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Abstract. Contrastive learning has been used to learn useful low-
dimensional state representations in visual reinforcement learning
(RL). Such state representations substantially improve the sample
efficiency of visual RL. Nevertheless, existing contrastive learning-
based RL methods have the problem of unstable training. Such in-
stability comes from the fact that contrastive learning requires an
extremely large batch size (e.g., 4096 or larger), while current con-
trastive learning-based RL methods typically set a small batch size
(e.g., 512). In this paper, we propose an approach of discrete infor-
mation bottleneck (DIB) to address this problem. DIB applies the
technique of discretization and information bottleneck to contrastive
learning in representing the state with concise discrete representa-
tion. Using this discrete representation for policy learning results in
more stable algorithm training and higher sample efficiency with a
small batch size. We demonstrate the advantage of discrete state rep-
resentation of DIB on several continuous control tasks in the Deep-
Mind Control suite. In the experiments, DIB outperforms prior visual
RL methods, both model-based and model-free, in terms of perfor-
mance and sample efficiency.

1 Introduction

Deep reinforcement learning (RL) is limited by a low sample effi-
ciency when the state inputs are pixels. For example, RL algorithms
for Atari games require hundreds of millions of time steps in training
to learn a good policy. The key insight to solving this inefficiency
problem is learning of better low-dimensional state representations.
However, due to the reward sparsity, it is hard for the policy learner
of RL to acquire useful low-dimensional state representations from
high-dimensional images [27].

To solve this problem, researchers have introduced various aux-
iliary tasks that provide extra learning signals to learn a low-
dimensional state representation for visual RL. Some typical aux-
iliary tasks include state reconstruction [34], future prediction [25],
and world model learning [16]. A number of methods have been pro-
posed to use contrastive learning to construct new auxiliary tasks to
reduce the dimension of states in samples for the training of RL. Such
contrastive auxiliary tasks improve the sample efficiency of an RL
algorithm by extracting the most task-relevant features from high-
dimensional state data. Consequently, the RL algorithm can make
full use of each sample for training. During the training process, con-
trastive learning is formalized to maximize a contrastive loss to per-
form state representation learning. For instance, CPC [31] designs
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a probabilistic contrastive loss that induces the latent space to cap-
ture task-relevant information. CURL [20] improves the sample ef-
ficiency by using a contrastive loss, called InfoNCE [31], which en-
hances the task-relevance within the state data of each sample. RCRL
[22] constructs a holistic contrastive loss according to the feedback
of the long-term return from RL algorithms in addition to rewards of
individual samples. The results of RCRL demonstrate the effective-
ness of using such a contrastive loss.

Nevertheless, most prior contrastive learning-based RL methods
still face the difficulty of training instability. Numerous experiments
have shown that directly incorporating the contrastive loss into an
RL algorithm leads to training instability, which in turn leads to poor
performance and large variance [20, 28]. This may be because con-
trastive learning requires a large batch size, such as 4096 or 8192,
however, the batch size is usually set to 512 in previous visual RL
algorithms. This limitation makes contrastive learning hard to re-
lease its greatest potential to visual RL algorithms. Therefore, it is
of particular interest to develop a robust version of the contrastive
learning-based RL method to improve sample efficiency further.

In this paper, we propose an approach of Discrete Information
Bottleneck (DIB) to further improve the sample efficiency of model-
free RL algorithms. DIB uses discrete contrastive learning to learn
low-dimensional discrete state representations for RL tasks. Our mo-
tivation is that discrete representations are a natural fit for complex
reasoning, control, and predictive learning. For example, language
is inherently discrete and images can often be described concisely
by language [32]. In order to learn a discrete state representation,
we design a probabilistic discrete layer for the encoder to learn dis-
crete state representations. Then we construct a new discrete con-
trastive loss and use an iterative optimization algorithm to alleviate
the non-differentiability problem in discrete state representation ar-
chitectures. We theoretically prove the strong connection between
the proposed discrete contrastive loss and mutual information. The
proposed learning approach conforms to the learning principle of
the information bottleneck theory (IB). This theory defines what is
a good representation, in terms of the fundamental trade-off between
a concise representation and a representation with good predictive
power. With this predictive power, DIB can learn more concise state
representation.

