
Unit Refutations of Difference Constraint Systems
K. Subramania;* and Piotr Wojciechowskia

aLDCSEE, West Virginia University, Morgantown, West Virginia, USA

Abstract. This paper is concerned with a refutation system (proof
system) for a class of linear constraint systems called difference
constraint systems (DCS). In particular, we study the refutability of
DCSs in the unit refutation (UR) system. Recall that a difference
constraint is a linear relationship of the form: xi − xj ≤ bij and
a DCS is a conjunction of such constraints. Associated with a refu-
tation system are three important features, viz., (a) Soundness, (b)
Completeness, and (c) Efficiency. The UR system is sound and effi-
cient; however, it is incomplete, in that unsatisfiable DCSs may not
have unit refutations. We establish that this refutation system is ef-
ficient in that there exists a tractable algorithm for determining if a
DCS has a UR. Investigating weak (incomplete) refutation systems
leads to a better understanding of the inference rules required for es-
tablishing contradictions in the given constraint system. Thus, this
study is well-motivated. Despite the fact that unit refutations can be
exponentially long in terms of the input system size, we provide a
compact representation of these refutations. This compact represen-
tation is an important contribution of this paper.

1 Introduction

This paper is concerned with a restricted refutation system for Differ-
ence Constraint Systems (DCSs). Recall that a difference constraint
is a linear relationship of the form: xi − xj ≤ bij . A conjunction of
such constraints, and constraints of the form xi ≤ bi or−xi ≤ bi, is
called a DCS and can be written in matrix form as: A · x ≤ b. DCSs
occur in a number of application domains such as abstract interpre-
tation [5, 6] and program verification [5, 4].

Refutations can be thought of as negative certificates. Certificates
(and certifying algorithms) enhance the reliability of software. This
is true even for incomplete refutation systems, such as read-once
refutations [9]. It is worth noting that enforcing the read-once re-
quirement makes refutations easier to visualize. In a read-once refu-
tation, each constraint is used at most once in an inference step. This
makes visualization realizable.

In a unit refutation, an absolute constraint (one variable constraint)
must be used in each inferential step. Unit Refutations (URs) in
DCSs are interesting because they are domain specific refutations.
In other words, they prove that a DCS is infeasible using its current
set of absolute (one variable) constraints without necessarily proving
the infeasibility of the underlying system of relative (two variable)
constraints. This is a marked difference from unrestricted refutations.
Our goal in this paper is to investigate the algorithmic complexity of
finding negative certificates for DCSs within the UR refutation sys-
tem.

∗ Corresponding Author. Email: k.subramani@mail.wvu.edu.

Observe that UR is an incomplete refutation system. However,
incomplete systems have been studied extensively in propositional
proof complexity. For instance, [9] details the computational com-
plexity of read-once refutations in CNF formulas. Likewise, [10] dis-
cusses read-once refutations in Horn formulas. It is curious that unit
resolution is complete for Horn formulas, but incomplete for arbi-
trary CNF formulas [7]. Read-once refutation systems have also been
studied for linear constraint systems [20]. Note that a DCS may have
a unit refutation that is exponentially long in terms of the size of the
input system (see Theorem 1). However, in this paper, we provide a
compact certificate for establishing that a DCS has a unit refutation
(see Theorem 2).

The principal contributions of this paper are as follows:

1. The design of a polynomial time algorithm for checking if a DCS
has a unit refutation (Section 5).

2. Establishing that the problem of determining a shortest tree-like
unit refutation of a DCS is NP-hard (Section 6).

3. A O(m ·n2 · ||b||∞) time algorithm for finding a shortest tree-like
unit refutation of a DCS with n variables (Section 6).

4. A 2-approximation algorithm for the problem of finding a shortest
tree-like unit refutation of a DCS (Section 7).

2 Statement of Problems

In this section, we formally describe the problems under considera-
tion.

Definition 2.1 A difference constraint is a constraint of the form ai ·
xi + aj · xj ≤ bk where ai �= aj ∈ {1, 0,−1} and bk ∈ Z.

In a difference constraint, we refer to bk as the defining constant.
Additionally, the terms xi and−xi are referred to as literals. If a dif-
ference constraint has only one non-zero coefficient, then it is called
an absolute constraint.

Example (1): The following are difference constraints:

x1 − x2 ≤ 4 x2 − x3 ≤ 5 x4 ≤ −1.

Furthermore, x4 ≤ −1 is an absolute constraint.

Definition 2.2 A conjunction of difference constraints is known as a
Difference Constraint System (DCS).

A DCS can be represented as a matrix A · x ≤ b. In this rep-
resentation, b is referred to as the defining constant vector. Unless
otherwise stated, we use n to refer to the number of variables in a
DCS and m to refer to the number of constraints.

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230520

2226

Example (2): System (1) is a DCS with 2 constraints over 3 vari-
ables.

x1 − x2 ≤ 5 − x2 + x3 ≤ −2. (1)

In this paper, we are focused on proving that a DCS does not have
any linear (rational) solutions. This is the linear refutability problem
(LRP). Such a proof of linear infeasibility is known as a negative cer-
tificate or refutation. For LRP, these refutations consist of a sequence
of inferences that results in a contradiction of the form 0 ≤ b where
b < 0. In this case, we use a single inference rule known as the ADD
rule (given by Rule 2).

ADD :

∑n
i=1 ai · xi ≤ b1

∑n
i=1 a

′
i · xi ≤ b2

∑n
i=1(ai + a′

i) · xi ≤ b1 + b2

(2)

It is easy to see that Rule (2) is sound since any assignment that
satisfies the hypotheses also satisfies the consequent. From Farkas’
lemma [8], we know that the rule is complete as well.

