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Abstract. A k-submodular function is a generalization of submod-
ular functions that takes k disjoint subsets as input and outputs a real
value. It captures many problems in combinatorial optimization and
machine leaning such as influence maximization, sensor placement,
feature selection, etc. In this paper, we consider the monotone k-
submodular maximization problem under a knapsack constraint, and
explore the performance guarantee of a greedy-based algorithm: enu-
merating all size-2 solutions and extending every singleton solution
greedily; the best outcome is returned. We provide a novel analysis
framework and prove that this algorithm achieves an approximation
ratio of at least 0.328. This is the best-known result of combinatorial
algorithms on k-submodular knapsack maximization.

In addition, within the framework, we can further improve the ap-
proximation ratio to a value approaching 1

3
with any desirable ac-

curacy, by enumerating sufficiently large base solutions. The results
can even be extended to non-monotone k-submodular functions.

1 Introduction

Let V be a set of n items and 2V be the family of all subsets in V . A
submodular function is a set function f : 2V → R such that for all
pairs X,Y ∈ 2V ,

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

The submodularity is characterized by the diminishing return prop-
erty, f(X∪{a})−f(X) ≥ f(Y ∪{a})−f(Y ) for any X ⊆ Y and
a ∈ V \Y . A k-submodular function generalizes a submodular func-
tion in a natural way that captures interactions among k dimensions.
While a submodular function takes a single subset of V as input, a k-
submodular function considers k disjoint subsets of V , and exhibits
the diminishing return property.

Let (k + 1)V := {(X1, . . . , Xk) |Xi ⊆ V ∀i ∈ [k], Xi ∩Xj =
∅ ∀i 	= j} be the family of k disjoint sets, where [k] := {1, . . . , k}.
A function f : (k+1)V → R is k-submodular if and only if for every
k-tuples x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)V ,

f(x) + f(y) ≥ f(x 
 y) + f(x � y), where

x
y :=
(
X1 ∪Y1 \ (

⋃
i �=1

Xi ∪Yi), . . . , Xk ∪Yk \ (
⋃
i �=k

Xi ∪Yi)
)
,

∗ Corresponding Author. Email: chenhwang@bnu.edu.cn.

x � y := (X1 ∩ Y1, . . . , Xk ∩ Yk) .

For a k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V , we define its size by
|x| = | ∪i∈[k] Xi|. We say that f : (k + 1)V → R is monotone, if
f(x) ≤ f(y) holds for any x and y with Xi ⊆ Yi for all i ∈ [k].

Since Huber and Kolmogorov [5] proposed the notion of k-
submodularity one decade ago, there have been increased theoretical
and algorithmic interests in the study of k-submodular functions, as
various problems in combinatorial optimization and machine learn-
ing can be formulated as k-submodular function maximization. The
application scenarios include influence maximization [12, 18], sensor
placement [9, 25], document summarization [7] and feature selection
[25], etc.

• Influence maximization. Given k topics in a social network, we
want to select several influential people for each topic to start its
spread, in order to maximize the population influenced by at least
one topic. This objective function is k-submodular. It models viral
marketing or product recommendation in which a company wants
to spread an advertisement campaign about k products to users via
social networks or the Internet.

• Feature selection. Given k regression targets on a set of features,
feature selection partitions the features into k + 1 subsets so that
one feature can be used in at most one regression target or none
of them, which has important implications in data privacy and
data rights. The feature quality measure can be modeled as a k-
submodular function.

• Sensor placement. Sensor networks, enabled by IoT, provide
real-time monitoring and control to systems such as smart cities
and smart homes, and often call for multiple types of sensors. The
goal of sensor placement with k types of sensors is to maximize
the information obtained from the sensors, which is usually mod-
eled by a k-submodular function [9, 25].

The problem of maximizing a k-submodular function is known to
be NP-hard, since it is a generalization of the NP-hard submodular
maximization problem. Extensive research has been dedicated to de-
veloping efficient algorithms with desirable approximation ratios for
the problem under different constraints, for example, cardinality con-
straints [2, 9, 18], matroid constraints [13, 15], knapsack constraints
[17, 12], and the unconstrained setting [19, 6, 14].

In this paper, we study the k-submodular maximization problem
under a knapsack constraint, called k-submodular knapsack maxi-
mization (kSKM). Each item a ∈ V has a cost c(a), and the total
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cost of the items selected in the solution cannot exceed a given bud-
get B ∈ R+. Given the NP-hardness of the kSKM, we are interested
in approximation algorithms. An algorithm has an approximation ra-
tio of α ≤ 1, if for any problem instance, the function value returned
by the algorithm is no less than α times the optimal value.

Our contributions.

In this paper, we present a 0.328-approximation algorithm for the
monotone kSKM.