We illustrate the effectiveness of the proposed method using Soft
Actor-Critic [8] for continuous control benchmarks. In our experi-
ments, DIB outperforms other state-of-the-art baselines, both model-
based and model-free, in terms of performance and sample efficiency.
Our study empirically demonstrates that discrete state representation
can stabilize the training process, accelerate the convergence rate of
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the algorithm, and reduce the variance, under a small batch size (i.e.,
256). As far as we know, our results suggest for the first time that
discrete state representation can be beneficial to model-free RL.

2 Related Work

Visual Reinforcement Learning. Successes of self-supervised
learning in NLP and CV [5, 13, 3] have inspired successes in visual
RL. Early representative works show how reconstruction loss could
improve the sample efficiency of visual RL, such as CPC [31], SAC-
AE [34], PlaNet [9], and SLAC [21]. Then, a series of self-supervised
works made great progress in visual RL. In the model-free settings,
many methods leverage contrastive learning to learn a good repre-
sentation of the state to accelerate the policy learning of RL, such
as CURL [20], RCRL [22], SPR [25], and ATC [28]. Some meth-
ods have proposed that the use of data augmentation techniques can
significantly improve the sample efficiency of RL. Typical methods
of this kind include DrQ [18], RAD [19], DrQ-v2 [33], etc. In the
model-based settings, world models can be used as auxiliary tasks
to explore the environment and lead to better performance, such as
Dreamer [10], Dreamer-v2 [11], Dreamer-v3 [12], DreamerPro [4],
and APV [26].

Discrete Representation Learning. Discrete representation learn-
ing is a central machine learning task because of the compactness of
the representations and ease of convergence [15]. In clustering and
unsupervised hashing [14], discrete representation learning plays an
important role. Recently, SOMVAE [7] uses discrete representation
learning to learn discrete representations of time series and achieve
superior performance. In reinforcement learning, some model-based
methods [23, 11] have solved visual discrete control problems with a
discrete world model. However, the main purpose of the world model
is to obtain long-horizon imagination. They are not shown to support
direct visual continuous control.

Information Bottleneck. The information bottleneck (IB) was first
proposed in [30]. The principle of IB is to learn a good representa-
tion that can retain task-relevance information while reducing task-
irrelevance information [17, 2]. Since IB is plagued by computational
mutual information, many methods are devoted to finding its lower
bound. For example, DVIB [1] presents a variational approximation
to approach the objective of IB. MIB [6] extends IB under the setting
of multi-view learning.

3 Background

The problem for Soft actor-critic (SAC) is a Markov Decision
Process (MDP). An MDP can be described as a tuple M =
〈S,A, P,R, γ〉, where S is the state collection, A the action
collection, P (st+1|st, at) the transition function of environment,
R(st, at) the reward function, and γ the discount factor. Soft actor-
critic (SAC) is an off-policy actor-critic RL method. The policy eval-
uation and policy improvement of SAC are executed alternately at
each iteration. SAC solves continuous action space by using deep
neural networks, in which the Q-function Qθ (critic) and policy πφ

(actor) are approximated. In the policy evaluation step, the soft Q-
function with parameters θ are optimized to minimize the soft Bell-
man residual:

JQ(θ) = E(st,at,rt,st+1)∼D
[
(Q(st, at)− rt − γV (st+1))

2] (1)

where D is the replay buffer, and V the target value function, which
is approximated via a Monte Carlo estimate of the following expec-

tation:

V (st) = Eat∼D [Qθ(st, at)− αlogπ(at|st)] (2)

where θ is the delayed parameter. In the step of policy improvement,
the actor parameters φ are optimized to update the policy. The loss is
as follows:

Jπ(φ) = Eat∼πφ [αlog(πφ(at|st))−Qθ(st, at)] (3)

4 Methodology

In this section, we combine the strong model-free RL algorithm (e.g.,
SAC) with discrete contrastive loss as a novel auxiliary loss to im-
prove the sample efficiency. Then, we further establish the connec-
tion between discrete contrastive loss and mutual information, refor-
mulating the unsupervised auxiliary task under the broader frame-
work of information bottleneck (IB). Without loss of generality, we
assume that all of the following vectors are row vectors. For the sake
of clarity, frequently used notations and corresponding descriptions
are summarized in Table 1. The full notations table is in the Ap-
pendix.

4.1 Discrete Contrastive Learning

Contrastive Learning as Auxiliary Task. Many deep reinforcement
learning methods combine an RL algorithm with contrastive learn-
ing as the auxiliary task to improve the sample efficiency. Formally,
given a minibatch of training instances {ok}Nk=1 (N is the batch size)
from the replay buffer, the contrastive learning-based RL methods
first transform each instance into query vk1 and key vk2 by data aug-
mentation (we use subscript 1 for query and 2 for key). After that,
vk1 and vk2 are fed into a query encoder fθ1 and a key encoder fθ2 to
produce continuous representations, respectively.

zk1 = fθ1(v
k
1 ) (4)

zk2 = fθ2(v
k
2 ) (5)

The representation vector zk1 and zk2 should be similar since they
come from the same observation ok. The aim of contrastive learning
is to achieve this goal by minimizing the following loss:

L =
1

N

N∑
k=1

(�(zk1 , z
k
2 )) (6)

where � is a certain contrastive loss such as InfoNCE [31] and Margin
[24]. During training, the observations are passed to the RL algorithm
while the query-key pairs are passed to the contrastive learning loss.

Discrete Contrastive Learning. As mentioned in the section of the
introduction, the unstable training problem hinders contrastive learn-
ing from releasing its greatest potential to further sample efficiency
of RL. Our DIB is proposed using discrete state representation and
the information bottleneck approach to address this problem.

We first introduce a probabilistic discrete representation layer into
our model. Specifically, given a key or a query vkt (t = {1, 2}), we
first compute the probability:

pkt = σ(fθt(v
k
t )) (7)

where σ is the sigmoid function and is applied to its argument in
an element-wise way. Then, the discrete representations of vkt are
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Figure 1: Illustration of the proposed DIB method. The pixel observations are data-augmented twice and then fed into the encoder fθ to form
query v1 and key v2, respectively. A discrete layer is introduced to generate the discrete representation b1 and b2 for query and key. The
generated b1 and b2 are optimal by a non-gradient discrete learning algorithm. Only the queries are passed to the RL algorithm. During the
gradient update step, the query encoder fθ1 is trained via maximizing I(M,B) and simultaneously minimizing I(B, V ). The key encoder fθ2
weights are the moving average (EMA) of the query weights similar to MoCo [13].

Table 1: Main notations used in this paper

Notation Description

o training instances (observation)
v1 query
v2 key
z continuous state representation
b discrete state representation
m similarity indicator
fθ query/key encoder
N batch size

generated by sampling from the multivariate Bernoulli distribution
as:

bkt ∼ Bernoulli(pkt ) (8)

where the d-th element [bkt ]d ∈ {−1, 1} is generated according to the
corresponding probability [pkt ]d. The range of d is the length of the
vector bkt . Due to the non-differentiability of discrete representation,
we cannot directly apply existing contrastive loss, e.g., InfoNCE, to
learn compact representation. Hence, we choose to design a discrete
learning module for learning compact discrete state representation.