Example (3): Consider the constraints x1 − x2 ≤ −1 and x2 −
x3 ≤ 4. Applying the ADD rule to these constraints results in the
constraint x1 − x3 ≤ 3.

Definition 2.3 A sequence of applications of the ADD rule that re-
sults in a contradiction is known as a linear refutation.

In this paper, we study a restricted version of the ADD rule, known
as the unit-ADD (UADD) rule. In the UADD rule, at least one of
the two hypotheses in Rule (2) must be an absolute constraint. The
application of the UADD rule always cancels a variable. Rule (3)
represents the UADD rule when applied to difference constraints.

UADD :
ai · xi ≤ b1 aj · xj − ai · xi ≤ b2

aj · xj ≤ b1 + b2

(3)

In Rule (3), it is understood that ai, aj ∈ {1,−1}.
Example (4): Consider the constraints x1 ≤ −1 and −x1 +

x2 ≤ 4. Applying the UADD rule to these constraints results in the
constraint x2 ≤ 3.

A linear refutation using only the UADD rule is called a unit linear
refutation. The problem of finding such a refutation is called the unit
linear refutability problem (ULRP). It is important to note that, unlike
the ADD rule, the UADD rule is incomplete. This means that there
are DCSs with no linear solutions that do not have a refutation using
only the UADD rule.

Example (5): Let D be the following DCS:

x1 − x2 ≤ 1 x2 − x1 ≤ −2 x1 ≤ −1.

Since applying the ADD rule to the constraints x1 − x2 ≤ 1 and
x2 − x1 ≤ −2 results in the constraint 0 ≤ −1, we have that D is
infeasible. However, D does not have a unit refutation. Observe the
following:

1. x1 ≤ −1 is the only absolute constraint in D.
2. First, we must apply the UADD rule to x1 ≤ −1 and x2 − x1 ≤
−2 to get x2 ≤ −3.

3. Next, we must apply the UADD rule to x2 ≤ −3 and x1−x2 ≤ 1
to get x1 ≤ −2.

Note that there is no way to cancel x1 from a constraint of the form
x1 ≤ b or x2 from a constraint of the form x2 ≤ b without intro-
ducing the term x2 or x1, respectively. Thus D does not have a unit
linear refutation.

In this paper, we also study tree-like unit refutations.

Definition 2.4 A tree-like refutation is a refutation in which each
derived constraint can be used at most once.

Observe that tree-like refutations can reuse the input constraints
(i.e., constraints in the original DCS). However, non-input constraints
must be re-derived, if necessary.

Example (6): Let D be the constraint system in System (4).

x1 ≤ 1 − x1 + x2 ≤ −1 (4)

x1 − x2 ≤ 0 − x1 ≤ −1
A tree-like unit refutation of D is shown in Figure 1.

Definition 2.5 The length of a tree-like refutation is the number of
inferences in the refutation.

Using this notion of length, we can define the problem of finding
a shortest tree-like refutation.

Definition 2.6 An Optimal Length Tree-like Unit Refutation

(OTLUR) of a DCS is a tree-like unit refutation with minimum
length.

Example (7): The tree-like unit refutation of System (4) in Ex-
ample (6) consists of 3 inferences. Thus, it is a refutation of length 3.
Observe that it is also an OTLUR of System (4).

We now show that the length of a tree-like unit refutation can be
exponential in the size of the DCS. Thus, we cannot construct a tree-
like refutation inference by inference.

Theorem 1 The OTLUR of a DCS with n variables can have length
at least (n · (f(n) + 1) + 2) for an arbitrary function f(n).

Proof: Let D be the DCS in System (5):

x1 ≤ f(n) x2 − x3 ≤ 0
−x1 ≤ 0 . . .

x1 − x2 ≤ −1 xn−1 − xn ≤ 0
xn − x1 ≤ 0.

(5)

Let R be a tree-like unit refutation of D. Note that any unit refuta-
tion of D must use the constraint x1 ≤ f(n). To derive the constraint
x1 ≤ f(n) − 1, R needs to use the constraint x1 − x2 ≤ −1. To,
derive a constraint of the form x2 ≤ b from x1 ≤ f(n), R needs to
use the constraints xn − x1 ≤ 0 through x2 − x3 ≤ 0. This uses
(n − 1) constraints. Adding the constraint x1 − x2 ≤ −1 to this
constraint results in the constraint x1 ≤ f(n)− 1.

Consequently, deriving x1 ≤ −1 through the unit ADD rule re-
quires a total of (n · (f(n) + 1) + 1) constraints. To derive the final
contradiction we need to use the constraint −x1 ≤ 0. Thus, any unit
refutation of D needs to use at least (n · (f(n)+1)+2) constraints.

It follows that if f(n) is chosen to be an exponential function of n,
then the optimal length tree-like unit refutation will have exponential
length. �

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems 2227

x1 ≤ 1 x2 − x1 ≤ −1 x1 − x2 ≤ 0 −x1 ≤ −1

x2 ≤ 0 −x2 ≤ −1

0 ≤ −1

Figure 1. Tree-like Unit Refutation

In this paper, we represent DCSs as constraint networks, as de-
scribed in [3] (pages 666 and 667). The construction consists of the
following steps:

1. For each variable xi, create the vertex xi. Additionally, create the
vertex x0.

2. For each constraint of the form xi − xj ≤ bij , create the edge

xj

bij→ xi.

3. For each constraint of the form xi ≤ bi, create the edge x0
bi→ xi.

4. For each constraint of the form −xj ≤ bj , create the edge xj

bj→
x0.

Observe that the above construction establishes AC0-equivalence
between the linear feasibility problem in DCSs and the shortest path
problem in real-weighted networks. This equivalence is exploited in
Theorem 2, Theorem 3, and Theorem 6.