For the kSKM, there are two natural heuristics, Enu2 and
Greedy1. The former heuristic enumerates all size-2 solutions and
returns the best one argmaxx:|x|=2 f(x). The latter heuristic first
enumerates all singleton (size-1) solution, and then extends each of
them greedily, that is, maintaining a feasible solution, in each itera-
tion it adds to the current solution a feasible item a in dimension d
that maximizes the marginal density (the marginal value divided by
cost c(a)). Both heuristics do not guarantee any constant approxima-
tion ratio.

We consider the combination of the two heuristics, namely,
Enu2+Greedy1, which returns the better solution between them.
We provide a novel analysis framework, and prove that when the
k-submodular function is monotone, this algorithm has an approxi-
mation ratio 0.328 for the kSKM with O(n3k2) query complexity.
This improves the 1

2
(1 − e−1) ≈ 0.316 approximation by Tang et

al. [17], and is the best-known result of combinatorial algorithms
on the monotone kSKM. Compared with extension-based algorithms
(which can achieve an approximation ratio 1

2
−ε [18], using continu-

ous optimization techniques), combinatorial algorithms have natural
advantages such as higher running efficiency, good interpretability
and usually more intuitive, and thus receive more attention in the
community.

Our analysis relies on an observation for the unconstrained max-
imization problem (Lemma 3). It bounds the optimal value in terms
of the value of partial greedy solution (the incomplete solution in
iterations of greedy procedure) and the marginal gains, and implies
that a partial greedy solution with large enough cost is a good ap-
proximation (Lemma 4). Then our analysis works as follows: if there
is a partial greedy solution with large enough cost before it discards
any item in an optimal solution OPT , then it is good enough. Oth-
erwise, we can identify one or two large-cost items in OPT . And if
these large-cost items are good enough, the enumeration procedure
will find them; otherwise, the rest of the items in OPT are good
enough but have a small cost, so that the greedy procedure can easily
approximate them.

An immediate question is whether the approximation ratio can
be further improved by enumerating more items? We generalize the
Enu2+Greedy1 algorithm to Enup+Greedyp−1, which enumerates
all size-p solutions and greedily extends all size-(p−1) solutions. We
show that it can achieve an approximation ratio sufficiently close to
1
3

when p increases. Further, our analysis framework even applies to
non-monotone cases. For the non-monotone kSKM, Enu2+Greedy1

is 0.249-approximation, and Enup+Greedyp−1 has an approxima-
tion approaching 1

4
.

Organizations. In Section 2 the model and preliminaries are pre-
sented. In Section 3 we give a useful lemma for the unconstrained
maximization problem. In Section 4 we analyze the approximation
of Enu2+Greedy1 for monotone kSKM. In Section 5 we extend the
results to more general algorithms and non-monotone functions. In
Section 6 we discuss the comparison with the work [17] and future
directions.

Related work.

One decade ago, k-submodular functions were introduced by Hu-
ber and Kolmogorov [5] to express submodularity on choosing k
disjoint sets of elements instead of a single set. Subsequently, k-
submodular functions have become a popular research direction
[3, 4, 8, 14, 21], especially the problem of maximizing k-submodular
functions.

For the k-submodular maximization under a knapsack constraint
(i.e., kSKM), Tang et al. [17] were the first to consider it in the com-
munity. When the function is monotone, they claimed that the algo-
rithm that greedily extends all feasible size-2 solution is 1

2
(1 − 1

e
)-

approximation, with a flaw in their proof (as discussed in Section
6). Chen et al. [1] considered the Greedy+Singleton algorithm,
which returns the better one between the greedy solution and the best
singleton solution. This algorithm has been well studied in knap-
sack problems with linear and submodular objective functions due
to its simplicity and efficiency, and Chen et al. proved an approx-
imation ratio 1

4
(1 − 1

e
) for the kSKM. Pham et al. [12] proposed

streaming algorithms with approximation ratios 1
4
− ε and 1

5
− ε for

the monotone and non-monotone cases, respectively, which requires
O(n

ε
log n) queries of the k-submodular function. Other works re-

lated to kSKM include [11, 16, 22, 23, 24]. While all the above
mentioned are combinatorial algorithms, the best known result for
kSKM comes from extension-based methods. Wang and Zhou [18]
presented an algorithm based on multilinear extension that first ex-
tends a k-submodular function to a continuous space and then rounds
the fractional solution. It achieves an asymptotically optimal ratio of
1
2
− ε.
In addition to the knapsack constraint, the problem of maximiz-

ing k-submodular functions subject to non-constraint or other types
of constraints has also received attention from researchers. For un-
constrained monotone k-submodular maximization, Ward and Živnỳ
[19] proved that a greedy algorithm is 1

2
-approximation, and later,

Iwata et al. [6] proposed a randomized k
2k−1

-approximation algo-
rithm, and showed that the ratio is asymptotically tight. Oshima [10]
provided a k2+1

2k2+1
-approximation for unconstrained non-monotone

maximization. For monotone k-submodular maximization under a
total size constraint (i.e., at most a given number of items can be
selected), Ohsaka and Yoshida [9] proposed a 1

2
-approximation al-

gorithm, and for the problem under individual size constraints (i.e.,
in each dimension at most a given number of items can be selected),
they gave a 1

3
-approximation algorithm. Under a matroid constraint,

Sakaue [13] shown that fully greedy algorithm is 1
2

-approximation
for the monotone case, and Sun et al. [15] gave a 1

3
-approximation

algorithm for the non-monotone case.

