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Abstract. Emotion recognition in conversations (ERC) typically
requires modeling both intra- and inter-speaker context dependen-
cies. However, when modeling inter-speaker dependencies, it may
not capture differences among other participants in the conversation.
Recent ERC research has attempted to improve utterance representa-
tions by utilizing speakers’ commonsense knowledge. Nonetheless,
these studies ignore the causal consistency in knowledge between the
two participants, which contradicts the above modeling of speaker-
sensitive context dependencies. Additionally, it is observed that his-
torical utterances from various topics are blindly leveraged in context
modeling, which fails the inter- and intra-topic coherence. To ad-
dress these issues, we propose the topic- and causal-aware interactive
graph network (TCA-IGN). Specifically, we suggest a graph encoder
to model topic-level context dependencies, achieving inter- and intra-
topic coherence. The topics of utterances are derived from a context-
sensitive neural topic model. Then, we present a causal-aware graph
attention to keep the speaker’s causal consistency in commonsense
knowledge, improving speaker-level context modeling. Finally, con-
sidering the defect of modeling inter-speaker or inter-topic context
dependencies, we employ supervised contrastive learning to sweeten
it. Experimental results show that TCA-IGN outperforms state-of-
the-art methods on three public conversational datasets.

1 Introduction

Emotion recognition in conversations (ERC) has received consider-
able attention [14, 37, 38] due to its potential applications in several
areas, like recommendation systems and dialogue generation [36].

According to the emotion generation theory [10] and emotional
dynamics of conversations [31], existing efforts focus on modeling
speaker-sensitive context dependencies, including recurrent-based
network [12, 23, 15], transformer-based network [21], and graph-
based network [8]. However, all these methods rely on future utter-
ances to determine the emotion of the current utterance, which is not
feasible to achieve in a real-life scenario. And they ignore the dif-
ferences among other participants in the modeling context. This can
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be intuitively understood as the impact of others in a conversation on
the current speaker is necessarily different.

More importantly, these context- and speaker-sensitive methods
are not able to work like a human because of the lack of common-
sense knowledge [36]. Recently, the birth of if-then commonsense
knowledge generated by the COMET [2] brings vitality to enriching
the utterance representation in ERC [6]. The COMET is an genera-
tive model trained on the ATOMIC dataset [32] (containing 9 if-then
relationships shown in Fig. 1, i.e. {xEffect, xWant, xReaction, xIntent,
xAttribute, xNeed } ∈ X of speakers. And {oEffect, oReaction,
oWant } ∈ O of listeners.). For example, Ghosal et al. [6] proposed
the COSMIC to model the speaker’s psychological state by lever-
aging the COMET, for better utterance representations. Then Li et
al. [19] further built the SKAIG to model the speaker’s structured
psychological interactions. Unfortunately, these methods only uti-

Then all of a sudden they gave him a microphone, 
he asked me to marry him, like, onstage. 

# 1

He was doing so well. # 2

Johnny died yesterday, we knew that it 
was coming, but... 

# 3

Like just last week, he was doing so well. # 4

Person A Person A Person B

xEffect: gets excited
xReact: happy
xWant: to kiss me
xIntent: to propose to me
xAttr: romantic
xNeed: to get the mic

xEffect: cries
xReact: sad
xWant: to get a funeral
xIntent: to know
xAttr: scared
xNeed: to have a funeral

xEffect: gets complimented
xReact: happy
xWant: to continue practicing

xEffect: gets complimented
xReact: happy
xWant: to relax

oEffect: i feel sad
oReact: sad and depressed
oWant: to mourn

oEffect: blushes
oReact: happy
oWant: to get married

Figure 1. Utterances from [48] related to specific topics convey distinct
emotions. Utterances on the same topic use a consistent color scheme.

lize external commonsense knowledge to improve the utterance rep-
resentations and fail to meet the emotional dynamics of conversa-
tions [31], as they do not take into account the speaker’s causal con-
sistency (SCC) in knowledge. The SCC means when two utterances
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are from different speakers, {xEffect, xWant, xReaction } of the for-
mer and {oEffect, oWant, oReaction } of the latter need to be consis-
tent. Whereas if the two utterances are from the same speaker, X of
the former and latter need to be consistent, blending with speaker-
level context modeling. From Fig. 1, we can see that the SCC can
effectively differentiate between utterance 1 and utterance 3, prompt-
ing context modeling.