Let Θij = λbi1b
j(T )
2 be the inner product of bi1 and bj2, where λ

is a hyper-parameter denoting a scale factor for tuning. To achieve
the goal of contrastive learning, we want Θij to be as large/small as
possible if vi1 and vj2 come from the same/different observation o.
For example, if i = j, Θij should be large and vice versa. We define
the likelihood of the similarity indicators m as follows:

p(m|V) =
N∏

i,j=1

p
(
mij |vi1, vj2

)
(9)

where V � {v11 , v12 , v21 , v22 , ..., vN1 , vN2 } is the set of query and key in
a minibatch. mij = 1 indicates that vi1 and vj2 come from the same
observation o while mij = 0 means that vi1 and vj2 are dissimilar.

The probability p(mij |vi1, vj2) is defined as follows:

p
(
mij |vi1, vj2

)
=

{
Aij , if mij = 1,

1−Aij , if mij = 0.
(10)

where we define Aij = 1

1+e−Θij
. Then the log-likelihood can be

derived as the following equation:

Lcl = − 1

N
log p (m|V)

= − 1

N

N∑
i,j=1

logA
mij

ij (1−Aij)
1−mij

= − 1

N

N∑
i,j=1

[mijΘij − log(1 + eΘij )]

(11)

We call Eq. (11) the discrete contrastive loss. Eq. (11) reveals that
minimizing the discrete contrastive loss will make the inner product
Θij of bi1 and bj2 as large as possible, if they come from the same
observation ok. Subsequently, the learned bi1 and bj2 will be more
and more similar during training. Hence, this property is reasonable,
and it matches the goal of contrastive learning, as well. Moreover,
compared with continuous representation, our discrete representation
can make the query and its positive key closer. We will demonstrate
this property in the section of experiments.

Discrete Learning Algorithm. As mentioned above, since the dis-
crete representation is not differentiable, it is much difficult to di-
rectly optimize bkt with the whole model. Therefore, we use a surro-
gate strategy to update b1 and b2. Specifically, we first derive a lower
bound of -Eq. (11) as follows:

L̃cl([bt]d) = [bt]d

(
∂L

∂[bt]d
−H[bt]d

)
(12)

where [bt]d is the d-th element of bt, H = −Nλ2I , and I is the iden-
tity matrix. Then we adopt a widely used optimization principle, i.e.,
maximizing the lower bound, to solve the discrete contrastive loss.
Due to the limit of space, we provide the proof of (12) in Appendix.
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We here directly give the solution of maximizing (12) as follows:

[b̄t]d = sign

(
∂L

∂[bt]d
−H[bt]d

)
(13)

where sign([x]d) = 1, ([x]d > 0) and sign([x]d) = −1, ([x]d <
0).

After optimization, we use b̄1 and b̄2 to represent the final solution
of b1 and b2, and they serve as a regression target for the encoder
fθ1(·) and fθ2(·). We use the mean square error as the regression
loss, as shown in Eq. (14)

L1 = ‖fθ1(v1)− b̄1‖2F + ‖fθ2(v2)− b̄2‖2F (14)

For the query encoder fθ1 parametrized by θ1 and key encoder fθ2
parametrized by θ2, we perform the update θ2 = τθ2 + (1 − τ)θ1
and encode any key using Stop Gradient.

4.2 Connections to Information Bottleneck

In this section, we demonstrate that our discrete contrastive loss can
be connected to mutual information. Furthermore, we show that our
learning approach conforms to the learning principle of the technique
of broader information bottleneck.