2 Preliminaries

We introduce more characteristics and notations of k-submodular
functions. Recall that V is the ground set and f is a function mapping
every k-tuple in (k + 1)V to a real value.

Every k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V uniquely corre-
sponds to a set S = {(a, d) | a ∈ Xd, d ∈ [k]} that consists
of item-dimension pairs. That is, an item-dimension pair (a, d) be-
longs to S (called a solution) if and only if a ∈ Xd in x. From
now on, for notational convenience, we write x and its correspond-
ing solution S interchangeably. For any solution S ∈ (k + 1)V , we
define U(S) := {a ∈ V | ∃d ∈ [k] (a, d) ∈ S} to be the set
of items included, and the size is |S| = |U(S)|. For two solutions
S, S′ ∈ (k + 1)V , S ⊆ S′ means that all items in U(S) also belong
to U(S′) and the dimensions are consistent. In this paper, let f be a
non-negative k-submodular function, and we further assume w.l.o.g.
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that f(∅) = 0.
The marginal gain of adding an item-dimension pair (a, d) to S is

Δa,d(S) = f(S ∪ {(a, d)})− f(S),

and the marginal density is Δa,d(S)

c(a)
. A k-submodular function f

clearly satisfies the orthant submodularity

Δa,d(S) ≥ Δa,d(S
′),

∀S, S′ ∈ (k + 1)V with S ⊆ S′, a /∈ U(S′), d ∈ [k],

and the pairwise monotonicity

Δa,d1(S) + Δa,d2(S) ≥ 0,

∀S ∈ (k + 1)V with a /∈ U(S), d1, d2 ∈ [k], d1 	= d2.

Ward and Živnỳ [19] prove this observation and further show that the
converse is also true.

Lemma 1 ([19]). A function f : (k + 1)V → R is k-submodular if
and only if f is orthant submodular and pairwise monotone.

In the kSKM problem, each item a ∈ V has a non-negative cost
c(a), and the cost of solution S is c(S) =

∑
a∈U(S) c(a). The goal

is to find a solution that maximizes the function value within the
given budget B ∈ R+, i.e., maxS∈(k+1)V :c(S)≤B f(S). We point
out the following lemma that will repeatedly and implicitly used in
our analysis.

Lemma 2 ([17]). For any solutions S, S′ with S ⊆ S′, we have

f(S′)− f(S) ≤
∑

(a,d)∈S′\S
Δa,d(S).

3 A useful lemma

Before looking at the kSKM problem, let us first consider un-
constrained maximization problem. Precisely, given a set of items
V ′ = {e1, e2, . . . , em}, we want to find the maximum function
value maxS∈(k+1)V

′ f(S), without any constraint. Due to the mono-
tonicity of the function, an optimal solution for the unconstrained
maximization will select all items. (This statement is even true for
non-monotone functions, because a k-submodular function must be
pairwise monotone, indicating that there always exists a dimension
so that the marginal gain of selecting an item is non-negative.) Thus
the only thing to do is to assign the items in V ′ to the k dimensions. A
natural heuristic is the Greedy (Algorithm 1), which considers items
one by one in an arbitrary order, and assigns each item to the best
dimension each time, that is, the dimension that brings the maximum
marginal gain.

Algorithm 1 Greedy

Input: Set V ′, k-submodular function f
Output: A solution S ∈ (k + 1)V

1: S ← ∅

2: for each item a ∈ V ′ do

3: da ← argmaxd∈[k] Δa,d(S)
4: S ← S ∪ {(a, da)}
5: end for

6: return S

Let T = {(e1, d∗1), . . . , (em, d∗m)} be an optimal solution that
maximizes the function value over V ′. Assume without loss of gen-
erality that the items are considered by Greedy in the order of
e1, e2, . . . , em, and denote the returned greedy solution by S =
{(e1, d1), . . . , (em, dm)}.

For j = 0, 1, . . . ,m, define

Sj = {(e1, d1), . . . , (ej , dj)} and (3.1)

Tj =
(
T \ {(e1, d∗1), . . . , (ej , d∗j )}

) ∪ Sj . (3.2)

That is, Sj is the first j item-dimension pairs in the greedy solution
S (called a partial greedy solution), and Tj is obtained from the opti-
mal solution T by replacing the first j item-dimension pairs with Sj .
Clearly, S0 = ∅, Sm = S, T0 = T and Tm = S.