Additionally, topics, the basic knowledge of conversations, play a
vital role in dialogue modeling [40] and generation [46]. In partic-
ular, modeling inter- and intra-topic coherences in conversations is
practical for modeling dialogue context [41]. In Fig. 1, the phrase
"He was doing so well" conveyed different emotions depending on
the topic it was associated with, which is unsolvable for a topic-
agnostic ERC model. But there is scarcely work centralizing on topic
modeling in ERC, which causes the mixture of utterances with vari-
ous topics in context modeling and fails the inter- and intra-topic co-
herences. For example, Zhu et al. [48] borrow the encoder-decoder
architectures leveraging the pre-trained language model to model
high-level syntactic features as the topic but still tend to neglect the
inter- and intra-topic propagation.

Based on the above, we propose a topic- and causal-aware inter-
active graph network (TCA-IGN) to keep the SCC and achieve inter-
and intra-topic coherences. More concretely, we present a causal-
aware graph attention network (CAGAT) to model the SCC in com-
monsense knowledge to meet the emotional dynamics of conversa-
tions, promoting the speaker-level graph context encoder (SGCE).
Moreover, we explore a context-sensitive neural topic model [24]
(CNTM) to obtain topics, incorporating the concept-level knowledge
retrieved from SenticNet [4] to enrich short utterances. Then we em-
ploy the topics to model inter- and intra-topic context dependencies
in the topic-level graph context encoder (TGCE). In addition, to fill
the gap of insensitive context modeling to different speakers and
topics, we introduce supervised contrastive learning (SCL) to cap-
ture correlations and differences between utterance representations
according to their speakers and topics, enhancing the modeling of
inter-speaker and inter-topic context dependencies. To sum up, the
main contributions of this paper can be summarized as follows:

• We are the first to model topic-level context dependencies and
keep the SCC in commonsense knowledge to supplement speaker-
level context dependencies in ERC.

• We introduce SCL to differentiate utterance representations with
different topics and speakers, respectively, improving the inter-
speaker and inter-topic context modeling.

• Experimental results demonstrate that our proposed method out-
performs state-of-the-art ERC methods.

2 Related Work

2.1 Emotion Recognition in Conversations

Context-sensitive Models: The generation of emotions is influenced
by contextual information according to the emotion generation the-
ory [10]. Therefore, RNN-based models [29] are commonly em-
ployed to capture context dependencies. However, they may not
be capable of distinguishing between various contexts [21], that
is, historical utterances. To address this limitation, memory net-
works [12, 15] have gained more attention. Moreover, the role of
participants in ERC plays a crucial role in determining the speaker’s
emotional state [31]. To model the speaker-level context, researchers
have focused more on speaker-specific models [23], graph-based
models [26], and so on. For example, Majumder et al. [23] utilized

three GRUs to track global context, speaker state, and emotional state
in conversations. Shen et al. [33] employed a graph-based model to
model self- and inter-speaker dependencies.
Knowledge-sensitive Models: While previous studies have achieved
impressive performance in ERC, they still fall short of human-like
conversational abilities due to the lack of commonsense knowl-
edge [47]. To address this, Ghosal et al. [6] employed GRUs to
model participants’ psychological states in conversations and gen-
erated commonsense knowledge from COMET. Li et al. [19] intro-
duced the SKAIG model to further capture the structural psychologi-
cal states. Recently, Zhao et al. [45] developed a causal-aware model
that utilizes generated commonsense knowledge to capture contex-
tual information. However, these models fail to meet the emotional
dynamics of conversations [31], as they do not consider the SCC in
commonsense knowledge.

2.2 Topic Modeling

Traditional approaches utilize topic models for inferring latent se-
mantics of a document, such as probabilistic latent semantic analy-
sis [13] and latent Dirichlet allocation (LDA) [1]. However, recently,
the neural topic model (NTM) [24] has gained popularity due to the
success of neural variational inference [17]. NTM can infer a latent
distribution to capture the underlying semantics of a document. In
previous research, topic models were utilized to aid in text classifi-
cation. For instance, Zeng et al. [44] attempted to address the issue
of data sparsity in short text categorization by using a topic model.
In ERC, Zhu et al. [48] utilized the pre-trained language model to
model high-level syntactic features as topics. However, these meth-
ods only employ the topic model as a sentence encoder. In contrast,
we propose an NTM for annotating utterances in conversations to
model inter- and intra-topic coherences.

2.3 Contrastive Learning

Chen et al. [5] introduced SimCLR, a contrastive learning (CL) net-
work that uses diverse image augmentation techniques to generate
positive and negative samples for visual representation. In NLP, Yan
et al. [42] proposed a self-supervised CL method for fine-tuning
BERT in response to poor performance in semantic text similarity
tasks. Kim et al. [16] investigated a CL approach without data aug-
mentation, utilizing BERT with both frozen and fine-tunable param-
eters to generate positive and negative samples. Gunel et al. [11] ex-
tended the self-supervised CL method to a fully-supervised CL set-
ting to enhance performance in few-shot learning scenarios. In ERC,
Li et al. [20] attempted to employ SCL to separate utterances with
different emotions to improve emotion identification. No relevant
work has been conducted on unsupervised CL in ERC.

