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Abstract. Let G be a graph, which represents a social network, and
suppose each node v has a threshold value τ(v). Consider an initial
configuration, where each node is either positive or negative. In each
discrete time step, a node v becomes/remains positive if at least τ(v)
of its neighbors are positive and negative otherwise. A node set S is
a Target Set (TS) whenever the following holds: if S is fully positive
initially, all nodes in the graph become positive eventually. We focus
on a generalization of TS, called Timed TS (TTS), where it is per-
mitted to assign a positive state to a node at any step of the process,
rather than just at the beginning.

We provide graph structures for which the minimum TTS is sig-
nificantly smaller than the minimum TS, indicating that timing is an
essential aspect of successful target selection strategies. Furthermore,
we prove tight bounds on the minimum size of a TTS in terms of the
number of nodes and maximum degree when the thresholds are as-
signed based on the majority rule.

We show that the problem of determining the minimum size of a
TTS is NP-hard and provide an Integer Linear Programming formu-
lation and a greedy algorithm. We evaluate the performance of our
algorithm by conducting experiments on various synthetic and real-
world networks. We also present a linear-time exact algorithm for
trees.

1 Introduction

Over the past few decades, the world has experienced an extreme
surge in the proliferation of online social networks. These platforms
have emerged as an omnipresent facet of contemporary societies, en-
abling people to forge connections with their peers, aggregate in-
formation, and express their opinions. As such, these networks have
become the principal conduits for the rapid dissemination of infor-
mation, facilitating the fluid formation of opinions through online
interactions. Consequently, marketing firms and political campaigns
frequently exploit social networks to achieve their desired outcomes,
cf. [27]. These entities harness the power of these platforms to ad-
vertise new consumer goods and promote political factions. The un-
derlying strategy often revolves around the notion that pinpointing
a select group of influential individuals within a given community
could trigger a massive ripple effect of influence across the network
at large. This has catalyzed a growing interest in the quantitative
analysis of opinion diffusion and collective decision-making mecha-
nisms, cf. [24, 20, 15].
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From a theoretical standpoint, it is pertinent to introduce and in-
vestigate mathematical models of influence diffusion, which simu-
late the process of how individuals revise their opinions and how the
influence disseminates through social interactions. The majority of
the proposed models utilize a graph, denoted by G, to model the in-
teractions between members of a community, cf. [36]. The graph,
intended to represent a social network, features each node as an indi-
vidual, with an edge representing a relationship between individuals
such as friendship, collaboration, or mentorship. Furthermore, each
node is typically assigned a binary state, representing a positive or
negative stance regarding a specific topic or the status on the adop-
tion of a novel technological product. Thereafter, nodes continue to
update their states as a function of their neighboring nodes’ states.

One category of models which has gained significant popularity is
the class of threshold models, cf. [36, 24, 1]. These models entail that
each node v possesses a distinct threshold value τ(v) and updates
its opinion to a positive state only when the number of its positive
neighbors exceeds the stipulated threshold. In these models, while
peer pressure could potentially influence a node’s decision-making
process, nodes can exhibit varying degrees of resistance, where those
with higher threshold values require a greater number of positive con-
nections to adopt a positive state.

The majority of threshold based models explored in previous re-
search fall under the umbrella of two categories: progressive and
non-progressive, cf. [15, 27, 44]. Progressive models are designed
to simulate situations where states evolve in a fixed direction, i.e.,
once a node assumes a positive disposition, it remains positive indef-
initely. This type of dynamic is particularly suited to scenarios where
nodes transition from an uninformed (negative) to an informed (pos-
itive) state, or where a node adopts a new technology (i.e., switches
from negative to positive). Conversely, in the non-progressive set-
ting, nodes possess the capability of oscillating between positive and
negative states. In this context, a node’s state represents its stance on
a given topic (such as levying additional taxes on alcoholic bever-
ages), favoring one of two political parties, or embracing one of two
competing services.