The following useful lemma says that the optimal value f(T ) is
no more than twice the value of any partial greedy solution St, plus
the total marginal gain of other item-dimension pairs in the optimal
solution. This conclusion is firstly noticed by Ward and Živnỳ (im-
plicitly in Theorem 5.1 [19]) and formalized by Xiao et al. [22]. For
completeness, we write down the proof in our notations.

Lemma 3. If f is monotone, we have f(T ) ≤ 2f(St) +∑
(a,d)∈Tt\St

Δa,d(St), for t = 0, 1, . . . ,m.

Proof. Define an intermediate solution Pj := Tj \ (ej+1, d
∗
j+1) =

Tj+1\(ej+1, dj+1), for j = 0, . . . , t−1. That is, Pj consists of m−
1 items (excluding ej+1), where the dimension of items e1, . . . , ej
align with S, and the dimensions of other items align with T . It is
easy to see

f(Tj) = f(Pj) + Δej+1,d
∗
j+1

(Pj),

f(Tj+1) = f(Pj) + Δej+1,dj+1(Pj).

Then the difference between f(Tj) and f(Tj+1) is

f(Tj)− f(Tj+1) = Δej+1,d
∗
j+1

(Pj)−Δej+1,dj+1(Pj)

≤ Δej+1,d
∗
j+1

(Pj) (3.3)

≤ Δej+1,d
∗
j+1

(Sj) (3.4)

≤ Δej+1,dj+1(Sj) (3.5)

= f(Sj+1)− f(Sj).

Eq. (3.3) comes from the monotonicity of f , and Eq. (3.4) comes
from the fact of Sj ⊆ Pj . Eq. (3.5) follows from the fact that Greedy

always assign the item considered to the dimension with maximum
marginal gain, and (ej+1, dj+1) is the (j + 1)-th pair added. Sum-
ming this inequality from j = 0 to t− 1, we obtain

f(T0)− f(Tt) ≤ f(St)− f(S0) = f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T ) ≤ f(St) + f(Tt) ≤ 2f(St) +
∑

(a,d)∈Tt\St

Δa,d(St).

This lemma bounds the optimal value in terms of the partial greedy
solution’s value f(St) and the marginal gains. Our analysis for
kSKM in the next section will heavily rely on this bound.
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4 Algorithm and Approximation Analysis

In this section we consider the kSKM problem under a budget con-
straint B, and let OPT ∈ (k+1)V be the optimal solution. For con-
venience of analysis, we assume that B is an integer, and all items
have integer cost. This assumption can be easily relaxed.

We investigate Algorithm 2. It compares all size-2 solutions and
all greedy solutions extended from a singleton, and returns the win-
ner as outcome. In Line 1, the algorithm finds the best size-2 so-
lution, with O(n2k2) queries of the function. In Line 2-14, it ex-
haustively enumerates (iterates) over all singleton Y ⊆ (k + 1)V

and extend each singleton Y greedily. There are O(nk) single-
tons, and each singleton Y has n iterations, each of which takes
O(nk) queries. Therefore, the query complexity of Algorithm 2 is
O(n2k2 + n3k2) = O(n3k2). We state our main theorem below.

Algorithm 2 Enu2+Greedy1

Input: Set V , monotone k-submodular function f , costs c(a) for
a ∈ V , budget B

Output: A solution in (k + 1)V

1: Let S∗ ∈ arg max
S: |S|=2,c(S)≤B

f(S) be a size-2 solution giving

the largest value.
2: for every Y ∈ (k + 1)V with |Y | ≤ 1 do

3: G0 ← Y , V0 ← V \U(Y )
4: for t from 1 to n do

5: Let (at, dt) = arg max
a∈Vt−1,d∈[k]

Δa,d(Gt−1)

c(a)
maximize the

marginal density, and denote θt =
Δat,dt

(Gt−1)

c(at)

6: if c(Gt−1) + c(at) ≤ B then

7: Gt ← Gt−1 ∪ {(at, dt)}
8: else

9: Gt ← Gt−1

10: end if

11: Vt ← Vt−1\{at}
12: end for

13: S∗ ← Gn if f(Gn) > f(S∗)
14: end for

15: return S∗

Theorem 1. Algorithm 2 has an approximation ratio at least 0.328
for the kSKM, with query complexity O(n3k2).

In the remainder of this section, we prove Theorem 1. For each
greedy procedure (in Line 3-12) extended from any Y we are inter-
ested in, let l + 1 be the first time when it does not add an item in
U(OPT ) to the current solution because its addition would violate
the budget (i.e., al+1 ∈ U(OPT ) and c(al+1) + c(Gl) > B). We
can further assume that l+1 is the first time t for which Gt = Gt−1.
This assumption is without loss of generality, because if it happens
earlier for some t′ < l + 1, then at′ does not belong to the optimal
solution, nor the greedy solution we are interested in; thus, we can
remove at′ from the ground set V , without affecting the analysis,
the optimal solution, and the greedy solution. Thus, we can safely
assume Gt = Gt−1 ∪ {(at, dt)} for t = 1, . . . , l.