Connections to Mutual Information. Considering that bkt is the dis-
crete stochastic features of vkt , we take expectation over the loss in
(11) and obtain the loss as:

Lcl = −Ep(B|V)
[log p(m|V)] (15)

where B � {b11, b12, b21, b22, ..., bN1 , bN2 } is the set of discrete represen-
tation of V and p(B|V) =

∏N
i=1

∏2
t=1 p(b

i
t|vit). The loss function in

(15) only considers the situation under a minibatch. Usually, the loss
should be optimized over all samples from the replay buffer. With-
out loss of generality, using p(v,m) to denote the distribution of all
query-key sets, the discrete contractive loss averaged over all query-
key is:

Lcl = −Ep(v,m)
Ep(B|V)

[log q(m|b)]

= −
∫

p(b,m) log q(m|b)dmdb
(16)

where p(b,m) =
∫
p(v,m)p(b|v)dv. The distribution q(m|b) =∏

k∈B q(m|bk1 , bk2), where B is the replay buffer, defined as:

q(m|b1, b2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 + e−λb1b
T
2

, if m = 1,

e−λb1b
T
2

1 + e−λb1b
T
2

, if m = 0.

(17)

Using the fact that the KL-divergence is always positive [1],
we can derive the inequality

∫
p(b,m) log p(m|b)dmdb >∫

p(b,m) log q(m|b)dmdb. According to this inequality, we have:

Lcl ≥ −
∫

p(b,m) log p(m|b)dmdb = H(M |B) (18)

where M and B denote the random variables of similarity and dis-
crete state representations, respectively. Then, subtracting entropy
H(M) on both sides, we obtain:

Lcl −H(M) ≥ −I(M,B) (19)

Algorithm 1: DIB for Reinforcement Learning

1 Initialize the query and key encoders fθ1 and fθ2 .
2 Initialize the parameters φ for the base RL algorithm.
3 A replay bufferR = ∅.
4 Given a batch of training samplesN , the loss function for the

base RL algorithm is LRL(fθ1 , φ;N ).
5 for t = 1, 2, ..., T do

6 Rollout the current policy and store the samples to replay
bufferR;

7 Draw a batch of samplesN fromR;
8 Update the parameters with the loss fuction:

LRL + LDIB .
9 end

where the equality I(M,B) = H(M) − H(M |B) is used. From
Eq. (19), Lcl−H(M) is actually an upper bound of the negative mu-
tual information,−I(M,B). Since H(M) is a constant, minimizing
the loss Lcl is equivalent to minimizing the upper bound of negative
mutual information. Therefore, we can conclude that the proposed
discrete contrastive loss, Lcl, essentially maximizes the mutual in-
formation, i.e., maxθ I(M,B).

Learning under IB. Information bottleneck (IB) [30] is to maximize
the mutual information between the representations and their label.
The objective of IB is to maximize LIB as follows:

LIB = I(M,B)− βI(B, V ) (20)

where β is a Lagrange multiplier, V the random variable of the input.
Apparently, our DIB can be understood under the IB framework by
setting β to 0. According to recent work [1], better semantic repre-
sentations can be obtained if an appropriate value of β is selected.
Subsequently, we can train our model under the broader IB frame-
work by taking the I(B, V ) into account. We seek to maximize the
lower bound of I(B, V ) due to its computational intractability. Ac-
cording to [1], we can obtain:

I(B, V ) ≤ Ep(v)[KL(p(b|v)|q(b))] (21)

where q(b) can be any distribution of b. Combing (18) and (21), we
can obtain the lower bound for LIB :

LIB ≥ −Lcl − βEp(v)[KL(p(b|v)|q(b))] +H(M) (22)

In our experiments, we set q(b) = p(b|vk2 ) for query vk1 ; and q(b) for
key vk2 can be defined similarity. Through making close the encod-
ing distributions from different views of the same observation, our
model is able to eliminate redundant information from different aug-
mentations. Therefore, the overall objective function of DIB can be
formulated in the following:

LDIB = L1 + βEp(v)[KL(p(b|v)|q(b))] (23)

Intuitively, by encouraging the encoding distributions from different
views of the same observation close to each other, the model can
eliminate superfluous information from each view.