3 Methodology

Our proposed TCA-IGN consists of three primary components:
utterance-level context encoder, speaker- and topic-level GCE, and
SCL modules. The overall architecture is as shown in Fig. 2.

3.1 Problem Definition

Let a conversation C = {u1, u2..., un}, where n is the number of
utterances. Each utterance ui is uttered by one of speakers S =
{s1, s2..., sm} and comprises nk tokens. Given a pre-defined emo-
tion label set Y = {y1, y2, ..., yn}, the ERC task aims to predict the
emotion label yi of each utterance ui in conversations.
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Figure 2. The proposed TCA-IGN for ERC. Different colors of the circles represent different speakers, while the different colors of the circle edges represent
different topics. The topics utilized in TGCE and SCL modules are both derived from CNTM.

3.2 Utterance-level Context Encoder

In ERC, it is critical to extract contextual information (i.e. surround-
ing utterances) of the current utterance ui [29]. However, using fu-
ture utterances to determine the emotion of the current utterance is
not practical in a real-life scenario. Therefore, we define the histori-
cal utterances uj , ∀j < i can be considered as its context. Then, we
utilize the pre-trained model Roberta [22] to encode ui and employ
GRUs to obtain the utterance representation H(ξ)

1 ∈ R
dh , ∀ξ ≥ 1:

ri = Roberta(ui) (1)

H(0)
i = ReLU(Linear(ri)) (2)

H(ξ)
1 =

−−−→
GRUu(H(ξ−1)

1 ) +
←−−−
GRUu(H(ξ−1)

1 ) (3)

where ri ∈ R
de is the de-dimension hidden states of ui after ap-

plying the Roberta extractor. H(0)
i ∈ R

dh represents the output of a
linear transformation with ReLU activation to ui.

3.3 Speaker-level Graph Context Encoder

3.3.1 Graph Construction:

Unlike the previous graph construction [7, 19, 38], they utilize
future utterances to update the current utterance node. Following
the approach described in [33], we build a directed graph G =
(V, E ,R,A) to model context dependencies. ui ∈ V and rk ∈ R
represent the utterance node and edge type, respectively. ei,j =
(ui, rk, uj) ∈ E , ∀j > i denotes the edge between node i and j.
αi,j ∈ A is the weight of ei,j . Specifically, the utterance-level con-
text encoder initializes each utterance node ui. The construction of
edges E is based on a hypothesis that utterances are all dependent on
nw window-size historical utterances and themselves in a conversa-
tion. And each window contains an utterance spoken by the current
speaker si as most. R of an edge ei,j is set depending upon speaker
and topic of utterances. W is assigned based on SGCE and TGCE.

3.3.2 CAGAT:

For each node at each layer, the graph attention network (GAT) ag-
gregates the information of its neighboring nodes as follows.

α
(ξ)
†,i,j = Softmaxj∈Nr (W(ξ)

e [H(ξ−1)
i ⊕H(ξ)

j ]) (4)

Q(ξ)
†,i =

∑
j∈Nr

Mx(α
(ξ)
†,i,jW(ξ)

c H(ξ)
j ) +Mo(α

(ξ)
†,i,jW(ξ)

s H(ξ)
j ) (5)

where Q(ξ)
†,i is the speaker-level context representation of ui. Nr

denotes the set of neighboring nodes. ⊕ represents the concatena-
tion operation. W(ξ)

e ∈ R
dh×2dh , W(ξ)

c ∈ R
dh×dh , and W(ξ)

s ∈
R

dh×dh represents projection parameters of the model. Mx =

[si=sj ] and Mo = [si �=sj ] denote the indicator function, used to
model the intra- and inter-speaker context dependencies.

To enrich utterance representations, existing methods [6, 19, 45,
48] typically incorporate knowledge in the following forms.

α̂
(ξ)
†,i,j = Softmaxj∈Nr (W(ξ)

e [H(ξ−1)
i ⊕ (H(ξ−1)

j ;Kj)]) (6)

α̂
(ξ)
†,i,j = Softmaxj∈Nr (W(ξ)

e [(H(ξ−1)
i ;Ki)⊕ (H(ξ−1)

j ;Kj)]) (7)

where Ki is the subset of 9 if-then relationships for the i-th utter-
ance. ; stands for the aggregation method, including concatenation,
summation, or attention-based methods. Obviously, the forms did not
consider the SCC in commonsense knowledge, which goes against
the emotional dynamics of conversations. Therefore, we develop the
GAT to CAGAT, blending with speaker-level context modeling.