The proof of Theorem 1 consists of the following steps. Set β ∈
(0, 1) to be a tunable parameter in the analysis.

• Step 1. Section 4.1 considers the greedy procedure extended from
Y = ∅. If Gl has a cost at least βB, then it has a desired approx-
imation. Otherwise, the (l+1)-th item (denoted by a∗) has a cost
greater than (1− β)B, and then go to Step 2.

• Step 2. Section 4.2 considers the greedy procedure extended from
a singleton Y containing item a∗. If Gl \ Y has a cost larger than
B−c(Y )

2
, then Gl has a desired approximation. Otherwise, the (l+

1)-th item (denoted by a∗∗) has a cost greater than B−c(Y )
2

, and
then go to Step 3.

• Step 3. Section 4.3 considers the two large-cost items a∗, a∗∗ in
OPT . If they can achieve a large function value, it is attained
in Line 1 by enumerating all size-2 solutions. Otherwise, the re-
maining items U(OPT ) \ {a∗, a∗∗} has a small cost but a large
function value. We show that the greedy procedure extended from
Y = ∅ has a good approximation on this value.

4.1 Extending Y = ∅ greedily

In this subsection, we consider the fully greedy procedure of extend-
ing an empty set Y = ∅ greedily (Line 3-12 in Algorithm 2).

We will show that if the partial greedy solution Gl has a large
enough cost (above half the budget), it achieves a good approxima-
tion ratio, even though discarding the remaining part of the final out-
come of the greedy procedure. This claim heavily relies on the fol-
lowing lemma.

Lemma 4. For an arbitrary set R ∈ (k+1)V and any t = 1, . . . , l,

f(Gt) ≥ 1

2
(1− e

− 2c(Gt)
c(R) ) · f(R).

Proof. Fixing t, for an arbitrary j = 0, . . . , t, we consider the un-
constrained maximization over the items in V ′ := U(Gj)∪U(R) =
{e1 . . . , em}. Assume w.l.o.g. that e1 = a1, e2 = a2, . . . , ej = aj .
Let Algorithm 1 consider the items in the order of e1, . . . , em. De-
note by T the optimal solution of the unconstrained maximization
over U(Gj) ∪U(R). Recall the notations in Eq. (3.1) and (3.2), and
note that Gj = Sj . Then we can apply Lemma 3 to bound f(T ):

f(R) ≤ f(T )

≤ 2f(Gj) +
∑

(a,d)∈Tj\Gj

Δa,d(Gj)

= 2f(Gj) +
∑

(a,d)∈Tj\Gj

c(a) · Δa,d(Gj)

c(a)

≤ 2f(Gj) +
∑

(a,d)∈Tj\Gj

c(a) · Δaj+1,dj+1(Gj)

c(aj+1)
(4.1)

≤ 2f(Gj) + c(R) · Δaj+1,dj+1(Gj)

c(aj+1)
, (4.2)

= 2

(
f(Gj) +

c(R)

2
· θj+1

)
. (4.3)

where Eq. (4.1) is because (aj+1, dj+1) is the pair of maximum
marginal density by the greedy algorithm, and Eq. (4.2) is because
the items in Tj \Gj must belong to R and their total cost is at most
c(R).

Let Bj = c(Gj) =
∑j

τ=1 c(aτ ) for j = 0, . . . , l, and let
Bl+1 = c(Gl) + c(al+1) (note that Bl+1 > B by definition). For
i = 1, . . . , Bl+1, we define

ρi = θj if i = Bj−1 + 1, . . . , Bj .

That is,

ρ1 = · · · = ρB1 = θ1,
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ρB1+1 = · · · = ρB2 = θ2,

...

ρBl+1 = · · · = ρBl+1 = θl+1.

Using this definition, we obtain f(Gj) =
∑j

τ=1 c(aτ )θτ =∑Bj

i=1 ρi. Moreover,

min
s=1,...,Bt

{
s−1∑
i=1

ρi +
c(R)

2
· ρs}

= min
j=0,...,t−1

{
Bj∑
i=1

ρi +
c(R)

2
· ρBj+1}

= min
j=0,...,t−1

{f(Gj) +
c(R)

2
· θj+1}.

(4.4)

With these notations, we can use the following proposition.

Proposition 1 ([20]). Let P and D be arbitrary positive integers,
and (ρi)

P
i=1 be arbitrary nonnegative real values with ρ1 > 0. Then

∑P
i=1 ρi

mins=1,...,P (
∑s−1

i=1 ρi +Dρt)
≥ 1− (1− 1

D
)P ≥ 1− e−P/D.