4.3 Incorporating DIB in RL

The training architecture is shown in Figure 1. We adopt DIB as an
auxiliary task (as described in Algorithm 1) that helps the agent to
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Table 2: Performance comparison of DIB and baselines on DeepMind Control suite at 100K and 500K environment steps. The results of all
methods show the mean and standard deviation averaged three runs with different seeds.

500K Environment Steps DIB (Ours) Dreamer-v2 DrQ-v2 CURL SAC-state

Finger-Spin 983 ± 1 415± 111 788± 123 815± 90 820± 20
Cartpole-Swingup-Sparse 757 ± 24 742± 24 383± 343 14± 9 755± 12

Reacher-Easy 978 ± 3 664± 75 751± 217 789± 107 788± 357
Cheetah-Run 592± 38 538± 98 602 ± 33 272± 35 454± 41
Walker-Run 593 ± 61 434± 61 436± 136 198± 21 632± 40
Cup-Catch 968 ± 5 749± 246 843± 172 739± 137 969± 5

100K Environment Steps

Finger-Spin 806 ± 72 324± 52 325± 292 582± 48 621± 55
Cartpole-Swingup-Sparse 31 ± 23 20± 13 22± 7 0± 0 533± 229

Reacher-Easy 545 ± 56 157± 60 249± 138 335± 130 729± 76
Cheetah-Run 447 ± 28 253± 65 273± 123 145± 51 203± 13
Walker-Run 140 ± 18 120± 21 103± 63 76± 19 246± 52
Cup-Catch 616 ± 199 318± 212 358± 228 572± 271 949± 7

(a) Cheetah-run (b) Reacher-easy (c) Cup-Catch

(d) Finger-spin (e) Cartpole-swingup (f) Walker-walk

Figure 2: The examples of continuous control tasks from the DMC.

learn a useful low-dimensional state representation. We simultane-
ously train our DIB with the RL agent by adding LDIB as an aux-
iliary objective during training. The policy and value function in RL
can directly take the representation of state to allow the models in RL
to backprop to our encoder. This further improves the performance
by accommodating the learned representations with the policy/value
function. We demonstrate the effectiveness of DIB by building the
agents on top of SAC in continuous control tasks in the next section.

5 Experiments

In this section, we implement DIB on the commonly used contin-
uous control tasks from DeepMind Control Suite (DMC) [29]. We
first present a comparison to prior methods, both model-free and
model-based, in terms of sample efficiency and performance. We
then present some ablation studies that guided the final version of
DIB. Finally, we analyze the representations learned by DIB and
CURL to explain why our method works.

5.1 Setups

Environments. We evaluate our DIB and the baselines on con-
tinuous control tasks using simulated robots from DMC, a widely
used benchmark for visual RL. We choose the set of tasks based on
those considered in CURL [20]. Specifically, we replace the Cartpole

Swingup and Walker Walk with their more challenging counterparts,
including Cartpole Swingup Sparse and Walker Run, and keep the
remaining tasks.

Baselines. For DeepMind Control Suite with image inputs, we com-
pare the following methods:

• Dreamer-v2 [11], a leading model-based RL agent that learns be-
haviors from a compact latent space of a discrete world model.

• CURL [20], performing off-policy control on top of the features
extracted from the raw pixels using contrastive learning.

• DrQ-v2 [33], an off-policy actor-critic approach that uses data
augmentation to learn policies directly from pixels.

• SAC-state [8], a basic actor-critic method using low-level state-
based features as input.

Implementation Details. We use the SAC algorithm as the objec-
tive algorithm to work with DIB. This new algorithm is built on top
of the publicly released implementation from CURL [20]. We add a
discrete layer with a dimension of 64 in the state encoder for discrete
state representation learning. The scale factor λ is set to 0.1, and the
Lagrange multiplier is set to 0.05. The batch size for DIB is set to
256, while for the other baselines it is set to 512. Per common prac-
tice [20, 33], we employ the same action repeat of CURL and mea-
sure performance/sample efficiency in the environment steps, rather
than the actor steps. The complete list of hyper-parameters is in the
Appendix. All the experiments are performed on a computer with In-
tel I7- 4790K@4.0GHz CPU, GTX1080Ti GPU, and 64GB RAM.
Each seed for DMC benchmarks takes about 3 days to finish.

