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Abstract. Crowd flow prediction plays a vital role in various fields
such as traffic management, public safety, and urban planning. The
main challenge in crowd flow prediction lies in effectively model-
ing the periodic temporal dependency and long-range spatial depen-
dency. In the temporal domain, crowd flow shows a strong period-
icity which is exploited by existing works to build multi-time-scale
spatial-temporal features. However, these works hardly consider the
disturbance of periods, that is, the crowd flow is not strictly peri-
odic. In the spatial domain, existing works mainly utilize CNN to
capture spatial dependency, but the small receptive field of the con-
volution operator limits the ability to capture the long-range depen-
dency between crowd flows in different regions. In this paper, we
propose GridFormer, a Transformer network, in which a periodically
shifted sampling method and attention mechanism are employed to
handle the temporal shifting in the daily and weekly periodicity, and
a pyramid 3D Swin Transformers network is designed to capture
long-range spatial dependency in a hierarchical manner. Meanwhile,
the pyramid 3D Swin Transformers network jointly models spatial-
temporal features to enable better interaction between the spatial
and temporal domains. Experimental results on three crowd flow
datasets demonstrate that our GridFormer outperforms the state-of-
the-art crowd flow prediction methods.

1 Introduction

Spatial-temporal prediction plays a crucial role in urban development
by providing insights into future trends based on historical spatial
and temporal dynamics. Among various spatial-temporal prediction
tasks, crowd flow prediction holds significant importance in diverse
application scenarios, ranging from emergency management [27, 8]
and traffic control [26, 25] to urban planning [12]. Government
agencies rely on crowd flow prediction to devise control measures
and prevent potential stampedes during festival celebrations. Ride-
sharing companies like Uber utilize crowd flow prediction to opti-
mize taxi dispatch and meet the travel demands of city residents effi-
ciently. In this paper, we specifically focus on grid-based crowd flow
prediction, which involves forecasting the inflow and outflow of each
region in a city. Here, each grid represents a region within the city,
while inflow and outflow refer to the total traffic of individuals en-
tering and leaving a particular region during a specific time interval.
The task entails using historical observations of crowd flow as input
and generating predictions for the subsequent time step.

The main challenge of citywide crowd flow prediction lies in how
to model the periodic temporal dependency and long-range spatial
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dependency. Firstly, crowd flow data exhibits daily and weekly pe-
riodic patterns that are crucial for accurate predictions. However, it
should be noted that these patterns are not strictly consistent [25]. For
example, peak hours on weekdays may vary between 7:30 am and
10:00 am. Therefore, it is essential to account for temporal shifting
within the periodicity to effectively utilize the periodic information
for precise predictions. Secondly, with the rapid development of ur-
ban transportation, people can easily travel across the city in a short
period using various modes of transport, such as taxis or subways.
Consequently, the long-range spatial dependency between different
regions significantly influences crowd movements. Therefore, cap-
turing the complex long-range spatial dependency is significant for
accurate citywide crowd flow prediction.

For the task of crowd flow prediction, several studies have
been proposed based on deep learning techniques. However,
existing approaches have limitations in addressing all of the
aforementioned challenges. The first category of studies, includ-
ing Deep-ST [28], ST-ResNet [27], and DeepSTN+ [12] aim
to tackle these challenges by converting the 4D input ten-
sor (T imestep,Height,Width, Channel) into a 3D tensor
(Height,Width, T imestep × Channel) through concatenating
the channels at each timestep. Subsequently, CNNs are employed
to capture the spatial dependency. Although these methods demon-
strate promising results, they have certain limitations. By simply con-
catenating the channels, the temporal dynamics are not fully cap-
tured, potentially leading to a loss of temporal information. The sec-
ond class of studies including DMVST-Net [26], STDN [25] and
LMST3D [4] adopt a different approach by using local CNNs to cap-
ture spatial dependency among neighboring grids. STDN [25] also
takes into account the temporal shifting in the periodicity, but only
within the daily period range. Notably, these methods can only ef-
fectively capture spatial dependency when the crowd flow map has a
small mesh-grid number. The reliance on local CNNs imposes re-
strictions on the ability to model long-range dependencies, limit-
ing their effectiveness in capturing comprehensive spatial informa-
tion. The third category of studies, including PCRN [30], Multitask-
DF [29] and DeepCrowd [8] employ ConvGRU [1] and ConvL-
STM [20] as basic units jointly model spatial-temporal features.
While these methods consider temporal and spatial dependency si-
multaneously, they still rely on CNN which does not have the ca-
pability of long-range modeling to capture spatial dependency and
overlook the temporal shifting that occurs within the periodicity.