Finally, by (4.3), (4.4) and Proposition 1, we obtain

f(Gt)

f(R)
=

∑Bt
i=1 ρi

f(R)

≥
∑Bt

i=1 ρi

2 ·minj=0,...,t−1{f(Gj) +
c(R)
2
· θj+1}

≥
∑Bt

i=1 ρi

2 ·mins=1,...,Bt{
∑s−1

i=1 ρi +
c(R)
2
· ρs}

≥ 1

2
(1− e

− Bt
c(R)/2 ),

(4.5)

establishing the proof.

If c(Gl) ≥ βB, then applying Lemma 4 to R = OPT and t = l
immediately gives

f(Gl) ≥ 1

2
(1− e

− 2·c(Gl)

c(OPT ) ) · f(OPT )

≥ 1

2
(1− e−

2·βB
B ) · f(OPT )

=
1

2
(1− e−2β) · f(OPT )

which implies that Gl already gives a 1
2
(1− e−2β)-approximation.

Corollary 1. When c(Gl) ≥ βB, Algorithm 2 has an approximation
ratio at least 1

2
(1− e−2β).

In the next section, we will consider the case when c(Gl) < βB.
By the definition of the index l+1, item al+1 belongs to the optimal
solution OPT , but fails to add into the greedy solution due to the
budget constraint. Thus it has a large cost c(al+1) > B − c(Gl) >
(1− β)B. Specifically, denote this item by a∗ ∈ U(OPT ), and as-
sume that its dimension aligned with OPT is d∗, that is, (a∗, d∗) ∈
OPT .

4.2 Extending Y = {(a∗, d∗)} greedily

According to the analysis in Section 4.1, it can be assumed that there
is an item a∗ in OPT with a cost larger than half the budget, i.e.,
c(a∗) > (1 − β)B. In this subsection, we consider the procedure
of extending the singleton Y = {(a∗, d∗)} ⊆ OPT greedily (Line
3-12 in Algorithm 2).

Again, with a slight abuse of notations, let l + 1 be the first time
when the greedy procedure does not add an item in U(OPT ) to the
current solution because its addition would violate the budget. Fur-
ther assume that l + 1 is the first time t for which Gt = Gt−1.

The following lemma gives a lower bound on the function value
of Gl.

Lemma 5. The greedy procedure extended from Y = {(a∗, d∗)} ⊆
OPT guarantees

f(Gl) ≥ 1

2
(1− e

−2c(Gl\Y )

B−c(Y ) )f(OPT ) +
1

2
(1 + e

−2c(Gl\Y )

B−c(Y ) )f(Y ).

Proof. Define a function

h(S) := f(S ∪ Y )− f(Y ), ∀S ∈ (k + 1)V \U(Y ).

This function is defined on ground set V \ U(Y ), and is clearly k-
submodular.

Note that the greedy procedure of extending Y with respect to f
is equivalent to that of extending ∅ with respect to h. Thus, Lemma
4 also works for h. Applying Lemma 4 to function h and set R =
OPT \ Y gives

f(Gl)− f(Y ) = h(Gl \ Y )

≥ 1

2
(1− e

− 2c(Gl\Y )

c(OPT\Y ) ) · h(OPT \ Y )

≥ 1

2
(1− e

− 2c(Gl\Y )

B−c(Y ) ) · h(OPT \ Y )

=
1

2
(1− e

− 2c(Gl\Y )

B−c(Y ) ) · (f(OPT )− f(Y )).

Rearranging the terms proves the lemma.

The lower bound on f(Gl) in the above lemma relies on the budget
consumed by Gl. The following says that if Gl consumes a large
proportion of budget, then it has a good approximation.

Corollary 2. When c(Gl \ Y ) ≥ β(B − c(Y )), we have f(Gl) ≥
1
2
(1− e−2β) · f(OPT ).

In the next section, we focus on the case when c(Gl\Y ) < β(B−
c(Y )). By the definition of the index l + 1, item al+1 belongs to the
optimal solution OPT , but fails to add into the greedy solution due
to the budget constraint. That is, c(Gl \ Y ) + c(al+1) > B − c(Y ).
Then we derive

c(al+1) > B− c(Y )−β(B− c(Y )) = (1−β)(B− c(Y )). (4.6)

Specifically, denote this large-cost item al+1 by a∗∗, and assume that
its dimension aligned with OPT is d∗∗, that is, (a∗∗, d∗∗) ∈ OPT .

4.3 Two large-cost items in OPT

According to the analysis in Sections 4.1 and 4.2, it remains to con-
sider the case when there is an item a∗ ∈ U(OPT ) with cost
c(a∗) > (1−β)B, and an item a∗∗ ∈ U(OPT ) with cost c(a∗∗) >
(1 − β)(B − c(a∗)). Denote S′ = {(a∗, d∗), (a∗∗, d∗∗)} ⊆
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OPT . If these two large-cost items give a large function value
f(S′) ≥ 1

2
(1 − e−2β)f(OPT ), then Line 1 in Algorithm 2 (se-

lecting the best size-2 solution) already achieves an approximation
ratio 1

2
(1−e−2β). Hence, this subsection considers the subcase when

f(S′) < 1
2
(1− e−2β)f(OPT ).

