEAST and all other baselines on fair few-shot learning. Specifi-
cally, we report the results of ΔDP, ΔEO, and classification accuracy
over 500 meta-test tasks for 10 repetitions. We conduct experiments
on both 5-shot and 10-shot settings (i.e., K = 5 and K = 10). From
Table 2, we can have following observations:

• Our framework FEAST consistently outperforms other baselines
in terms of fairness in all datasets under both 5-shot and 10-shot
settings. These results provide compelling evidence for the effec-
tiveness of our framework FEAST in fair few-shot learning.

• The performance improvement of FEAST over other baselines is
more significant on the Crime dataset. This is due to that in this
dataset, each subset consists of fewer samples. Consequently, the
learned fairness-aware meta-knowledge will be more difficult to
be transferred in baselines. Nevertheless, our proposed fairness
adaptation strategy based on mutual information can effectively
deal with this scenario.

• The accuracy of FEAST is comparable with other baselines,
demonstrating that FEAST can substantially reduce biases with-
out sacrificing its classification capability. This is because our
framework FEAST can select the auxiliary set with similar fair-
ness adaptation directions and thus will not harm model perfor-
mance regarding accuracy.

• FEAST is more robust to the changes of the number of support
samples per class, i.e., when the number decreases from 10 to 5,
FEAST has the least performance drop in comparison to other
baselines. We believe this is primarily because, with fewer sup-
port samples, the problem of insufficient samples becomes more
significant. Nevertheless, FEAST can effectively address this issue
with the incorporation of auxiliary sets into fairness adaptation.

Figure 3: Results of FEAST on Adult (left) and Crime (right) with
different values of γ.

4.4 Impact of Each Component in FEAST

In this subsection, we conduct an ablation study on three datasets
under the 5-shot setting to evaluate the effectiveness of different
components in our framework by comparing FEAST with three de-
generate versions: (1) FEAST without fairness adaptation based on
MI, referred to as FEAST\F. In this variant, the fairness adapta-
tion process is simplified such that only fairness constraints are ap-
plied. (2) FEAST without auxiliary set selection, i.e., the auxiliary
set is randomly sampled. We refer to this variant as FEAST\A. (3)
FEAST without both fairness adaptation and auxiliary set selection,
referred to as FEAST\FA. The results, as presented in Fig. 2, show
that FEAST outperforms all other variants, validating the importance
of both fairness adaptation and auxiliary set selection components in
fair few-shot learning. Of particular interest is that the removal of
the MI fairness adaptation has a more significant adverse impact on
the Crime dataset, which contains significantly fewer meta-training
samples. This result highlights the crucial role of this component
in addressing the issue of insufficient training samples. In addition,
when the two components are both removed, the fairness perfor-
mance drops greatly. Such results indicate that the mutual impact
brought by these two components is also critical for our proposed
framework FEAST.

4.5 Effect of Loss Weight γ

Given the significance of the auxiliary sets in the fairness adapta-
tion, in this subsection, we further examine in-depth how the auxil-
iary sets will influence the performance of FEAST. Specifically, we
vary the value of γ, which controls the importance of the auxiliary
set loss during fairness adaptation. A higher value of γ implies a
larger importance weight on the auxiliary set and a smaller impor-
tance weight on the target task. Due to the limitation of space, we
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Figure 4: Results of FEAST on Adult under 5-shot (left) and 10-shot
(right) settings with different values of |A|.

evaluate the model’s performance on two datasets, Adult and Crime,
using various values of γ (similar results on the Bank dataset) on the
5-shot setting. The results, as shown in Fig. 3, indicate that a value
around 0.5 for γ generally yields better fairness performance for both
datasets. This is mainly because a small γ can be insufficient to lever-
age the fairness-aware meta-knowledge in auxiliary sets, while an
excessively large value of γ can result in the loss of crucial fairness
information in the target meta-task. Moreover, the effect of differ-
ent γ values is more significant on the Adult dataset. The reason is
that this dataset contains a larger number of samples in meta-training
data. As a result, the learned fairness-aware knowledge is richer in
the auxiliary sets, thus propagating the benefits from auxiliary sets.