To address the aforementioned challenges, we propose Grid-
Former, a novel Transformer network for crowd flow prediction.
First, we propose a periodically shifted sampling method to take out
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relevant samples corresponding to the temporal shifted intervals of
the daily and weekly periodicity and build a set of unique spatial-
temporal features. The attention mechanism is utilized to handle
the temporal shifting in the daily and weekly periodicity by learn-
ing to assign different weights to the information of each timestep.
Inspired by Transformer models’ excellent capability of capturing
long-range dependency and the 3D Swin Transformer’s excellent
performance on video modeling (analogously to spatial-temporal
modeling) tasks [15], we design a pyramid 3D Swin Transformers
network to capture long-range spatial dependency. Meanwhile, ben-
efiting from spatial-temporal joint modeling, the pyramid 3D Swin
Transformers network enables better interaction between the spa-
tial and temporal domains. Finally, a parametric-matrix-based fusion
method is employed to fuse the spatial-temporal features of differ-
ent temporal properties (i.e., hourly trend, daily trend, weekly trend).
The proposed GridFormer is carefully optimized for addressing the
long-range spatial dependency and periodic shifting in crowd flow
prediction and accordingly proposes a novel pyramid 3D Swin Trans-
former and periodic shifting sampling. Our contributions can be sum-
marized as follows:

• To address the issue of periodic shifting, we introduce a period-
ically shifted sampling method that enables the construction of
a distinct set of multi-time-scale spatial-temporal features. Addi-
tionally, we leverage the attention mechanism to effectively cap-
ture the temporal shifting present in the daily and weekly periodic
patterns. The multi-time-scale spatial-temporal features encom-
pass three distinct temporal properties: hourly trend, daily trend,
and weekly trend.

• We propose a pyramid 3D Swin Transformers network to ef-
fectively capture the intricate long-range spatial dependency and
enable efficient joint modeling in the spatial-temporal domain.
The pyramid 3D Swin Transformers network adopts a hierarchi-
cal approach to simultaneously capture local and global informa-
tion. Specifically, we employ three independent pyramid 3D Swin
Transformers networks to handle the spatial-temporal features as-
sociated with the three aforementioned temporal properties.

• To the best of our knowledge, we are the first to comprehensively
address both of these pivotal issues simultaneously. Our proposed
method effectively tackles the periodic shifting problem and cap-
tures long-range spatial dependency in the crowd flow prediction
task. We conducted extensive experiments on three real-life crowd
flow datasets with varying mesh-grid numbers to evaluate the per-
formance of our approach. The results clearly demonstrate the su-
periority of our method over existing approaches.

2 Preliminaries

2.1 Problem Formulation

Definition 1 (Region [28]) To indicate the regions within the city, we
partition a city into H×W grids based on the longitude and latitude,
where each grid represents a region with all grids of equal size.
Definition 2 (Inflow/outflow [28]) Let P be a collection of trajecto-
ries at the tth time interval. To express the crowd flows in the city, we
define inflow and outflow for the region (h, w) at the tth time interval
as follows:

xh,w,in
t =

∑
Tr∈P

|{j > 1|gj−1 /∈ (h,w) ∧ gj ∈ (h,w)}|

xh,w,out
t =

∑
Tr∈P

|{j � 1|gj−1 ∈ (h,w) ∧ gj /∈ (h,w)}|

where Tr : g1 → g2 → · · · → g|Tr| is a trajectory in P and gj is the
geospatial coordinate; gj ∈ (h,w) means the point gj lies within the
grid (h,w), and vice versa; | · | denotes the cardinality of a set.

(a) (b)

Figure 1: Examples of 32 × 32 partitioned grid maps. Left to right:
inflows and outflows in every region of Beijing

According to the above definitions, for a spatial region represented
by a H × W grid map, there are 2 types of flows in each grid over
time. At the tth time interval, the crowd flow in all H ×W grids can
be denoted as a tensor Xt ∈ R

H×W×2 where (Xt)h,w,0 = xh,w,in
t

and (Xt)h,w,1 = xh,w,out
t . The inflow and outflow matrix is shown

in Figure 1.
Crowd Flow Prediction: Given the historical observations {Xi|i =
1, 2, · · · , n− 1}, predict Xn.

2.2 3D Swin Transformer

The Transformer [22] has been specifically designed for sequence
modeling and transduction tasks, utilizing self-attention mechanisms
to effectively capture long-range dependencies within the data. In
the field of computer vision, Transformer models have demonstrated
remarkable ability in capturing long-range dependency [2, 6, 24].
Moreover, Liu et al. [14] have further introduced the principles of
locality, hierarchy, and translation invariance, endowing the Trans-
former with the capability to serve as a versatile backbone for various
image recognition tasks. Swin Transformer disperses more attention
to the connection of each patch by the application of shifted window
and patch merging. By extending Swin Transformer from 2D to 3D
space, Liu et al. [15] proposed 3D Swin Transformer. A 3D Trans-
former block consists of a 3D shifted window-based MSA module
followed by a feed-forward network, specifically a 2-layer MLP, with
GELU non-linearity in between.