Let R := OPT \S′ be the remaining part in the optimal solution.
We have

f(R) ≥ f(OPT )− f(S′) >
1

2
(1 + e−2β)f(OPT ). (4.7)

The cost of R is

c(R) ≤ B−c(S′) < B−c(a∗)−(1−β)(B−c(a∗)) = β(B−c(a∗)).

Thus, R has a relatively small cost but a large function value.
Next, we use the greedy procedure extended from empty set Y =

∅ to give an approximation of f(R). Recall that l+1 is the first time
when an item in U(OPT ) is not added to the current solution due
to budget constraint B, and in this procedure the (l + 1)-th item is
al+1 = a∗. Thus, the cost of the partial greedy solution Gl plus the
cost of a∗ exceeds the budget B, that is, c(Gl) > B − c(a∗).

By Lemma 4 and Eq. (4.7), we have

f(Gl) ≥ 1

2
(1− e

−2c(Gl)

c(R) ) · f(R)

≥ 1

2
(1− e

−2
B−c(a∗)

β(B−c(a∗)) ) · f(R)

=
1

2
(1− e

− 2
β ) · f(R)

≥ 1

4
(1− e

− 2
β )(1 + e−2β)f(OPT ).

Now, we are ready to summarize the above results, and set a best
value of the parameter β to optimize the approximation ratio.

• When Gl obtained from greedily extending ∅ has cost at least
βB, it has a ratio 1

2
(1− e−2β) (Corollary 1).

• When Gl obtained from greedily extending (a∗, d∗) has cost at
least β(B − c(Y )), the ratio is 1

2
(1− e−2β) (Corollary 2).

• When f(S′) ≥ 1
2
(1− e−2β)f(OPT ), the ratio is 1

2
(1− e−2β);

otherwise, Gl obtained from greedily extending ∅ has a ratio of
1
4
(1− e

− 2
β )(1 + e−2β).

Thus, the approximation ratio is at least

min

{
1

2
(1− e−2β),

1

4
(1− e

− 2
β )(1 + e−2β)

}
.

Setting β = 0.5337, we obtain an approximation ratio of

1

2
(1− e−2β) ≈ 1

4
(1− e

− 2
β )(1 + e−2β) = 0.3280 . . . ,

establishing the proof of Theorem 1.

5 Extensions

In this section, we first extend Algorithm 2 to a general version by
enumerating more items, and present better approximation ratios.
Then, we show that the results can also be extended to non-monotone
k-submodular functions.

Generalization of Algorithm 2. The approximation ratio 0.328
can be improved by enumerating more items. Consider the follow
general algorithm Enup +Greedyp−1. Given an enumeration size
p ∈ Z, it first enumerates all solutions that contain p items (Line
1, Enup), and then greedily extend every solution that contains p −
1 items (Line 2-14, Greedyp−1). The outcome is the best among
the solutions considered. The query complexity of the algorithm is
O(np+1kp). It is easy to see that Algorithm 2 is exactly Enu2 +
Greedy1.

Algorithm 3 Enup+Greedyp−1

Input: Set V , monotone k-submodular function f , costs c(a) for
a ∈ V , budget B, enumeration size p ∈ Z

Output: A solution in (k + 1)V

1: Let S∗ ∈ arg max
S: |S|=p,c(S)≤B

f(S) be a size-p solution giving

the largest value.
2: for every Y ∈ (k + 1)V with |Y | = p− 1 do

3: G0 ← Y , V0 ← V \U(Y )
4: for t from 1 to n do

5: Let (at, dt) = arg max
a∈Vt−1,d∈[k]

Δa,d(Gt−1)

c(a)
maximize the

marginal density, and denote θt =
Δat,dt

(Gt−1)

c(at)

6: if c(Gt−1) + c(at) ≤ B then

7: Gt ← Gt−1 ∪ {(at, dt)}
8: else

9: Gt ← Gt−1

10: end if

11: Vt ← Vt−1\{at}
12: end for

13: S∗ ← Gn if f(Gn) > f(S∗)
14: end for

15: return S∗

We can prove the approximation ratios of Enup+Greedyp−1 under
the analysis framework in Section 4. Given p ≥ 3, we first follow the
analysis in Sections 4.1 and 4.2. After that we know that there are
two large-cost items in OPT , and then we consider the procedure
of extending them greedily: if Gl has a large cost, then f(Gl) has a
good approximation 1

2
(1 − e−2β); otherwise, there is a third large-

cost item, and then we extend these three large-cost items greedily.
This process is repeated until we have known that there are p large-
cost items in OPT (denoted by S′). If S′ have a good approximation
1
2
(1− e−2β), it is achieved by the enumeration in Line 1; otherwise,

R = OPT \ S′ must have an approximation 1 − 1
2
(1 − e−2β)

for the optimum, and the algorithm can achieve an approximation
1
2
(1− e

− 2
βp−1 ) for f(R).