3 Motivation

As mentioned before, refutations certify negative answers. Certifi-
cates enhance confidence in the results of computations [13]. In gen-
eral, generating refutations is a non-trivial task. This is particularly
true in case of NP-hard problems. Indeed, in case of NP-hard prob-
lems, refutations tend to be exponential in the size of the input. One
way around this hurdle is to focus on incomplete refutation systems.
An incomplete refutation system typically provides refutations that
are polynomial in the size of the input; however, it may be the case
that some unsatisfiable instances lack refutations.

In this paper, we focus on unit refutations only. In a unit refuta-
tion, each inference must use an absolute constraint. The focus on
unit refutations in this paper stems from a fundamental difference
between absolute constraints and relative constraints in DCSs. Since
absolute constraints only place bounds on a single variable, they can
be used to define the domain over which feasibility is considered.
Meanwhile, relative constraints define the relationship between vari-
ables and can be considered domain agnostic. This difference in the
two types of difference constraints carries over to create a difference
between unit and non-unit refutations.

A unit refutation relies on the absolute constraints in the under-
lying constraint system. Thus, a unit refutation serves as a domain
specific refutation. This is in contrast to an unrestricted refutation
which may be domain agnostic. Thus, a study of unit refutations is
important since it reveals the structure of such domain specific refu-
tations. Additionally, unit refutations are refutations that would be
encountered while using unit propagation. Unit propagation is used
in many abstract solvers [15].

A restriction that makes a proof system incomplete can guarantee
short refutations when otherwise refutations may be exponential in
the size of the input. For example, refutations of NP-hard problems

can be exponentially long. In fact, if there exists a complete refuta-
tion system which always generates polynomially sized refutations
for an NP-hard problem, then NP = coNP. Thus, any refutation sys-
tem which is guaranteed to generate short refutations for NP-hard

problems is likely to be incomplete. It follows that incomplete refuta-
tion systems are important when short refutations are required. While
a refutation system may be incomplete, the refutation system might
still be complete for the set of instances that correspond to real-world
problems.

4 Related Work

In typical constraint systems, certificates can be divided into two
main categories, positive certificates and negative certificates. For a
given constraint system D : A · x ≤ b, any satisfying assignment
to the system serves as a positive certificate. However, the form neg-
ative certificates take depends on the form of the refutation system.

The infeasibility of linear systems is commonly established using
Farkas’ lemma [8, 12]. As a result of Farkas’ lemma, a proof of linear
infeasibility of D can simply be a non-negative vector y, such that
y ·A = 0, y · b < 0. This vector y is called the Farkas witness of
the infeasibility of D. Similarly, the elements of y are called Farkas
variables.

Observe that the Farkas vector y corresponds to a weighted sum-
mation of the constraints in D. Such a refutation can be broken
up into individual summations, each between a pair of constraints.
These summations correspond to applications of the ADD inference
rule. This provides an additional form for refutations of linear pro-
grams which corresponds to a step by step refutation procedure.

This paper focuses specifically on refutations for DCSs. In [18],
the problem of finding the shortest linear refutation was studied.
It was shown that this problem was equivalent to the problem of
finding a negative cycle with the fewest number of edges in a di-
rected, weighted network. They also designed an algorithm that runs
in O(n3 · logK) time, where n is the number of vertices in the cor-
responding network G [3], and K is the length of the refutation. The
current fastest algorithm runs in O(m · n ·K) time [19], where m is
the number of edges in G. Recently, a randomized algorithm for this
problem was proposed [1].

Unit refutations have also been studied for Horn constraint sys-
tems (HCSs) [23]. In [23], it was shown that the problem of deter-
mining if an HCS has a unit refutation is NP-complete. Additionally,
it was shown that the OTLUR problem for HCSs is NPO-complete.
Finally, it was shown that the problem of determining if an HCS has
a unit refutation is unlikely to have a kernel whose size is polynomial
in the length of the refutation.

An even more restricted form of unit refutation for DCSs was stud-
ied in [22]. In this form of unit refutation, known as read-once unit
refutation, each constraint could be used at most once. In [22], it was

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems2228

shown that the problem of checking if a DCS has a read-once unit
refutation is NP-complete. It was also shown that the problem of
finding a shortest read-once unit refutation is NPO-complete. [22]
also described both fixed-parameter tractable and exact exponential
algorithms for finding read-once unit refutations of DCSs.

5 Unit Refutations in Difference Constraint
Systems

In this section, we examine the problem of finding unit refutations of
DCSs. We utilize the graph construction in [3]. As mentioned in [3],
each DCS corresponds to a weighted directed graph. In this graph,
each vertex corresponds to a variable and each edge corresponds to a
constraint. Additionally, there is a vertex x0 used to handle absolute
constraints. We now show that a DCS D has a unit refutation, if
and only if, the corresponding graph G has a negative weight closed
walk that uses the vertex x0. Unlike a simple cycle, this walk can
reuse edges and vertices.

Lemma 5.1 A DCS D has a unit refutation, if and only if, the corre-
sponding graph G has a negative weight closed walk using x0.

Proof: First, suppose that D has a unit refutation R. Recall that
each application of the UADD rule has the following form:

ai · xi ≤ bi −ai · xi + aj · xj ≤ bij

aj · xj ≤ bi + bij

No two-variable constraints can be derived in this way. If a non-
absolute constraint is derived, then it has to be of the form 0 ≤ b.
If b < 0, then we have derived a contradiction and thus produced a
refutation. If b ≥ 0, then the remaining portion of R must be a unit
refutation. Thus, without loss of generality, we can assume that only
the final application of the UADD rule in R derives a non-absolute
constraint.