α
(ξ)
±,i,j = Softmax

si=sj
j∈Nr

(Ŵ(ξ)
x [X̂ (ξ−1)

i ⊕ X̂ (ξ)
j ]) (8)

α
(ξ)(s)
‡,i,j = Softmax

si=sj
j∈Nr

(W(ξ)
x [X (ξ−1)

i ⊕X (ξ)
j ]) (9)

α
(ξ)(d)
‡,i,j = Softmax

si �=sj
j∈Nr

(W(ξ)
o [X (ξ−1)

i ⊕O(ξ)
j ]) (10)

Q(ξ)
±,i =

∑
j∈Nr

α
(ξ)
±,i,jŴ(ξ)

p H(ξ)
j (11)

Q(ξ)(s/d)
‡,i =

∑
j∈Nr

α
(ξ)(s/d)
‡,i,j W(ξ)(s/d)

p H(ξ)
j (12)

where Q(ξ)
‡,i and Q(ξ)

±,i are causal-aware context representation and

initialized to 0. α
(ξ)(s/d)
‡,i and α

(ξ)
±,i are attention weights of CA-

GAT. X (ξ) ∈ R
3dx and X̂ (ξ) ∈ R

3dx contains 3 if-then rela-
tion types: {xEffect, xWant, xReaction } of speakers and {xIntent,
xAttribute, xNeed } of speakers, respectively. O(ξ) ∈ R

3dx includes
the {oEffect, oReaction, and oWant } of listeners. W(ξ)

x ∈ R
dh×6dx ,

Ŵ(ξ)
x ∈ R

dh×6dx , W(ξ)
o ∈ R

dh×6dx , W(ξ)(s/d)
p ∈ R

dh×dh , and
Ŵ(ξ)

p ∈ R
dh×dh represent projection parameters.
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3.4 Topic-level Graph Context Encoder

3.4.1 CNTM

Encoder-decoder: We utilize the Bag-of-Words (BoW) approach to
represent documents, where each utterance in a conversation is con-
sidered a document. To enrich short documents, we retrieve emotion
concept-level knowledge from SenticNet [4] that provides a set of
semantics associated with natural language concepts. Our document
is represented as a BoW vector w, where each element wi repre-
sents the frequency of the i-th word of the document in the vocab-
ulary. The encoder of our CNTM is a parallel structure of a multi-
layer perceptron (MLP) and LSTM network, which maps w to an
output layer that contains k units. The encoder ensures fast conver-
gence while capturing contextual topic information, which to some
extent guarantees the coherence of the topic in a conversation. We
then apply the softmax function to derive the document-topic vector
θ ∈ RK . The encoder serves as the recognition network, enabling
inference: Q(θ|w), which is approximately equal to a prior distribu-
tion of w, P(θ|w). A deterministic encoder can be used instead of
a variational autoencoder, which is both conceptually and computa-
tionally simpler. Q(θ|w) is a Dirac Delta distribution. Given θ, the
decoder structure is similar to the encoder and maps θ to an output
layer that contains nv units. We then apply the softmax function to
obtain a probability distribution ŵ ∈ R

nv over the words.
Training: In the autoencoder, the reconstruction loss is calculated as
the negative cross-entropy loss between the BoW w and its estimated
value ŵ obtained from the decoder. Mathematically, we have:

C(w, ŵ) = −
∑nv

j=1
wi log(ŵj) (13)

For distribution matching, following [25], we employ maximum
mean discrepancy (MMD) [9] with information diffusion kernel [18]
to match high-dimensional Dirichlet distributions [1].

M̂MD(Q,P) = 1
m(m−1)

∑
i�=j

K(θi, θj)

+ 1
m(m−1)

∑
i�=j

K(θ′i, θ′j)− 2
m2

∑
i,j

K(θi, θ
′
j)

(14)

K(θ, θ′) = exp
(
−arccos2

(∑K

k=1

√
θkθ′k

))
(15)

where m samples {θ1, ..., θm} and {θ′1, ..., θ′m} are sampled from Q
and P, respectively. In practice, the reconstruction loss C(w, ŵ) may
be significantly greater than the regularization term M̂MD(Q,P).
To balance the two factors without introducing an additional hyper-
parameter, we assume the document with length dl, including dl
unique words and the decoder output is completely uninformative,
i.e. ŵi = 1/nv, i = 1, ..., nv . Then the reconstruction loss can be
expressed as dllog(nv). And we can normalize the reconstruction
loss to 1 by scaling it by 1/ (dllog(nv)).

3.4.2 Topic-aware Context Modeling:

To model the topic-level context dependencies, we aggregate the
neighboring nodes with the same topic as follows.