Indeed, the approximation ratio is at least

min

{
1

2
(1− e−2β),

1

4
(1− e

− 2
βp−1 )(1 + e−2β)

}
. (5.1)

By optimizing the parameter β, we can find the specific values of the
approximation ratios, as shown in Figure 1 (a).

Note that the enumeration size p only influences the second term.
When p is large enough, Eq. (5.1) becomes

min

{
1

2
(1− e−2β),

1

4
(1 + e−2β)

}
, (5.2)

which is at most 1
3

, attained by e−2β = 1
3

. The value of 1
3

is natural,
because our analysis uses a ratio 1

2
(1−e−2β) to bound f(S′) (which
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is achievable by the algorithm), and then use the ratio 1− 1
2
(1−e−2β)

to bound f(OPT \S′), for which the best possible approximation is
1
2

. In this way we cannot expect an approximation ratio beating 1
3

.

Proposition 2. For the kSKM, Algorithm Enup +Greedyp−1 has
an approximation ratio given in Eq. (5.1). It approaches 1

3
as p in-

creases.

Non-monotone functions. We look at the performance guarantee
of Algorithm 2 when f is a non-monotone k-submodular function.
The proposed analysis framework still works. A k-submodular func-
tion must be pairwise monotone, which implies that for any item a
and any S ∈ (k + 1)V , there always exists a dimension d so that
the marginal gain Δa,d(S) is non-negative. Thus, the greedy algo-
rithm will have a non-negative marginal gain in each iteration, i.e.,
the function value is non-decreasing. This good property partially
makes the analysis for non-monotone functions quite similar.

The main difference is that when we consider the unconstrained
k-submodular maximization, the statement in Lemma 3 would be re-
placed by f(T ) ≤ 3f(St)+

∑
(a,d)∈Tt\St

Δa,d(St). Subsequently,

the statement in Lemma 4 becomes f(Gt) ≥ 1
3
(1−e−

3c(Gt)
c(R) )·f(R).

Finally, the approximation ratio is at least

min

{
1

3
(1− e−3β),

1

9
(1− e

− 3
β )(2 + e−3β)

}
.

Setting β = 0.46, we obtain an approximation ratio of

1

3
(1− e−3β) ≈ 1

9
(1− e

− 3
β )(2 + e−3β) = 0.249 . . .

Proposition 3. For the non-monotone kSKM, Algorithm 2 has an
approximation ratio 0.249.

Of course, in the non-monotone case, Algorithm 2 can also be
generalized to Enup+Greedyp−1. The approximation ratio is at least

min

{
1

3
(1− e−3β),

1

9
(1− e

− 3
βp−1 )(2 + e−3β)

}
.

By optimizing β we can find the specific values, as shown in Figure
1 (b). When p increases, the ratio approaches 1

4
very quickly.

6 Discussions

For the monotone kSKM, Tang et al. [17] considered the algorithm
of enumerating all size-2 solutions and then extending each of them
greedily, that is, Greedy2 in our notations. They proved that this al-
gorithm has an approximation ratio at least 1

2
(1 − e−1) ≈ 0.316,

however, their proof is flawed. In the analysis, setting Y ⊆ OPT
consisting of the two items in OPT with largest marginal gain
(which would be enumerated by the algorithm), consider the greedy
procedure of extending Y . They assumed (in Eq. (6) [17]) that the
marginal gain of the item al+1 is Δal+1,dl+1(Gl) ≤ f(Y )

2
, where

l+1 is the first time when the greedy procedure does not add an item
in OPT to the current solution due to budget, and dl+1 is the dimen-
sion greedily assigned to al+1 in that iteration. This statement may
be not true, because the item al+1 may have a different dimension in
OPT with dl+1 so that the marginal gain Δal+1,dl+1(Gl) could be
much larger than f(Y )

2
.

Fortunately, Greedy2 does have an approximation ratio at least
0.316, although the proof in [17] is flawed. Note that Greedy2 is
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0.329
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0.333
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Figure 1: The approximation ratios of Enup+Greedyp−1 are pre-
sented with 4 significant digits.

stronger than our Algorithm 2 (Enu2 +Greedy1), because it first
enumerates all size-2 solutions and then extend each of them greed-
ily, while Algorithm 2 enumerates all size-2 solutions and merely
extend each singleton. Hence, Greedy2 must also have an approx-
imation ratio 0.328 for the monotone kSKM, even better than the
claimed 0.316.

For future directions, we notice that our analysis indeed discards
the second term about f(Y ) in the RHS of Lemma 5. It may derive a
better approximation if one can utilize this term in a more carefully
approach.
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