We can assume without loss of generality that the first inference in
R is

ai · xi ≤ bi ak · xk − ai · xi ≤ bki

ak · xk ≤ bi + bki

and that the last inference is

aj · xj ≤ b− bj −aj · xj ≤ bj

0 ≤ b.

From R, we can construct a negative weight closed walk C in G
as follows:

1. Start with the constraint ai · xi ≤ bi. If ai = 1, then by construc-

tion of G, the edge x0
bi→ xi is in G. Add this edge to C.

If ai = −1, then by construction of G, the edge xi
bi→ x0 is in

G. Add this edge to C.
2. Let ak ·xk − ai ·xi ≤ bki be the other constraint used by the first

application of the UADD rule. Add the corresponding edge of G
to C.

3. Let ai′ · xi′ + aj′ · xj′ ≤ bi′j′ be the a constraint used by the rth

application of the UADD rule. Add the corresponding edge of G
to C.

4. Finally, consider the constraint −aj · xj ≤ bj . If aj = 1, then by

construction of G, the edge xj

bj→ x0 is in G. Add this edge to
C.
If ai = −1, then by construction of G, the edge x0

bj→ xj is in
G. Add this edge to C.

From the structure of R, the constraint introduced by the rth infer-
ence must cancel the variable introduced by the (r − 1)th inference.
Thus, these constraints share a variable xi′ and the coefficients of
xi′ in these constraints have opposite signs. These constraints corre-
spond to the (r + 1)th and rth edges in C respectively. Thus, C is a
valid path from x0 to itself.

By construction, the total weight of all the edges in C is b < 0.
Thus, C is a negative weight closed walk through x0.

Now suppose that G has a negative weight closed walk C through
the vertex x0. We can reverse the process used to construct C to
construct a unit refutation R. �

Now we need a way to detect if G contains a negative weight
closed walk through the vertex x0. Recall that the length of this walk
can be exponential in the size of the input.

This can be done in polynomial time by looking at the strongly
connected components of G.

Lemma 5.2 If D has a unit refutation, then the strongly connected
component of G containing x0 contains a negative cycle.

Proof: Assume that D has a unit refutation. From Lemma 5.1, G
contains a negative weight closed walk C through the vertex x0. Let
xi be a vertex on this cycle.

By the construction of C in Lemma 5.1, the constraints xi ≤ bi
and −xi ≤ b′i must be derivable from D by unit refutation. If we
repeat the process used to construct C using the derivation of xi ≤
bi, we obtain a walk from x0 to xi. If we repeat the process used
to construct C using the derivation of −xi ≤ b′i, we obtain a walk
from xi to x0. Thus, xi is in the strongly connected component of G
containing x0.

Since xi was an arbitrary vertex on C, every vertex on C must be
in the strongly connected component of G containing x0. Thus, this
strongly connected component contains a negative cycle. �

Lemma 5.3 If the strongly connected component of G containing x0

contains a negative cycle, then D has a unit refutation.

Proof: Assume that the strongly connected component of G con-
taining x0 contains a cycle C′ of weight bC′ < 0. Let xi be a vertex
on this cycle. Since xi is in the strongly connected component of G
containing x0, there must be a path p1 from x0 to xi. Let b1 be the
weight of this path. Similarly, there must be a path p2 from xi to x0.
Let b2 be the weight of this path.

Thus we can construct a negative cycle C as follows: 1. Add the
path p1 to C. 2. Add

⌊
b1+b2
−bC′ + 1

⌋
copies of the negative cycle C′

to C. 3. Add the path p2 to C. By construction, C is a closed walk
through the vertex x0. Now we need to show that C has negative
weight.

The weight of C is b1 + b2 +
⌊

b1+b2
−bC′ + 1

⌋
· bC′ ≤ b1 + b2 +(

b1+b2
−bC′ + 1

)
· bC′ = bC′ < 0. Thus C is a negative weight closed

walk through x0 as desired. �
From Lemmas 5.2 and 5.3, we have the following result.

Theorem 2 D has a unit refutation, if and only if, the strongly con-
nected component G′ of G containing x0 contains a negative cycle.

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems 2229

Proof: If D has a unit refutation, then by Lemma 5.2, G′ contains
a negative cycle. If G′ contains a negative cycle, then by Lemma 5.3,
D has a unit refutation. �

From Lemmas 5.2 and 5.3, we have the following result.

Theorem 3 The problem of checking if a DCS D with m constraints
over n variables has a unit refutation can be solved in O(m ·n) time.

Proof: From Lemmas 5.2 and 5.3 we know that D has a unit refu-
tation, if and only if, the strongly connected component G′ of G
containing x0 contains a negative cycle.

Observe that G′ can be found in O(m+n) time. Once G′ is found
checking G′ contains a negative cycle can be done in O(m ·n) time.
�

The connected component and negative cycle described in the
proof of Theorem 3 serve as a certificate that a DCS has a unit refu-
tation. Note that this is not the unit refutation itself. However, it is
a polynomial sized, polynomial checkable way to verify that such a
certificate exists.

6 Shortest Tree-like Unit Refutations

In this section, we show that the problem of finding the length of an
OTLUR of a DCS is NP-hard.

We do this by a reduction from the 1-neighbor knapsack problem
(1KK) problem. This problem is known to be NP-hard even with
unit weights and when the input graph is a DAG [2].

The 1KK problem is defined as follows: Let G = 〈V,E, w, p〉
be a directed graph with vertex set V, edge set E, vertex weight
function w, and vertex profit function p. For each vertex v ∈ V
let I(v) = {v′ : (v′, v) ∈ E} be the set of vertices that are the
endpoints of edges incoming to v.