Q(ξ)
§,i =

∑
j∈Nr

Mt(α
(ξ)
†,i,jW(ξ)

t H(ξ)
j ) +Md(α

(ξ)
†,i,jW(ξ)

d H(ξ)
j ) (16)

where W(ξ)
t ∈ R

dh×dh and W(ξ)
d ∈ R

dh×dh are projection pa-
rameters. Mt = �[zi=zj ] and Md = �[zi �=zj ] denote the indicator

function, where zi ∈ Z ∈ R
K is the topic of the ui. Then we can

obtain the new utterance representation H(ξ)
i of the ξ layer.

Q(ξ)
i = W(ξ)

q (Q(ξ)
†,i ⊕Q(ξ)(s)

‡,i ⊕Q(ξ)(d)
‡,i ⊕Q(ξ)

±,i) +Q(ξ)
§,i (17)

H(ξ)
i =

−−−→
GRU�(Q(ξ)

i ,H(ξ−1)
i ) +

←−−−
GRU�(H(ξ−1)

i ,Q(ξ)
i ) (18)

where Q(ξ)
i is the merger of Q(ξ)

†,i , Q(ξ)(s)
‡,i , Q(ξ)(d)

‡,i , Q(ξ)
±,i, and Q(ξ)

§,i .

And W(ξ)
q ∈ R

dh×4dh are projection parameters.

3.5 Model Training

We utilize a linear unit to predict the emotion distributions:

Oi = H(0)
i ⊕H(1)

i ⊕ ...⊕H(ξ)
i ⊕ ri (19)

Ŷi = Argmax(Softmax(WrOi + br)) (20)

where Wr ∈ R
dh×((ξ+1)dh+de) and br are the projection parameter

and bias. Ŷ ∈ R
n is the predicting emotional label set of utterances.

Le = CrossEntropy(Ŷ,Y) + β ‖Θ‖2 (21)

where Le is the classification loss. Θ is a set of projection parame-
ters. β represents the coefficient of L2-regularization. To differentiate
different speakers and topics respectively, we introduce Ls and Lt in
modeling inter-speaker and inter-topic context dependencies.

L = Le +ΨsLs +ΨtLt (22)

Ls = − 1

Nb

∑
log �(S) Lt = − 1

Nb

∑
log �(Z) (23)

�(ζ) =

∑Nb
j=1 � [i�=j]� [ζi=ζj ]F(Oi,Oj , τ)∑Nb

k=1 � [i�=k]F(Oi,Ok, τ)
(24)

where Nb is the size of a mini-batch sample B. Ψs and Ψt are tuned
hyper-parameters. F(	, 	, τ) = esimi(�,�)/τ . τ is the temperature
parameter, simi(.) denotes the cosine similarity function.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments on three datasets: IEMOCAP [3],
MELD [30], and EmoryNLP [43]. The statistics of datasets are
shown in Table 1. IEMOCAP comprises interactive sessions be-
tween two individuals, wherein they enact improvisations or scripted
scenarios. Each spoken utterance is annotated with one of the six
emotions: happy, angry, neutral, sad, excited, or frustrated. MELD

is a collection of multi-party conversations extracted from the TV
show Friends. Every utterance in this dataset is tagged with one of
the seven emotions: surprise, fear, disgust, anger, sadness, neutral, or
joy, and one of the three sentiments: neutral, negative, or positive.
EmoryNLP consists of multi-party sessions from the Friends TV
show, where each spoken utterance is labeled with one of the seven
emotions: surprise, fear, disgust, anger, sadness, neutral, or joy, and
one of the three sentiments: neutral, negative, or positive.

4.2 Experimental Settings

We perform a hyper-parameter search for TCA-IGN on each dataset
with a validation set, including learning rate, batch size, dropout
rate, tuned hyper-parameters Ψs/t, the window-size nw for IGN,

G. Tu et al. / Do Topic and Causal Consistency Affect Emotion Cognition? 2365



Table 1. Statistics of experimental datasets.

Dataset Dialogues Utternaces
train val test train val test

IEMOCAP 120 12 31 5,810 1,623
MELD 1039 114 280 9,989 1,109 2610

EmoryNLP 659 89 79 7,551 954 984

Dataset Classes Metric
IEMOCAP 6 Weighted Avg F1

MELD 3 and 7 Weighted Avg F1 over 3 and 7 classes
EmoryNLP 3 and 7 Weighted Avg F1 over 3 and 7 classes

the window-size n̂w for CAGAT, and the number of TCA-IGN lay-
ers nl

1, where ∀ n̂w ≥ nw. And we let du = 1024, τ = 0.07,
dx = 768, and dh = 300 on each dataset. Reported results of TCA-
IGN are all based on the average score of 5 runs on the test set.2

4.3 Baselines

We compare our proposed framework with various ERC baselines,
including RNN-based models: DialogueRNN [23], COSMIC [6],
CauAIN [45]; Memory network: ICON [12], AGHMN [15], and
Graph-based models: DialogueGCN [7], DAG-ERC [33], and
SKAIG [19]; Transformer-based model: KET [47], TODKAT [48],
and CoG-BART [20]. Additionally, we also compare several models
including ChatGPT [28], fine-tuned Roberta-Large [22], and prompt-
tuned Curie3. Curie, an intermediate-to-large scale language model
developed by OpenAI, is equipped with 1.3 billion parameters and
possesses the ability to execute the sentiment classification task with
improved efficacy and precision [27].