3D Swin Transformer has demonstrated exceptional performance
in various video modeling tasks due to its superior ability to simul-
taneously capture spatial and temporal dependency. Its hierarchical
structure and multi-head self-attention with shifted window enable
efficient modeling of long-range spatial dependency. Motivated by
the remarkable capability of Transformer models in capturing long-
range information and the outstanding performance of the 3D Swin
Transformer in video modeling, we adopt the 3D Swin Transformer
as the fundamental component for handling our high-dimensional se-
quential data, which shares similarities with video data in terms of
spatial-temporal modeling tasks.

3 GridFormer

In this section, we introduce GridFormer and its components:(1) Pe-
riodically shifted sampling, (2) Pyramid 3D Swin Transformers net-
work, and (3) Attention mechanism and fusion process in detail.
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Figure 2: The architecture of GridFormer. The spatial-temporal fea-
tures of three temporal properties are built from the sequence of
crowd flow maps and external information.

Figure 2 illustrates the architecture of GridFormer, which com-
prises four main branches: hourly trend, daily trend, weekly trend,
and external information. In this architecture, the inflow and out-
flow in each region are computed at half-hour intervals to construct
a sequence of crowd flow maps. Using the periodically shifted sam-
pling method, we construct a set of distinct spatial-temporal features:
XHour , XDay , and XWeek, which correspond to recent time intervals
(i.e., hourly trend), the previous day (i.e., daily trend), and the pre-
vious week (i.e., weekly trend), respectively. Each feature is repre-
sented as a 4D tensor (T imestep,Height,Width, Channel = 2).
External-info vector is sent to two fully connected layers and then
reshaped to a 4D tensor of the same shape as the features tensor.
The concatenated spatial-temporal features are fed into the pyra-
mid 3D Swin Transformers network. Further, the attention mecha-
nism is employed to capture the temporal shifting in the periodicity
by learning to assign different weights to the information of each
timestep. Finally, the fused features are obtained by aggregating the
three branches using a parametric-matrix-based fusion. After fusion,
a convolutional layer is employed to get the final prediction result.
The details of GridFormer’s components will be introduced below.

3.1 Periodically Shifted Sampling

Crowd flow exhibits periodic patterns across various time scales,
such as daily or weekly cycles. For instance, the flow of individu-
als through a specific region tends to increase during rush hours and
decrease during nighttime, repeating this pattern on a daily basis. On
a weekly scale, the crowd flow pattern on weekdays is similar, while
it differs from the pattern observed on weekends. These periodic pat-
terns can be visualized in Figure 3.

However, the crowd flow is not strictly periodic [25]. For instance,
peak hours on weekdays may vary between 8:00 am and 10:30 am.
This temporal shifting of periodicity is illustrated in Figure 3. In
other words, there is a consistent temporal shift of several time in-
tervals between periods. We propose a periodically shifted sampling
method to take out relevant samples corresponding to the temporal
shifted intervals of periodicity. The set of unique spatial-temporal

(a) (b)

Figure 3: The periodic patterns in the TaxiBJ data. (a) Temporal shift-
ing between days. (b) Temporal shifting between weeks. Each time
represents a time interval (e.g., 9:30 am means 9:00-9:30 am).

features is built as follows:

X
Hour
t = [Xt−h−L,Xt−h−(L−1), · · · ,Xt−h−1]

X
Day
t = [Xt−d−�L

2
�,Xt−d−(�L

2
�−1), · · · ,Xt−d+�L

2
�]

X
Week
t = [Xt−w−�L

2
�,Xt−w−(�L

2
�−1), · · · ,Xt−w+�L

2
�]

where L is the length of the sampling sequence. The time interval for
all datasets is 30 minutes, which means that h is set to 0 to capture the
hourly trend, d is set to 48 to represent the daily periodicity (with 48
half-hour intervals in a day), and w is set to 7× 48 to account for the
weekly periodicity (with 7 days in a week). The external information
vector VE is processed through two FC layers and reshaped into a
4D tensor XE with the same shape as the feature tensors. XE will
be concatenated with feature tensors XHour , XDay , XWeek as XH ,
XD , XW and then be fed into the network.

3.2 Pyramid 3D Swin Transformers

To overcome the limitation of existing methods in capturing long-
range dependency, we propose a novel approach called the pyramid
3D Swin Transformers network which constructs hierarchical fea-
tures and fuses features of different levels step by step to capture
spatial dependency with varying ranges, especially long-range spa-
tial dependency. Meanwhile, benefiting from spatial-temporal joint
modeling, the pyramid 3D Swin Transformers network enables bet-
ter interaction between the spatial and temporal factors, leading to a
better understanding of crowd flow dynamics.