Given target weight W , and target profit P , does there exist a set
of vertices S such that

∑
v∈S w(v) ≤ W ,

∑
v∈S p(v) ≥ P , and if

v ∈ S and I(v) �= ∅, then I(v) ∩ S �= ∅. A set S that satisfies all of
these conditions is called feasible.

This problem is NP-hard even when w(v) = 1 for all vertices in
G and G is a directed acyclic graph [2].

Let G be a DAG. Additionally, let p be a profit function on the
vertices of G, let P be the target profit, and let W be the target
weight.

From G, we construct a DCS D as follows:

1. For each vertex vi in G, create the variable xi.
2. Create the variable x0 and the constraints x0 ≤ P −1 and−x0 ≤

0.
3. For each vertex vi such that I(vi) = ∅, create the constraints

x0 − xi ≤ −p(vi) and xi − x0 ≤ 0.
4. For each edge (vi, vj), create the constraints xi − xj ≤ −p(vj)

and xj − xi ≤ 0.

We will now show that there exists a feasible set S of vertices, if
and only if, D has a unit refutation of length at most (2 ·W + 2).

Theorem 4 The OTLUR problem for DCSs is NP-hard.

Proof: Let G be a DAG and let D be the corresponding DCS.
First, assume that G has a feasible set S of vertices. From S, we

construct a set R of constraints as follows:

1. Add the constraints x0 ≤ P − 1 and −x0 ≤ 0 to R.
2. For each vertex vi ∈ S:

(a) If I(vi) = ∅, then add the constraints x0 − xi ≤ −p(vi) and
xi − x0 ≤ 0 to R.

(b) If I(vi) �= ∅, then let vj be a vertex in I(vi) ∩ S. Since S is
a feasible set of vertices and I(vi) �= ∅, then I(vi) ∩ S �= ∅.
Thus, such a vertex is guaranteed to exist. Add the constraints
xj − xi ≤ −p(vi) and xi − xj ≤ 0.

Since G is a DAG, G must have vertices with no incoming edges.
Consider a vertex vi ∈ S. If vi has incoming edges, then there exists
a vertex vj ∈ S such that the edge (vj , vi) ∈ G. The same argument
applies to vj . Since G is a DAG, at least one vertex with no pre-
decessors must be in S. Thus R contains an absolute constraint. By
construction of R, each literal xi appears the same number of times
as the literal −xi. Thus, summing the constraints in R results in a
constraint of the form 0 ≤ b.

For each vertex in S, we added one constraint to R with defining
constant−p(vi). Additionally, we added a constraint to R with defin-
ing constant (P −1). By construction, all other constraints in R have
defining constant 0. Thus, summing the constraints in R results in a
constraint with defining constant b = P −∑

vi∈S p(vi). Since S is
feasible,

∑
vi∈S p(vi) ≥ P . Thus, b < 0. Consequently, R is a unit

refutation of D. Observe that R has (2 · |S| + 2) constraints. Since
w(vi) = 1 for each vertex vi, (2 · |S|+ 2) = 2 ·∑vi∈S w(vi) + 2.
Since S is feasible

∑
vi∈S w(vi) ≤ W . Thus R has length at most

(2 ·W + 2) as desired.
Now assume that D has a tree-like unit refutation R of length

(2 ·W +2). From R we construct a set S of vertices as follows: For
each constraint of the form xj −xi ≤ −p(vi) in R add the vertex vi
to S.

Consider the vertex vi added due to the constraint xj − xi ≤
−p(vi). Since R is a unit refutation, a constraint of the form xj ≤
b must be derivable from the constraints used by R. Thus, R must
contain a constraint of the form xk−xj ≤ −p(vj). Thus, vj is in S.
Thus, a vertex vi is in S only if a predecessor of S is in S.

For each vertex in S, there are at least two constraints in R. Addi-
tionally, R contains at least two absolute constraints. Thus, S has at
most W vertices.

The only absolute constraints in D are x0 ≤ P − 1 and−x0 ≤ 0.
Thus these constraints are in R. The only other constraints in R with
non-zero defining constants are of the form xj −xi ≤ −p(vi). Each
vertex vi of profit p(vi) in S corresponds to such an edge. Thus,∑

v∈S p(v) ≥ P . Consequently, S is a set of vertices that satisfies
the conditions required by 1KK. �

We utilize the structure described in Lemma 5.3 to prove an upper
bound on the lengths of tree-like unit refutations of DCSs. In the the-
orems in this section, bmax represents the largest defining constant
in a DCS.

Theorem 5 Let D be a DCS with n variables that has a UR. The
OTLUR of D has length at most (2 · n2 · bmax + 3 · n).

Proof: Let D be a DCS with a unit refutation. Additionally, let
G be the graph corresponding to D. From Lemma 5.2, the strongly
connected component of G containing x0 contains a negative cycle.

From Lemma 5.3, D has a unit refutation that corresponds to a
simple path p1, a possibly repeated negative cycle C′ and a simple
path p2. Each of these uses no vertex more than once. Thus, p1, p2
and C′ each have at most n edges.

Since bmax is the largest edge weight in G. The weight b1 of p1 is
at most n · bmax. Similarly, the weight b2 of p2 is at most n · bmax.
Since, C′ is a negative cycle the weight bC′ of C′ is at most −1.

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems2230

To, make a negative weight closed walk C through x0, we need⌊
b1+b2
−bC′ + 1

⌋
copies of C′. Note that

⌊
b1+b2
−bC′ + 1

⌋
≤ 2·n·bmax+1.

Thus, the number of edges in C is at most n + n + n ·
(2 · n · bmax + 1) = 2 · n2 · bmax + 3 · n.