Evaluation Protocol. In this work, we measure the Performance and
Sample efficiency of our method and baselines.

• In terms of performance, we follow the evaluation protocol of
CURL [20]. We evaluate performance by measuring the ratio of
the episode returns achieved by DIB versus the baselines at 100k
and 500k environment steps.

• In terms of sample efficiency, we follow the evaluation protocol of
DrQ-v2 [33]. We facilitate this comparison by computing an algo-
rithm’s performance measured by episode return with respect to
environment steps. For each task, we train each model for 1M en-
vironment steps. Specifically, for CURL and SAC-state, we train
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Figure 3: Learning Curves in DMC environment. DIB significantly outperforms all visual baselines on Cup Catch, Finger Spin, Walker Run, and Reacher easy.

them for 1M environment steps (about 125-500k actor steps with
different action repeat). For Dreamer-v2 and DrQ-v2, the open-
source implementations provide learning curves for DMC tasks.

In all figures and tables, the mean and standard deviation are com-
puted from three random seeds.

5.2 Comparison to Baselines

We show the performance scores and learning curves in Table 2 and
Figure 3 achieved by DIB and baselines.

Performance Comparison. From Table 2, we can see that DIB is
the only visual RL method that achieves comparable or even better
performance than state-based SAC on all DMC tasks. Specifically,
in the task on Finger spin, Cartpole swingup sparse, and Cup Catch,
DIB operating purely from pixels outperforms SAC operating from
the low-dimensional physical state. We also notice that the standard
deviation of DIB is significantly lower than the other visual base-
lines. This low standard deviation of our DIB indicates that 1) Our
DIB can easily achieve close to optimal behavior; 2) The proposed
discrete state representation can improve the training stability in the
continuous control task of DMC under a small batch size. Therefore,
our results suggest for the first time that discrete state representa-
tion can be beneficial to modal-free RL agents for continuous control
tasks.

Sample Efficiency Comparison. The results in Figure 3 reveal that
DIB outperforms model-free and the leading model-based methods
in terms of sample efficiency across the six benchmarks. In com-
parison with CURL, a basic contrastive learning-based RL method,
one can notice that DIB converges faster, is more stable, and has a
smaller variance. Notably, the advantage of DIB is more pronounced
on more challenging tasks (Cartpole Swingup Sparse, Cheetah Run,
and Walker Run), where the exploration is especially challenging.
As DIB can solve visual control problems with a small batch size,

Table 3: Performance comparison between DIB and its variants on
DeepMind Control suite at 100K and 500K environment steps. The
results of all methods show the mean and standard deviation averaged
three runs.

500K Environment Steps DIB DIBα DIBβ

Finger-spin 983 ± 1 944± 32 803± 104
Cartpole-swingup-sparse 757 ± 24 699± 19 29± 15

Reacher-easy 978 ± 3 896± 95 825± 121
Cheetah-run 592 ± 38 551± 41 331± 23
Walker-run 593 ± 61 546± 103 177± 30
Cup-catch 968 ± 5 963± 13 784± 159

100K Environment Steps

Finger-spin 806 ± 72 669± 103 610± 31
Cartpole-swingup-sparse 31 ± 23 14± 11 5± 8

Reacher-easy 545 ± 56 370± 73 352± 121
Cheetah-run 447 ± 28 342± 13 301± 57
Walker-run 140 ± 18 135± 8 88± 20
Cup-catch 616 ± 199 587± 147 550± 243

our algorithm does not require high hardware demands and can run
on a single GTX1080Ti GPU. This demonstrates that DIB is supe-
rior to existing contrastive learning-based RL algorithms in terms of
computational efficiency.