Specifically, a ConvLSTM is employed to model the spatial-
temporal features at the bottom of the pyramid architecture in order
to preserve high-resolution spatial features well and achieve higher
modeling efficiency. We make use of patch merging blocks to achieve
downsampling that is, the stride of sampling is equal to 2. Further,
the higher-level 3D Swin Transformer blocks are employed to han-
dle hierarchical spatial-temporal features and model long-range spa-
tial dependency. Hierarchically, high-level spatial-temporal features
are upsampled and then aggregated with lower-level spatial-temporal
features which skip connects to the next 3D Swin Transformer block
by a FC layer. The hierarchies generated in the network are able to
generate finer details in the output. Based on the above design, the
network can jointly capture local and global information in a hierar-
chical manner. Figure 4(a) presents the architecture of the pyramid
3D Swin Transformers network. Two consecutive 3D Swin Trans-
former blocks are computed as:
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Figure 4: (a) The architecture of Pyramid 3D Swin Transformers. (b) An illustration of two successive 3D Swin Transformer blocks.

ẑ
l = 3DW-MSA(LN(zl−1)) + z

l−1,

z
l = FFN(LN(ẑl)) + ẑ

l,

ẑ
l+1 = 3DSW-MSA(LN(zl)) + z

l,

z
l+1 = FFN(LN(ẑl+1)) + ẑ

l+1,

(1)

where ẑ
l and zl denote the output features of the 3D(S)W-MSA mod-

ule and the FFN module for block l, respectively; 3DW-MSA and
3DSW-MSA denote 3D window based multi-head self-attention us-
ing regular and shifted window partitioning configurations, respec-
tively. An illustration of two successive 3D Swin Transformer blocks
is shown in Figure 4(b). ConvLSTM [20] is an extension of the fully
connected LSTM that incorporates convolutional structures. It allows
for the iterative calculation of the hidden state ht from t = 1 to
T for an input sequence X = [x1, x2, · · · , xT ]. The In the pyra-
mid network, the patch partition block accepts a tensor of shape
T × H × W × 4 and splits it into non-overlapping patches in the
dimensions of height and width. The patch partition is followed by
a linear embedding to map the split results to a tensor of shape
T × H

2
× W

2
× C which is fed into a 3D Swin Transformer block.

The network for each X in [XH ,XD,XW ] are the same, so we list
the formulas for one X = [x1, x2, · · · , xT ] as follows:

[x′
1, x

′
2, · · · , x′

T ] = LE(PP([x1, x2, · · · , xT ])),

[z11 , z
1
2 , · · · , z1T ] = f1

3DST ([x
′
1, x

′
2, · · · , x′

T ]),

[z21 , z
2
2 , · · · , z2T ] = f2

3DST (PM([z11 , z
1
2 , · · · , z1T ])),

...

[zl1, z
l
2, · · · , zlT ] = f l

3DST (PM([zl−1
1 , zl−1

2 , · · · , zl−1
T ])),

(2)

where PP, LE, and PM denote patch partition, linear embedding, and
patch merging, respectively. The function f l

3DST (·) refers to the set
of operations in Eq.1, l for the lth level, and z are the output of the 3D
Swin Transformer. High-level spatial-temporal features are upsam-
pled and then aggregated with lower-level spatial-temporal features

which skip connects to the next 3D Swin Transformer block by a FC
layer. After aggregating spatial-temporal features from ConvLSTM,
we get the final output. The process is as follows:

[pl1, p
l
2, · · · , plT ] = f l

Up([z
l
1, z

l
2, · · · , zlT ]),

[ql1, q
l
2, · · · , qlT ] = f l

3DST (fFC([z
l−1
1 , zl−1

2 , · · · , zl−1
T ])),

[sl1, s
l
2, · · · , slT ] = [pl1, p

l
2, · · · , plT ]⊕ [ql1, q

l
2, · · · , qlT ],

...