This means that D has a tree-like unit refutation of length at most
(2 · n2 · bmax + 3 · n). Thus, the OTLUR of D has length at most
(2 · n2 · bmax + 3 · n). �

We now present a O(m · n2 · ||b||∞) time pseudo-polynomial
time algorithm for the OTLUR problem for DCSs. ||b||∞ is called
the infinity norm, and is the largest absolute value of any element in
b.

From Theorem 5, an OTLUR of a DCS has length at most (2 ·n2 ·
||b||∞ + 3 · n), it can be found in O(m · n2 · ||b||∞) time using the
Bellman-Ford algorithm.

Theorem 6 An OTLUR of a DCS can be found in O(m ·n2 · ||b||∞)
time.

Proof: Let D be a DCS and let G be the corresponding graph.
From Theorem 5, an OTLUR of D has length l∗ which is at most
(2 ·n2 · ||b||∞ +3 ·n). Thus, there is a negative weight closed walk
in G through x0 with at most (2 · n2 · ||b||∞ + 3 · n) edges. Thus,
we can find a shortest negative weight closed walk through x0 as
follows:

1. After k iterations of the Bellman-Ford algorithm from x0, we will
find the least weight walk in G with at most k edges from x0 to
each vertex.

2. Since D has a unit refutation of length l∗, G has a negative weight
closed walk through x0 of length l∗.

3. After (2 · n2 · ||b||∞ +3 · n) ≥ l∗ iterations of the Bellman-Ford
algorithm from x0, we will find a negative weight closed walk
through x0.

This takes O(m · n2 · ||b||∞) time. �
From Theorem 6, the OTLUR problem for DCSs has a pseudo-

polynomial time algorithm. Additionally, from Theorem 4, the
OTLUR problem for DCSs is NP-hard. Thus, this problem is weakly
NP-hard.

7 Approximability

We now show that the problem of finding the length of an OTLUR
for a DCS can be approximated to within a factor of 2 in polynomial
time.

From Lemma 5.1, we have that a unit refutation for a DCS D
corresponds to a negative weight closed walk in the corresponding
graph G. We will restrict ourselves to unit refutations of DCS D that
have the structure described in the proof of Lemma 5.3. We refer to
these as simple unit refutations.

Example (8): Figure 2 shows the structure of a simple unit refu-
tation of a DCS.

v0
v1

Figure 2. Structure of a simple unit refutation

Lemma 7.1 A shortest simple unit refutation R of a DCS D corre-
sponds to a negative weight closed walk W that can be divided into:
1. A simple path from v0 to some vertex vi. 2. A simple negative cycle
through the vertex vi, possibly repeated. 3. A simple path from vi to
v0.

Proof: From the proof of Lemma 5.1, we know that R corresponds
to a negative weight closed walk through v0. This walk can be di-
vided into: 1. A walk w1 from v0 to some vertex vi. 2. A closed walk
w2 through the vertex vi, possibly repeated. 3. A walk w3 from vi
to v0. We now show that for some vertex v′i, these walks must be
simple.

Assume for the sake of contradiction, that the walk w1 is not sim-
ple. Thus, it contains a simple cycle C′. If this cycle has non-negative
weight, then we can remove this cycle from w1 and shorten the cor-
responding refutation. Thus, C′ must have a weight bC′ < 0.

Consider the average weight of this cycle bC′
|C′| , and compare it

to the average weight of the closed walk w2 (bw2
|w2|). If the average

weight of C′ is no more than that of w2, then we can replace loops
of w2 with loops of C′ until w2 no longer appears in the walk corre-
sponding to R. This produces a shorter refutation. Similarly, if w2 is
more efficient than C′ then we can shorten the refutation by replac-
ing C′ with another loop of w2. In each case, the refutation can be
shortened. Thus, w1 must be a simple path. We can similarly show
that w2 and w3 must also be simple. �

Example (9): Consider the graph in Figure 3. Consider the unit
refutation corresponding to the walk w1 = v0 → v1 → v4 → v5 →
v1 → v2. The closed walk w2 = v2 → v3 → v2, and the walk
w3 = v2 → v0. If the walk w2 is used once, the total weight of this
walk is −1.

Note that the walk w1 is not simple since it contains the cycle
v1 → v4 → v5 → v1. This walk can be made simple by removing
this cycle from w1. This results in path p1 = v0 → v1 → v2. We
can then set C = w2 and p2 = w3 to get the structure desired by
Lemma 4. Note that to get the total weight of the walk consisting of
p1, C, and p2 to be negative we need to traverse the cycle C twice.
This uses a total of 7 edges which is less than the 8 edges used by the
original walk.

v0

v1 v2 v3

v4

v5
1 1

5
−2

−2
−2

−1

−1

Figure 3. Example graph G

We now show that the shortest simple unit refutation of a DCS D
is at most twice the length of an OTLUR of D.

Lemma 7.2 Let D be a DCS with a unit refutation. Let R∗ be an
OTLUR of D and let R′ be the shortest simple unit refutation of D.
The length of R′ is at most twice the length of R∗.

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems 2231

Proof: From the proof of Lemma 5.1, we know that R∗ corre-
sponds to a negative weight closed walk w through v0. If w contains
only one negative cycle, c, then w consists of the following: 1. A
walk w1 from v0 to some vertex vi on c. 2. The cycle c through vi,
possibly repeated. 3. A walk w3 from vi to v0.

Since w1 and w3 contain no negative cycles, any cycle in w1 or w3

must have non-negative weight. Removing those cycles from w3 will
shorten the walk w without increasing the weight of the walk. This
would contradict the assumption that w corresponds to the OTLUR
R∗ of D. Thus, w1 and w3 must be simple. Consequently, R∗ is a
simple unit refutation of D. In this case, the length of R′, the shortest
simple unit refutation, is at most the length of R∗. Thus, the length
of R′ is at most twice the length of R∗.