5.3 Parameter Analysis

There are several key parameters, i.e., λ and the bits number of dis-
crete representation, in the proposed DIB. To study the influence of
parameters, we conduct experiments by varying the value of one
parameter while fixing the others. Figure 4 (a) shows the learning
curves on Pendulum Swingup task and (b) shows the episode return
for 100k interactions in the finger spin task. We observe that promis-
ing results could be expected as long as λ and bit number are chosen
properly, i.e., λ = 0.1 and bits = 64. Our experience demonstrate
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(a) (b)

Figure 4: Performance influence of parameter λ and different bits of discrete representations.

that compact representations can achieve better control in complex
visual environments. A high feature dimension may introduce addi-
tional noise, leading to decision-making errors by the agent.

5.4 Ablation Study

To further verify the effectiveness of the proposed method, we here
compare with several baselines which are special cases of DIB: (1)
DIBα represents DIB without the IB loss; (2) DIBβ indicates DIB
without the discrete contrastive loss, which performs off-policy con-
trol on top of the continuous feature. We train the ablated versions in
DMC tasks. The performance scores shown in Table 3 demonstrate
that both components are essential and effective for visual RL. We
also find that DIBβ outperforms CURL on most DMC tasks, as the
IB loss we designed in Eq. (22), can learn a concise representation by
eliminating superfluous information from query and key. In addition,
these results demonstrate that a good representation does improve the
performance of visual RL.

5.5 Representation Analysis

We analyze the learned representation of DIB and CURL to demon-
strate that our method attains a better representation, which may ex-
plain why our discrete representation succeeds. We show the cosine
similarity of the representations between positive query-key pairs
during the training on the task of Cheetah Run in Figure 5. First, the
results in Figure 5 and the learning curves in Figure 3 show that when
a good policy is learned, the representations of positive pairs learned
by contrastive learning are similar. This may indicate that the con-
trastive learning-based RL algorithm learns policy better when the
contrastive learning converges faster. In comparison to CURL, we
find that the representations of the positive query-key pairs in DIB
are more similar and converge faster. Therefore, we conclude that
our contrastive loss can significantly accelerate the convergence of
contrastive learning in RL, which makes DIB learn faster.

5.6 Training Time

Since our DIB requires an additional discrete learning algorithm,
there may be concerns about the increase in training cost. To ad-
dress this, we compare the training time of CURL and DIB. In Table
4, we report the training times of CURL and DIB for 1K interaction
steps (which includes both interactions with the environments and
updates of model parameters) across 6 DMControl tasks. Under the
same batch size setting (512), DIB is on average 8% more computa-
tionally efficient than CURL.

Figure 5: The cosine similarity between the representations of the query and
its positive key during the training of CURL and DIB.

Table 4: Comparison of training time (1K interaction steps) between
CURL and DIB.

Task CURL (512) DIB (512)

Finger-spin 163.1 149.1(−8.6%)
Cartpole-swingup-sparse 160.2 146.1(−8.8%)

Reacher-easy 162.10 147.7(−9.2%)
Cheetah-run 171.6 157.2(−8.1%)
Walker-run 177.9 164.9(−7.3%)
Cup-catch 165.4 151.3(−8.4%)

6 Conclusion

In this paper, we propose DIB, a discrete information bottleneck ap-
proach for RL. We design a new discrete contrastive loss to enable
our model to learn more discrete state representations. Through this
loss, our method can carry out stable algorithm training without a
large batch size. From a theoretical perspective, we demonstrate the
strong connection between the proposed discrete contrastive loss and
mutual information. We have proven that the learning approach con-
forms to the learning principle of the information bottleneck theory.
Extensive experiments on the DeepMind control suite have shown
that our DIB can achieve state-of-the-art sample efficiency and per-
formance on continuous control tasks. Our DIB provides a start-
ing point to extend such discrete representation improvement to the
model-free setting, as well.
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