[p11, p
1
2, · · · , p1T ] = f1

Up([s
2
1, s

2
2, · · · , s2T ]),

[q11 , q
1
2 , · · · , q1T ] = fCL([x1, x2, · · · , xT ]),

[s1, s2, · · · , sT ] = [p11, p
1
2, · · · , p1T ]⊕ [q11 , q

1
2 , · · · , q1T ],

(3)

where the function fCL(·) and fFC(·) refer to the ConvLSTM op-
erations and a FC layer, respectively. And fUp(·) denotes an upsam-
pling operation. Here, pi, qi, and si(i = 1, · · · , T ) are intermediate
features and the final output, respectively. In summary, the pyramid
3D Swin Transformers network is abstracted as follows:

[s1, s2, · · · , sT ] = fPy3DSTs[x1, x2, · · · , xT ] (4)

3.3 Attention Mechanism and Fusion Process

Attention mechanism. We employ the attention mechanism to ef-
fectively capture the temporal shifting within the periodicity. In our
approach, we extend the original attention mechanism to handle a
4D tensor (T imestep,Height,Width, F ilter) as input and gen-
erate a 3D attention tensor (Height,Width, F ilter) as output. The
implementation of the attention mechanism is as follows:

zi = tanh(Watt · si + batt),

αi =
exp(zi)∑
j exp(zj)

,

Xatt =
T∑

i=1

αi · si,

(5)
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Here, Watt is weight and batt is bias and si is the i-th result in
[s1, s2, · · · , sT ] outputted by the network. Note that si is a 3D ten-
sor (Height,Width, F ilter = 4C), and Watt has (Height ×
Width×Filter) learnable parameters. For each S in [SH , SD, SW ],
we utilize an independent attention block to handle. Let fatt(·) de-
note the operation set in Eq.5:

X
H
att = fH

att([s
H
1 , sH2 , · · · , sHT ]),

X
D
att = fD

att([s
D
1 , sD2 , · · · , sDT ]),

X
W
att = fW

att([s
W
1 , sW2 , · · · , sWT ]).

(6)

Parametric-matrix-based fusion. Rather than relying solely on lin-
ear combinations, it is important to consider the existence of more
complex interactions within the three branches. To effectively aggre-
gate the spatial-temporal features associated with the three temporal
properties, we adopt the following approach:

Xfusion = Wh � X
H
att + Wd � X

D
att + Ww � X

W
att (7)

where � is Hadamard product, Wh, Wd, Ww are the learnable pa-
rameters that adjust the degrees affected by the three temporal prop-
erties, respectively. After end fusion, we utilize a convolution layer
to get the final prediction result X̂t.

3.4 Differentiation from Existing Work

Periodic temporal dependency. Previous works, with the exception
of STDN [25], have not adequately addressed the issue of period
shift. STDN [25] seeks to rectify periodic shifting based on the daily
periodicity of a specific grid (a pixel). In contrast, our method first
considers the interdependence of the crowd flow map (all pixels) and
models them simultaneously. Second, we revealed that weekly peri-
odicity also exhibits shifting challenges due to climate, events, etc.
Therefore, we introduce the weekly period to enrich the temporal
dependency to alleviate periodic shifting further.
Long-range spatial dependency. Previous work such as Deep-
Crowd [8] has attempted to utilize ConvLSTM to capture these de-
pendencies, but its limited receptive field renders it inadequate for
capturing and difficult to optimize [16]. Besides, the features far
away from a specific location have to pass through a large number
of layers before affecting the location for both forward propagation
and backward propagation, which would add optimization difficul-
ties during the training [3]. Therefore, ConvLSTM tends to suffer
from the limited ability to capture long-range spatial dependency.
In contrast, the proposed GridFormer effectively aggregates longer
spatial information through the transformer’s capability of capturing
long-range dependency and concise pyramid-based downsampling.

In conclusion, the proposed GridFormer is carefully optimized for
addressing the long-range spatial dependency and periodic shifting in
crowd flow prediction, and we accordingly propose a novel pyramid
3D Swin Transformer and periodic shifting sampling. To the best of
our knowledge, we are the first to summarize and address these two
pivotal issues simultaneously.

4 Experiments

4.1 Experimental Settings

Dataset. Three crowd flow datasets are adopted for our experiments,
which were used by existing works [27, 23, 4, 8].

• TaxiBJ [27, 23, 4]: The crowd flow dataset used in this study is
derived from taxicab GPS data, encompassing the inflow and out-
flow of taxis across various regions in Beijing. The dataset cov-
ers four distinct time periods: 7/1/2013 to 10/30/2013, 3/1/2014
to 6/30/2014, 3/1/2015 to 6/30/2015, and 11/1/2015 to 4/10/2016.
We divide Beijing city into a grid system consisting of 32×32
grids. Additionally, we set the time interval for the dataset as 30
minutes, allowing for a granular temporal resolution.

• BousaiOSA [8]: The crowd flow dataset used in this study is
sourced from GPS trajectory data recorded by a smartphone appli-
cation utilized by users. The data spans a continuous period from
4/1/2017 to 7/9/2017 and comprises information regarding the in-
flow and outflow of individuals in various regions of Osaka. Osaka
is divided into a grid system consisting of 60×60 grids. The time
interval between consecutive data points is set to 30 minutes.