Now assume that R∗ contains multiple negative cycles, c1 through
cp. For each cycle ci consider the average weight of the cycle

−bci
|ci| .

Without loss of generality assume that −bc1
|c1| ≤

−bci
|ci| for each i =

2, . . . , p. For each cycle ci, let ri be the number of times ci appears in
w. If, r1 ·|c1| <

∑p
i=1 ri·|ci|

2
, then we can find a shorter negative walk

w′ by replacing several non-c1 negative cycles with an additional
copy of c1. This contradicts the assumption that w corresponds to
the OTLUR of D. Thus, r1 · |c1| ≥

∑p
i=1 ri·|ci|

2
. This means that

r1 · |c1| ≥ ∑p
i=2 ri · |ci|. Since −bc1

|c1| ≤ −bci
|ci| < 0 for each i =

2, . . . , p, −r1 · b(c1) ≤∑p
i=2−ri · b(ci)

Let w′ be the closed walk formed by removing all negative cycles,
apart from c1, from w and adding r1 additional copies of c1 to w.
Observe that−2·ri ·b(ci) ≤∑p

i=1−ri ·b(ci). Thus, w′ is a negative
closed walk. Additionally, w′ contains only one negative cycle. Thus,
w′ corresponds to a simple unit refutation R of D. By construction,
the length of R is at most twice the length of R∗. Since R is a simple
unit refutation, the length of R′ is at most the length of R. Thus, the
length of R′ is at most twice the length of R∗ as desired. �

From Lemma 7.1 and Lemma 7.2, we get the following result.

Theorem 7 The problem of approximating the length of an OTLUR
R of a DCS D with m constraints over n variables to within a factor
of 2 can be solved in O(n4) time.

Proof: From Lemma 7.1, a shortest simple unit refutation R corre-
sponds to a closed walk W that can be divided into: 1. A simple path
p1 from v0 to some vertex vi. 2. A simple negative cycle C through
the vertex vi, possibly repeated. 3. A simple path p2 from vi to v0.

If there exists a path p′1 from v0 to vi that is shorter than p1 and
has fewer edges than p1, then replacing p1 with p′1 will result in a
shorter refutation. Thus, p1 must be a shortest path from v0 to vi
with at most |p1| edges. A similar argument can be made for C and
p2.

Thus, to find R, for each vertex vi and k ≤ n, we find a shortest:
1. Path from v0 to vi with at most k edges. 2. Cycle through vi with
at most k edges. 3. Path from vi to v0 with at most k edges. Observe
that these values can be found in O(m · n2) time.

For each combination of vi, p1, C, and p2, the length of the corre-
sponding refutation R′ can be computed as follows:

1. The path p1 has weight b1 and uses |p1| edges.
2. The path p2 has weight b2 and uses |p2| edges.
3. The cycle C, has weight −bC < 0 and used |C| edges.
4. The overall walk has negative weight if the cycle C is repeated⌈

b1+b2
bC

⌉
times (see Lemma 5.3).

5. Thus, the walk uses a total of (|p1|+ |p2|+ |C| ·
⌈

b1+b2
bC

⌉
) edges.

6. This means that R has length (|p1|+ |p2|+ |C| ·
⌈

b1+b2
bC

⌉
)− 1.

Thus, once vi, p1, C, and p2 are chosen the length of the refutation
corresponding to these paths can be found in constant time. For each
vi, there are at most n choices for each of p1, p2 and C. Thus, at
most n4 possible walks need to be tested. This can be done in O(n4)
time. Let R be the unit refutation of D returned by this process.

Let OPT (D) be the length of an OTLUR of D and let |R| be the
length of R. From Lemma 7.2, |R| ≤ 2 · OPT (D). Thus, this is a
2-approximation. �

8 Conclusion

In this paper, we studied UR, an incomplete refutation system. We
looked at two problems related to unit refutations for difference con-
straint systems. We designed a polynomial time algorithm for the
feasibility problem, i.e., the problem of checking if a DCS has a unit
refutation. We showed that the problem of finding a shortest tree-
like unit refutation is NP-hard and designed a 2-approximation al-
gorithm for the same. We also designed a pseudo-polynomial time
algorithm for this problem.

Note that unit refutations are interesting since they provide domain
specific refutations, i.e., they prove that a DCS is infeasible with its
current set of absolute constraints without proving infeasibility of the
underlying system of relative constraints. This is a marked difference
from unrestricted linear refutations which do not naturally find such
refutations. While unit refutations can be exponentially long in terms
of the input constraint system, there exists a compact graphical cer-
tificate that establishes the presence of a unit refutation in a DCS.

A linear constraint form that is closely related to difference con-
straints is Unit Two Variable Per Inequality (UTVPI) constraint form
[14, 21]. As with a difference constraint, a UTVPI constraint can
have at most two non-zero coefficients belonging to the set {−1, 1}.
However, unlike difference constraints, a UTVPI constraint can have
two variables with coefficient 1 or two variables with coefficient−1.
UTVPI constraints find applications in program verification [16],
array bounds checking [11], and abstract interpretation [6]. Since
UTVPI constraints generalize difference constraints, the hardness
results in this paper automatically apply to UTVPI constraints. We
have also been able to generalize the algorithmic results (Theorem 3
and Theorem 6) and the upper bound of Theorem 5 in this paper to
UTVPI constraints.