4.6 Effect of Auxiliary Set Size

In this section, we conduct experiments to evaluate the impacts
brought by varying the size of the auxiliary set A. Intuitively, the
auxiliary set size |A| should be at least comparable with the support
set, since an excessively small auxiliary set can be potentially insuffi-
cient for fairness adaptation. Specifically, we conduct experiments on
dataset Adult under both 5-shot and 10-shot settings to evaluate the
effect of auxiliary set size |A|. From the results presented in Fig. 4,
we can make the following observations: (1) The fairness results are
less satisfactory with a smaller value of |A|, indicating that the ca-
pacity of A can be important in FEAST. With a small auxiliary set
A, the fairness adaptation effect will be reduced due to insufficient
knowledge in A. (2) When further increasing the size of A, the fair-
ness performance does not accordingly increase. This demonstrates
that knowledge in a larger auxiliary set may not be helpful for fair-
ness adaptation. (3) When the number of shots increases from 5 to
10, the best value of |A| also increases, implying that with a larger
support set, the auxiliary set should also be expanded to provide more
knowledge for fairness adaptation. In consequence, the fairness per-
formance can be further improved.

5 Related Work

5.1 Few-shot Learning

Few-shot learning aims to obtain satisfactory classification perfor-
mance with only a few labeled samples as references [37, 36]. The
typical approach is to accumulate transferable knowledge from meta-
training tasks, which contain abundant labeled samples. Then such
knowledge is generalized to meta-test tasks with limited labeled sam-
ples. Particularly, existing few-shot learning methods can be divided
into two main categories: (1) Metric-based methods propose to learn
a metric function that matches samples in the query set with the sup-
port samples to conduct classification [23, 34, 42, 41]. For exam-
ple, Prototypical Networks [32] learn a prototype (i.e., the average
embedding of samples in the same class) for each class and then

classify query samples according to the Euclidean distances between
query samples and each prototype. Matching Networks [39] output
predictions for query samples via the similarity between query sam-
ples and each support sample. (2) Optimization-based methods aim
to first fine-tune model parameters based on gradients calculated on
support samples and then conduct meta-optimization on each meta-
task [25, 28, 43, 40]. As a classic example, MAML [18] learns a
shared model parameter initialization for various meta-tasks with the
proposed meta-optimization strategy. LSTM-based meta-learner [28]
proposes an adjustable step size to update model parameters.

5.2 Fairness-aware Machine Learning

Various fairness-aware algorithms have been proposed to mitigate
the unwanted bias in machine learning models. Generally, there
are two categories of statistical fairness notions: individual fair-
ness and group fairness. In particular, individual fairness requires
that the model results for similar individuals should also be simi-
lar [16, 44, 13, 12]. Here, the similarity between individuals can be
measured via specific metrics (e.g., Euclidean distance) learned dur-
ing training or from prior knowledge. On the other hand, group fair-
ness refers to the statistical parity between subgroups (typically de-
fined by sensitive attributes, e.g., gender and race) via specific algo-
rithms [46, 24, 19, 14]. Common fairness learning tasks include fair
classification [45, 17], regression [2, 5], and recommendations [30].
Although these methods have demonstrated satisfactory performance
in mitigating unfairness, it is noteworthy that existing works mainly
focus on the settings where sufficient labeled samples are provided.
As a result, it is challenging for these methods to accommodate few-
shot scenarios with limited labeled samples.

More recently, several methods are proposed to deal with the fair
few-shot learning problem [31, 50]. For example, PDFM [49] uti-
lizes a primal-dual subgradient approach to ensure fast adaptation
to a novel meta-task. In [48], the authors propose to address fair-
ness in supervised few-shot meta-learning models that are sensitive
to discrimination in historical data by detecting and controlling the
dependency effect of sensitive attributes on target prediction. More-
over, F-MAML [50] provides a fairness constraint for each episode
and tunes a Lagrangian multiplier shared across different episodes
based on a meta-learning mechanism. However, these methods can-
not effectively solve the problem of insufficient samples and the gen-
eralization gap.

6 Conclusion

In this paper, we propose a novel problem of fair few-shot learning,
which focuses on accurately and fairly predicting labels for samples
in unseen data while using limited labeled samples as references. To
tackle the challenges posed by insufficient samples and the gener-
alization gap between meta-training and meta-test, we propose an
innovative framework FEAST that utilizes learned fairness-aware
meta-knowledge by incorporating auxiliary sets. In particular, our
framework maximizes the mutual information between meta-tasks
and the auxiliary sets to enhance fairness adaptation. Moreover, we
select auxiliary sets based on the estimated fairness adaptation direc-
tion of meta-tasks to improve the fairness performance. We conduct
extensive experiments on three real-world datasets, and the results
validate the superiority of FEAST over the state-of-the-art baselines.
For future work, it is important to consider expanding the candidate
auxiliary set with external knowledge, since samples in the dataset
can be insufficient. In this case, incorporating external information
for fairness adaptation can be crucial.
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