• BousaiTYO [8]: This crowd flow dataset is derived from GPS tra-
jectory data recorded by a smartphone application used by users.
It covers the same time period as the BousaiOSA dataset. Bou-
saiTYO focuses on collecting information regarding the inflow
and outflow of crowds in different regions of Tokyo, which is par-
titioned into a grid system consisting of 80×80 grids. Similar to
BousaiOSA, the time interval for BousaiTYO is set to 30 minutes.

Evaluation Metric. Following previous works [27, 12, 8], we use
RMSE and MAE as metrics:

RMSE =

√√√√ 1

T

T∑
t=1

∥∥∥Xt − X̂t

∥∥∥2

2

MAE =
1

T

T∑
t=1

|Xt − X̂t|

Where Xt represents the ground-truth value at the tth time interval,
while X̂t corresponds to the prediction. The variable T indicates the
total number of samples in the testing data.
Implementation Details. For preprocessing, we employ Min-Max
normalization to scale the crowd flow values within the range of [0,
1]. After making predictions, we denormalize the predicted values
and utilize them for model evaluation. Following established prac-
tices in both industry and academia, we calculate the evaluation met-
rics for crowd flow values that are larger than 10. This approach is
commonly adopted since low-flow instances have minimal signifi-
cance in real-world applications [26]. Regarding external factors, we
utilize one-hot encoding to transform metadata such as HourOfDay,
DayOfWeek, and Weekend/Weekday into binary vectors. For the di-
vision of data, we allocate 80% for training purposes and the remain-
ing 20% for testing. Within the training set, we further allocate 80%
for model learning and the remaining 20% for validation purposes.
To generate samples, we utilize a sliding window technique for both
the training and testing datasets.

For training, we configure the number of heads in multi-head
self-attentions as 8, which allows for the effective capturing of di-
verse attention patterns. The pyramid 3D Swin Transformers gen-
erate spatial-temporal features with a channel number of 192 (i.e.,
C=48), providing a comprehensive representation of the data. To im-
plement our proposed model, we utilize the PyTorch framework and
train it end-to-end using the Adam optimization algorithm [9] with a
learning rate of 1×10−4. The training process is carried out over 100
epochs, with a batch size of 4 samples. During training, the model
is monitored, and the parameters are saved when the model achieves
the lowest root mean squared error (RMSE) on the validation dataset,
ensuring optimal performance.
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Table 1: Performance comparison with SOTA methods. ∗∗∗(∗∗) means the result is significant according to Student’s T-test at level 0.01 (0.05)
compared to the best baseline. ΔRMSE indicates the reduction of RMSE compared with ST-RestNet.

Method
TaxiBJ BousaiOSA BousaiTYO

RMSE MAE Δ RMSE RMSE MAE Δ RMSE RMSE MAE Δ RMSE
Historical Average 37.01 28.70 89.07% 12.73 11.32 77.38% 15.43 16.04 86.30%
CopyLastFrame 26.38 21.69 27.86% 17.91 15.26 149.51% 23.53 20.27 184.09%
CNN 27.88 19.21 35.12% 12.15 9.71 69.33% 13.07 12.14 57.71%
ConvLSTM 22.42 13.77 8.67% 9.75 7.28 35.80% 10.19 9.84 23.05%
ST-ResNet 20.53 12.89 0.00% 7.18 5.84 0.00% 8.28 6.25 0.00%
DMVST-Net 22.54 14.04 9.22% 8.00 6.37 11.52% 9.01 7.13 8.78%
PCRN 21.87 13.75 8.10% 7.56 6.18 5.41% 8.44 6.46 6.70%
STDN 19.51 12.71 -4.99% 6.96 5.73 -3.07% 8.07 6.18 -2.57%
DeepSTN+ 19.63 12.82 -4.40% 6.95 5.70 -3.11% 8.03 6.17 -3.03%
DeepCrowd 19.27 12.97 -6.15% 6.86 5.43 -4.36% 7.95 5.98 -4.01%
LMST3D 19.33 12.48 -5.86% 6.75 5.33 -5.94% 7.83 5.81 -5.88%
GridFormer 18.02∗∗∗ 12.15∗∗∗ -10.94%∗∗∗ 6.59∗∗∗ 5.18∗∗∗ -8.10%∗∗∗ 7.58∗∗∗ 5.72∗∗ -8.47%∗∗∗