From our perspective, the following avenues are worth pursuing:

1. Integrating our algorithms within the framework of an SMT solver
such as [17] – In this paper, we introduced a polynomial time al-
gorithm for finding unit refutations of DCSs. It would be interest-
ing to see these algorithms compared with existing algorithms for
finding refutations of these constraint systems. Additionally, with
appropriate refinements it may be possible to incorporate these al-
gorithms into existing general purpose solvers.

2. Improving the approximation algorithm or the inapproximability
bound – In this paper, we provide a 2-approximation algorithm
for the OTLUR problem for DCSs. Additionally, we prove that the
same problem cannot be approximated to within a ratio of (15

14
−ε)

for any ε > 0 unless P = NP. It may be possible to improve one
or both of these bounds by utilizing different techniques.

Acknowledgments

This research was supported in part by the Defense Advanced Re-
search Projects Agency through grant HR001123S0001-FP-004.

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems2232

References

[1] Matthew Anderson, Matthew Williamson, and K. Subramani, ‘Empiri-
cal analysis of algorithms for the shortest negative cost cycle problem’,
Discrete Applied Mathematics, 253, 167–184, (2019).

[2] Glencora Borradaile, Brent Heeringa, and Gordon T. Wilfong, ‘The
knapsack problem with neighbour constraints’, J. Discrete Algorithms,
16, 224–235, (2012).

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, The MIT Press, Cambridge, MA, 3rd edn., 2009.

[4] Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert, ‘Some
progress in satisfiability checking for difference logic.’, in FOR-
MATS/FTRTFT, pp. 263–276, (2004).

[5] Scott Cotton and Oded Maler, ‘Fast and flexible difference constraint
propagation for dpll(t).’, in SAT, pp. 170–183. Springer, (2006).

[6] Patrick Cousot and Radhia Cousot, ‘Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints’, in POPL, pp. 238–252, (1977).

[7] William F. Dowling and Jean H. Gallier, ‘Linear-time algorithms for
testing the satisfiability of propositional horn formulae’, The Journal of
Logic Programming, 1(3), 267 – 284, (1984).

[8] Gyula Farkas, ‘Über die Theorie der Einfachen Ungleichungen’, Jour-
nal für die Reine und Angewandte Mathematik, 124(124), 1–27, (1902).

[9] K. Iwama and E. Miyano, ‘Intractability of read-once resolution’, in
Proceedings of the 10th Annual Conference on Structure in Complexity
Theory (SCTC ’95), pp. 29–36, Los Alamitos, CA, USA, (June 1995).
IEEE Computer Society Press.

[10] Hans Kleine Büning, Piotr J. Wojciechowski, and K. Subramani, ‘Read-
once resolutions in Horn formulas’, in Frontiers in Algorithmics - 13th
International Workshop, FAW 2019, Sanya, China, April 29 - May 3,
2019, Proceedings, pp. 100–110, (2019).

[11] S. K. Lahiri and M. Musuvathi, ‘An Efficient Decision Procedure for
UTVPI Constraints’, in Proceedings of the 5th International Workshop
on the Frontiers of Combining Systems, September 19-21, Vienna, Aus-
tria, pp. 168–183, New York, (2005). Springer.

[12] Jirí Matouek and Bernd Gärtner, Understanding and Using Linear Pro-
gramming (Universitext), Springer-Verlag, Berlin, Heidelberg, 2006.

[13] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer, ‘Certify-
ing algorithms’, Computer Science Review, 5(2), 119–161, (2011).

[14] Antoine Miné, ‘The octagon abstract domain’, Higher-Order and Sym-
bolic Computation, 19(1), 31–100, (2006).

[15] M. Pelleau, Abstract Domains in Constraint Programming, Elsevier
Science, 2015.

[16] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T.
Vechev, ‘An abstract domain for certifying neural networks’, PACMPL,
3(POPL), 41:1–41:30, (2019).

[17] SRI International, Yices: An SMT solver. http://yices.csl.sri.com/.
[18] K. Subramani, ‘Optimal length resolution refutations of difference con-

straint systems’, Journal of Automated Reasoning (JAR), 43(2), 121–
137, (2009).

[19] K. Subramani, Matthew Williamson, and Xiaofeng Gu, ‘Improved al-
gorithms for optimal length resolution refutation in difference con-
straint systems’, Formal Aspects of Computing, 25(2), 319–341, (2013).

[20] K. Subramani and Piotr Wojciechowki, ‘A polynomial time algorithm
for read-once certification of linear infeasibility in UTVPI constraints’,
Algorithmica, 81(7), 2765–2794, (2019).

[21] K. Subramani and Piotr J. Wojciechowski, ‘A combinatorial certify-
ing algorithm for linear feasibility in UTVPI constraints’, Algorithmica,
78(1), 166–208, (2017).

[22] K. Subramani and Piotr J. Wojciechowski, ‘Analyzing unit read-once
refutations in difference constraint systems’, in Logics in Artificial In-
telligence - 17th European Conference, JELIA 2021, Virtual Event, May
17-20, 2021, Proceedings, eds., Wolfgang Faber, Gerhard Friedrich,
Martin Gebser, and Michael Morak, volume 12678 of Lecture Notes
in Computer Science, pp. 147–161. Springer, (2021).

[23] K. Subramani and Piotr J. Wojciechowski, ‘Tree-like unit refutations
in horn constraint systems’, in Language and Automata Theory and
Applications - 15th International Conference, LATA 2021, Milan, Italy,
March 1-5, 2021, Proceedings, eds., Alberto Leporati, Carlos Martín-
Vide, Dana Shapira, and Claudio Zandron, volume 12638 of Lecture
Notes in Computer Science, pp. 226–237. Springer, (2021).

K. Subramani and P. Wojciechowski / Unit Refutations of Difference Constraint Systems 2233