5 Experimental Results and Analysis

5.1 Comparison with Baselines

Table 2 shows experimental results, where ♠ indicates models that
use external knowledge, while 
 and � indicate results from the orig-
inal papers and [6], respectively. � represents our reproduced re-
sult. Our proposed TCA-IGN achieves competitive performance and
reaches a new state-of-the-art across all three datasets.

Table 2. Comparison of results against various methods on three public
datasets, expressed in percentage form.

Methods IEMOCAP MELD EmoryNLP
ChatGPT � 40.07 54.37 37.55

Curie � 57.33 65.01 37.40
Roberta � 54.55 62.02 37.29
ICON � 58.54 - -

DialogueRNN � 62.75 57.03 31.70
AGHMN � 63.50 58.10 -

CoG-BART � 66.18 64.81 39.04
DialogueGCN � 64.18 58.10 -

DAG-ERC � 68.03 63.65 39.02
KET � ♠ 59.56 58.18 34.39

COSMIC � ♠ 65.28 65.21 38.11
SKAIG � ♠ 66.96 65.18 38.88
CauAIN � ♠ 67.61 65.46 -

TODKAT � ♠ 61.33 65.47 38.69
Ours ♠ 68.69 66.03 39.84

w/o CAGAT 67.54 (↓ 1.15%) 64.65 (↓ 1.38%) 38.63 (↓ 1.22%)
w/o TGCE 66.94 (↓ 1.75%) 64.52 (↓ 1.51%) 38.17 (↓ 1.67%)
w/o SCL 67.28 (↓ 1.41%) 64.70 (↓ 1.33%) 38.48 (↓ 1.36%)

As shown in Table 2, on IEMOCAP and EmoryNLP datasets,
graph-based models generally perform better than recurrence-based
1 Please refer to the appendix for more detailed hyper-parameter settings.
2 Code and appendix are available at https://github.com/TuGengs/TCA-IGN.
3 Please refer to the appendix for the prompt used for ChatGPT and Curie.

models, suggesting that graph-based models excel at capturing cru-
cial local context, especially in long conversation datasets (e.g. al-
most 70 utterances per dialogue in the IEMOCAP). Our TCA-IGN
performs better than other graph methods because the SCC in com-
monsense knowledge is considered, which can effectively comple-
ment the previous speaker-level context modeling. On MELD, be-
cause the data is collected from TV shows, there may be instances
where two consecutive utterances are not coherent. In such cases, the
advantage of graph-based models in the encoding context may not be
significant. But our TCA-IGN still has a competitive performance,
which may benefit from modeling topic-level context dependencies.
In addition, in multi-party conversation datasets (e.g. EmoryNLP),
the potential of graph-based methods has not been fully unleashed,
so they are not completely superior to other types of methods. This
is mainly because they still construct graph networks in the form of
dyadic conversations. To compensate for this deficiency, we adopted
SCL to differentiate different speakers and topics, respectively.

5.2 Hyper-parameter Analysis

Analysis of nl, nw, and n̂w: Fig. 6 shows the F1 score on valida-
tion datasets for different layer and context window sizes. Increas-
ing nl and nw improves emotion recognition in long conversation
datasets (e.g. IEMOCAP) up to a certain point, after which perfor-
mance declines, because earlier contexts provide minimal useful in-
formation [34] and may add noise to the model. Relatively short con-
versation datasets (e.g. MELD and EmoryNLP) show a distinct pat-
tern, with peak performance achieved with smaller layer and window
sizes followed by fluctuations. However, due to limitations in compu-
tational resources, we were unable to explore larger ranges of layer
and window sizes. Additionally, increasing n̂w almost outperforms
the GAT across different window sizes, indicating that keeping the
SCC in commonsense knowledge can enhance the GAT. And it per-
forms best with larger window sizes, indicating its capacity to capture
a wider range of contextual information and complement the GAT.

Figure 3. Performance of TCA-IGN on the validation set of the IEMOCAP
dataset under different loss weight Ψt.