4.2 Comparisons with State-of-the-Art Methods

We compare our proposed method with 12 baselines, including (1)
Historical Average (2) CopyLastFrame, i.e., the crowd flow map cor-
responding to the previous time interval of the predicting target (3)
CNN (4) ConvLSTM [20] (5) ST-ResNet [27] (6) PCRN [30] (7)
DMVST-Net [26] (8) DeepSTN+ [12] (9) STDN [25] (10) Deep-
Crowd [8] (11)LMST3D [4]. All baselines’ hyperparameter settings
and training procedures are implemented completely in accordance
with their original papers or source code. It should be noted that to
test the pure ability of grid-based modeling on the spatial-temporal
data, we only use metadata for external info, and extra data such as
Point-Of-Interest(POI) data and meteorology data are excluded from
our model and all the baselines. We run each baseline 10 times and
report the mean of the experimental results. Besides, we also conduct
student t-test.
Performance Evaluation. Table 1 shows the performance compar-
ison of our GridFormer with other competing methods on TaxiBJ,
BousaiOSA, and BousaiTYO datasets. Our GridFormer achieves the
lowest RMSE and MAE on three datasets with varying mesh-grid
numbers and significantly outperforms other competing methods by
a large margin. When compared with the most classic ST-ResNet,
GridFormer reduces RMSE by 8.10% to 10.94%. Specifically,
Historical Average and CopyLastFrame don’t perform well, because
they only rely on historical data of predicted value and overlook
spatial and context features. Also, our GridFormer outperforms
ST-ResNet and DeepSTN+, because they only use CNN to capture
spatial dependency, but overlooks the temporal sequential depen-
dency. DMVST-Net and STDN handle spatial-temporal features
by local CNN and LSTM. LMST3D models the spatial-temporal
correlation across multiple local regions using local 3D CNN.
However, all of them are only suitable for datasets with a small
mesh-grid number like 10 × 10 and cannot capture long-range
spatial dependency. PCRN and DeepCrowd jointly model the
spatial-temporal features based on ConvGRU or ConvLSTM, but
they overlook the temporal shifting in the periodicity. The better
performance of GridFormer demonstrates the effectiveness of the
periodically shifted sampling method combined with the attention
mechanism to handle periodic temporal shifting and the pyramid 3D
Swin Transformer network to model long-range spatial dependency.

Qualitative evaluation w.r.t. Long-range Spatial Dependency. To
better demonstrate the model’s effectiveness in capturing long-range
spatial dependency, we add standard normal random noise to the out-

ermost grid of the crowd flow map and measure the performance fluc-
tuation at the central grid. If the model can better capture long-range
spatial dependency, long-range noise will have a greater impact on
performance. Here we compare the proposed algorithm with Deep-
Crowd, which also considers long-range spatial dependency, and the
results are shown in Table 2. We can find that the noise added in
the long-range has a greater impact on the performance of Grid-
Former, which means that GridFormer captures long-range spatial
dependency more effectively.

Table 2: Effectiveness verification of long-range capturing.

Model (TaxiBJ) RMSE (w/o noise) RMSE((w/ noise)) Δ RMSE
DeepCrowd 21.07 22.61 7.31%
GridFormer 19.92 23.16 16.26%

Efficiency Evaluation. We conducted an analysis to evaluate the ef-
ficiency of the main models in terms of model complexity and model
training time, as presented in Table 3. The complexity of GridFormer
is found to be comparable to that of existing methods, indicating that
the significant improvements achieved by GridFormer do not come
at the expense of increased complexity.

Table 3: Efficiency evaluation.

Main Model Training time (Hour) Params
ST-ResNet 0.81 484,384
DeepSTN+ 7.60 33,607,666
DMVST-Net 28.50 1,578,253
DeepCrowd 11.78 5,852,721
STDN 77.35 6,349,922
LMST3D 25.65 9,267,786
GridFormer 13.60 17,348,533

4.3 Ablation Study

Effectiveness of GridFormer components. We conduct a compara-
tive analysis between our GridFormer model and six different model
variants on TaxiBJ dataset to examine the individual components of
GridFormer. "Original 3D Swin Transformer" refers to our substi-
tution of the proposed pyramid structure with the conventional 3D
Swin Transformer. It is evident that the absence of an effective fusion
of multi-level spatial-temporal features through the pyramid structure
leads to a significant decline in performance. "NoExternal" denotes
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the utilization of GridFormer without external info. The results ob-
tained from this variant highlight the significance of external info in
order to achieve enhanced performance. Specifically, the periodically
shifted sampling method, attention mechanism, and end-fusion con-
tribute to enhancements of 5.04%, 3.48%, and 2.16%, respectively,
compared to "NoShiftedSampling," "NoAttention," and "NoEndFu-
sion." The results serve as evidence of the effectiveness of each in-
dividual component within the GridFormer. Furthermore, the exper-
imental results provide confirmation that the integration of ConvL-
STM at the lower level of the pyramid 3D Swin Transformers net-
work helps in preserving high-resolution spatial information. This
finding adds further validation to the overall efficacy and reliability
of each component incorporated in our GridFormer approach.

Table 4: Ablation study on different components of GridFormer.