Analysis of Ψs and Ψt: During training, we fixed the loss weight Ψs

at 1 and varied Ψt. Fig. 3 shows the F1 score on validation datasets
for different Ψt. TCA-IGN almost outperformed the model without
SCL. Smaller Ψt resulted in better performance, as the two SCL loss
items complemented each other. However, increasing Ψt beyond a
certain threshold decreased performance, possibly due to conflicting
effects caused by the excessively large Ψt on another SCL loss item.

5.3 Ablation Study

To analyze the individual impact of each component on the perfor-
mance of TCA-IGN, we conducted an ablation study, and the results
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are presented in Table 2. It is evident that all components have con-
tributed significantly to the overall improvement, as evidenced by the
paired t-test p-value 
 0.05.
Analysis of CAGAT: We use CAGAT to model the SCC in common-
sense knowledge, improving context modeling. Random visualiza-
tion of attention weights, as shown in Fig. 7, shows original weights
are too sparse, limiting context to local information because of nw.
However, CAGAT enlarges the receptive field of the GAT, capturing
richer contextual information, albeit with some unwanted informa-
tion. The SCC ensures benefits outweigh drawbacks, as confirmed
by performance improvement in Table 2.
Analysis of TGCE: We assessed the topic model using metrics such
as topic diversity (td) [35] and coefficient of variation (tc)4, with the
latter being suitable for annotated topics. Our final model had a high
td (>0.6) and the highest tc. In Table 3, we listed the topic words
for each topic in the IEMOCAP dataset and noted that these words
are strongly semantically related within their respective topics. Addi-
tionally, the number of topics K had a significant impact on TGCE,
as shown in Fig. 4. Increasing K initially improved performance un-
til reaching a peak, after which it fluctuated similarly to tc. However,
td decreased as K increased.

Table 3. Part examples of topics in the IEMOCAP dataset.
Topics Examples

1
’discover’, ’booksmart’, ’Burden’, ’bring’, ’forecast’,

’row’, ’annoyed’, ’waited’, ’effort’, ’times’, etc.

2
’newborn’, ’infant’, ’babe’, ’cub’, ’child’,

’break_silence’, ’laugh’, ’confidence’, ’glasses’, ’opposition’, etc.

3
’dealer’, ’monger’, ’bargainer’, ’trader’, ’principal’, ’prevent’,

’thwart’, ’halt’, ’continue’, ’explanation’, etc.

4
’Really’, ’utterly_delightful’, ’Hey’, ’mother’, ’hit’,

’preposterous’, ’Hello’, ’Alright’, ’crazy’, ’Turn’, etc.

5
’silly’, ’nonrational’, ’preposterous’, ’luggage’, ’nuts’,

’dotard’, ’glad’, ’forget’, ’euphoria’, ’contentment’, etc.

6
’Alright’, ’mom’, ’minute’, ’kissed’, ’mother’,
’Hey’, ’Turn’, ’suppose’, ’Wait’, ’Calm’, etc.

Figure 4. Performance of TCA-IGN on the validation set of the IEMOCAP
dataset under a different number of topics.

Analysis of SCL: Fig. 5 shows the t-SNE [39] visualization of the
intermediate representation of TCA-IGN and TCA-IGN w/o SCL.
It demonstrates the convincingness of SCL, pulling utterances with
different topics and speakers away, respectively. And in the dyadic
conversational dataset IEMOCAP, the loss item Ls also plays a role
with a 1.21% improvement, clarifying that stress differences between
the speaker and listeners are also not insignificant.

5.4 Case Study

To better understand the working mechanism of the TCA-IGN
model, we present a case study depicted in Fig. 8, where our model

4 https://en.wikipedia.org/wiki/Coefficient_of_variation

Table 4. Comparison of results against various SCL loss items.
Methods IEMOCAP MELD EmoryNLP

Ours 68.69 65.88 39.84

w/o Ls 67.48 (↓ 1.21%) 64.91 (↓ 1.12%) 38.89 (↓ 0.95%)
w/o Lt 67.54 (↓ 1.15%) 65.06 (↓ 0.97%) 38.64 (↓ 1.20%)

w/o SCL 67.28 (↓ 1.41%) 64.70 (↓ 1.33%) 38.48 (↓ 1.36%)

Figure 5. Visualization of intermediate embeddings of TCA-IGN (left) and
TCA-IGN w/o SCL (right).

can correctly recognize all emotions of utterances. Firstly, potential
topics are extracted through CNTM. Intuitively, incorporating topic-
level context information improves ERC, as evidenced in utterances
11 and 10. Without considering the topics, the emotion of utterance
11 cannot be correctly recognized. Additionally, the impact of con-
text information results in the grouping of utterances 7 and 9 into the
same topic. In Att, utterances 1 and 5 are the most important, while
2, 3, and 4 are of secondary importance, which is clearly inappro-
priate. This is because utterances 4 and 5 are semantically similar
and should carry more weight. Furthermore, due to the context win-
dow limitation, GAT can only extract context from utterances 6 and
7, making it difficult to identify the emotion in the 8 utterance. CA-
GAT complements GAT by highlighting utterances 4 and 5, where
Person A’s xReact and Person B’s oReact are both ’happy’ for the 8
utterance. Additionally, in the speaker-level context modeling for ut-
terance 3 grouping utterances 1 and 2 into the same class would fail
to reflect differences between speakers. Hence, SCL is employed to
address disparities between speakers, which also positively impacts
the prediction results of utterance 3. And Differences between differ-
ent topics can also be addressed in such a way.

Table 5. Analysis of TCA-IGN on Emotional Shifts.
Methods IEMOCAP MELD EmoryNLP

Ours 68.69 66.03 39.84

w/o Emotion Shift 76.94 (↑ 8.25%) 75.61 (↑ 9.58%) 51.20 (↑ 11.36%)
w/ Emotion Shift 63.25 (↓ 5.44%) 57.85 (↓ 8.18%) 34.19 (↓ 5.65%)

5.5 Error Analysis

Most errors in our analysis of the dataset can be attributed to class
imbalance, such as the low F1 score for the ’fear’ emotion as low as
8.76. And we may encounter errors because of setting the topic to
−1 for very brief utterances with a BOW size of 0 after removing
stop words. Furthermore, the commonsense knowledge is heavily re-
liant on the model’s generated responses, which may lead to inaccu-
racies. Additionally, we are also focusing on solving the emotional
shift problem, where consecutive utterances express different emo-
tions, which has been challenging for prior approaches. In Table 5,
TCA-IGN still struggles to perform well on samples with emotional
shifts compared to those without.

6 Conclusion

In this paper, we present a TCA-IGN model for ERC that incorpo-
rates several novel components. Specifically, we introduce a CAGAT
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(a) IEMOCAP (b) EmoryNLP (c) MELD
Figure 6. Performance of TCA-IGN on the validation set of different datasets under different nl (n_l), nw (n_w), and n̂w (n_w2).

(a) Att (b) xAtt (c) oxAtt (d) xxAtt
Figure 7. Visualization of attention weights of TCA-IGN on the MELD dataset. Att, xAtt, oxAtt, and xxAtt represent α†, α(s)

‡ , α(d)
‡ , and α±, respectively.

xAttr: happy; 
xNeed: buy gifts
xIntent: to have 
a good time

Hi! Look! I got our pictures developed 
from Rockefeller Center. (Joy)

#1

Oh great! … do you want to check out 
pictures of me and Mona ice skating? (Joy)

#2

… I would love too,  but I am just 
swamped right now. (Neutral)

#3

Wow, it looks like a, like a holiday card 
y’know, with the tree in the middle and 

the skaters and the snow. (Joy)

#4

… I say I’m gonna send out holiday 
cards and I never do it. (Neutral)

#5

Do you wanna, do you wanna send 
this one out together? (Neutral)

#6

Together? Like-like to people?  (Surprise)#7

Yeah, y’know. Happy holidays from 
Mona and Ross. It’ll be cute, okay? (Joy)
#8

Okay  (Joy)#9

Uh sure, sure. (Neutral)#11
Oh, I gotta get to work. So 

call me later? (Neutral)
#10

Person A Person A Person BPerson B Person C

oEffect: people laugh
oReact: happy
oWant: to have fun

xEffect: gets excited; 
xReact: happy; 
xWant: to go home; 
xAttr: generous; 
xIntent: to be generous; 
xNeed: to buy gifts

xEffect: smiles; 
xReact: happy; 
xWant: have fun

(a) Examples of utterances with three topics.
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(b) Various attention weights of the 8-th utterance

Figure 8. A case from the MELD datasets shows that our model provides all correct predictions. Utterances with the same topic are highlighted with the same
colored border in (a). In (b), the wider the connecting line, the greater the corresponding attention weight.

module to keep the SCC in commonsense knowledge, leading to
improved modeling of speaker-level context and more comprehen-
sive contextual information. And considering the imperfection of in-
sensitive context modeling to different speakers and topics, we em-
ploy SCL to enhance it. Additionally, given that different topics may
evoke different emotions, we propose a TGCE module that leverages
the CNTM to model topic-level dependencies and achieve both intra-
and inter-topic coherence, making it works even when two consecu-
tive utterances are not coherent. Through extensive evaluations and
an ablation study, we demonstrate the superiority of our TCA-IGN
model and the significant impact of its components.
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