Variant RMSE MAE Δ RMSE
Original Swin Transformer 19.21 12.69 +7.71%
NoExternal 19.49 12.88 +8.16%
NoShiftedSampling 18.93 12.67 +5.04%
NoConvLSTM 19.13 12.73 +6.16%
NoAttention 18.67 12.47 +3.48%
NoEndFusion 18.41 12.28 +2.16%
GridFormer 18.02 12.15 0.00%

Effectiveness of the sampling sequence length. Fig 5(a) illustrates
the effectiveness of the sampling sequence length on TaxiBJ dataset.
It can be observed that as the sampling length increases, the RMSE
decreases, indicating that longer input sequences generally yield bet-
ter results due to the increased information about the crowd flow dy-
namics provided to the model. When the length of the sampling se-
quence is greater than 7, the RMSE no longer decreases, indicating
that the period shift of TaxiBJ data is around 3 time intervals, which
is in line with the actual situation.

(a) (b)

Figure 5: Effectiveness analysis. (a) Effectiveness of the sampling se-
quence length. (b)Effectiveness of the network depth.

Effectiveness of the depth of pyramid 3D Swin Transformers net-

work. Fig 5(b) illustrates the impact of the depth of pyramid 3D Swin
Transformers network on TaxiBJ dataset. The network depth corre-
sponds to the height of the pyramid 3D Swin Transformers network.
When the network depth is set to 1, only ConvLSTM is utilized to
handle the spatial-temporal features. As the network depth increases,
the RMSE decreases significantly, indicating that the ability of the
pyramid 3D Swin Transformers network to capture long-range de-
pendency greatly enhances the prediction accuracy. However, when
the network depth reaches 4, the model’s prediction accuracy slightly
declines. This is mainly because as the network gets deeper, the mag-
nification of downsampling also increases, which will cause the win-
dow of self-attention computation to be smaller and make the inter-
actions between patches less efficient.

5 Related Work

In this section, we will discuss the related works pertaining to
crowd flow prediction tasks. Traditional time-series forecasting mod-
els such as ARIMA and Kalman filtering have been extensively uti-
lized for crowd flow prediction problems [19, 11, 17, 13]. Some stud-
ies further consider spatial relations [7, 5] and utilize external context
info (e.g., adding features of venue information, weather condition,
and events) [18, 21]. While these studies have demonstrated that con-
sidering spatial relations and external information can improve the
accuracy of crowd flow prediction, they have encountered challenges
in capturing the complex non-linear spatial-temporal dependencies
inherent in the data.

Deep learning has achieved great success in computer vision and
natural language processing [10] and provides a promising way to
capture non-linear spatial-temporal relations. A series of studies were
proposed for crowd flow prediction. Deep-ST [28] is the first model
to use CNN to capture the spatial relations and ST-ResNet [27] em-
ploys residual learning to capture citywide spatial dependency. Fur-
ther, DeepSTN+ [12] enhances the ST-ResNet by designing a unique
ConvPlus block to attempt to capture long-range spatial dependency.
These methods don’t model the temporal sequence dependency ex-
plicitly. On dataset with a small mesh-grid number like TaxiNYC
which only has 20×10 grids, DMVST-Net [26] and STDN [25] are
designed to use a local CNN to capture spatial dependency among
nearby grids and employ LSTM to capture temporal dependency.
LMST3D [4] models the spatial-temporal correlation across multi-
ple local regions using local 3D CNN. While these studies explic-
itly model temporal dependency and spatial dependency, none of
them consider long-range spatial dependency. With the emergence of
convolutional recurrent networks (CRNs) such as ConvGRU [1] and
ConvLSTM [20], PCRN [30], Multitask-DF [29] and DeepCrowd [8]
employ the CRNs model as the basic unit to handle spatial and tem-
poral dependency for crowd flow prediction. However, these stud-
ies overlook the temporal shifting of periodicity. PRNet [23] applies
residual connections on different time segments of the periods to im-
prove the model, but this work does not consider the long-range spa-
tial dependency and the temporal shifting of periodicity.

In summary, we propose a new sampling method and then com-
bine the attention mechanism to deal with the periodic shifting prob-
lem and design a pyramid 3D Swin Transformers network to capture
long-range spatial dependency.

6 Conclusion

In this paper, we proposed a novel Transformer network for city-
wide crowd flow prediction. A periodically shifted sampling method
and attention mechanism are employed to handle the temporal shift-
ing in the daily and weekly periodicity, and a pyramid 3D Swin
Transformers network is designed to capture long-range dependency
between regions in a hierarchical manner. Meanwhile, the network
jointly models spatial-temporal features to enable better interaction
between the spatial and temporal domains. The experiment results on
three real-life crowd flow datasets varying mesh-grid numbers show
that our proposed GridFormer outperforms the state-of-the-art crowd
flow prediction methods.
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