A set of nodes whose agreement on positive state results in the
whole (or a large body of) network eventually adopting a positive
stance is called a target set, cf. [15]. In order to acquire insights
into the most effective manipulation strategies for controlling the out-
come of opinion formation dynamics, the problem of identifying the
minimum size of a target set has extensively been examined. This
problem is commonly referred to as target set selection [1] or influ-
ence maximization [27], depending on its exact formulation, and has
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yielded a plethora of hardness, algorithmic, and combinatorial find-
ings, cf. [36, 24, 20, 15, 27].

In the present work, we introduce a generalization of a target set,
where we allow the nodes to be targeted at different steps of the pro-
cess (rather than all at once). Such a set of targeted nodes is called
a timed target set. Some prior work has considered the framework
where the manipulator intervenes in the process in a more dynamic
fashion, but their setup is fundamentally different from ours, in terms
of the underlying diffusion process, the permitted intervention oper-
ations, and the manipulator’s objectives, cf. [16, 3, 29, 45].

We investigate the problem of finding the minimum size of a timed
target set in a non-progressive threshold model. We provide some
hardness results, propose a greedy algorithm whose performance is
evaluated on real and synthetic graph data, present an exact linear-
time algorithm for trees, and prove tight bounds on the minimum
size of a timed target set in terms of different graph parameters.

Outline. In the rest of this section, we first give some basic def-
initions in Subsection 1.1. Building on that, we present our contri-
butions and give an overview of related work in the following two
subsections. Our bounds on the minimum size of a timed target set
are proven in Section 2. Our complexity and algorithmic results are
given in Section 3.

1.1 Preliminaries

Consider a simple undirected graph G = (V,E). We let n := |V |,
m := |E| and use the shorthand vu (or uv) for an edge {v, u} ∈ E.
Let N(v) := {u ∈ V : vu ∈ E} be the neighborhood of v and
N [v] = N(v) ∪ {v} be the closed neighborhood of v. d(v) :=
|N(v)| denotes the degree of v and Δ stands for the maximum degree
in G. Furthermore, for D ⊆ V , let dD(v) := |N(v)∩D|. We say G
is an even graph if d(v) is even for every node v in G. For D ⊆ V ,
the induced subgraph of G on D is denoted by G[D], and G \ D
stands for the induced subgraph on V \ D. In case of D = {v} for
some v ∈ V , we use the notation G \ v instead of G \ {v}.

By the threshold assignment for the nodes of a graph G, we mean
a function τ : V −→ N ∪ {0} such that for each node v ∈ V
the inequality 0 ≤ τ(v) ≤ d(v) holds. Some special choices of the
threshold assignment are the strict majority τ(v) = �(d(v) + 1)/2	
and simple majority τ(v) = �d(v)/2	.

Consider a pair (G, τ) and an initial configuration where each
node is either positive or negative. In the progressive threshold
model, in each discrete time step, a negative node v becomes pos-
itive if at least τ(v) of its neighbors are positive and positive nodes
remain unchanged. In the non-progressive threshold model, a node
v becomes positive if at least τ(v) of its neighbors are positive and
becomes negative otherwise. Note that in the non-progressive model,
nodes can switch from positive to negative while this is not possible
in the progressive model. Furthermore, we define Ai to be the set of
positive nodes in the i-th step of the process.

A set S ⊆ V is called a target set (TS) whenever the follow-
ing holds: If S is fully positive, then all nodes become positive after
some steps, i.e., if A0 = S, then Ai = V for some i ∈ N. For a
pair (G, τ), the minimum size of a TS in the progressive and non-
progressive model is denoted by

−−→
MT (G, τ) and

←−→
MT (G, τ), respec-

tively. Note that we use a forward arrow for the progressive model
and a bidirectional arrow for the non-progressive model.

According to the definition of a TS, a manipulator targets a set of
nodes at once. However, it is sensible to consider the set-up where
the manipulator can target nodes at different steps of the process. We
capture this by introducing the concept of a timed target set (TTS),

defined below.

Definition 1. For a pair (G, τ), the finite sequence S0,S1, . . . ,Sk

of subsets of V , for some integer k, is said to be a TTS in the non-
progressive model when there is a sequence Q0, Q1, . . . , Qk of sub-
sets of V such that : (i) Q0 = ∅; (ii) v ∈ Qi for i ≥ 1 if and only
if |N(v) ∩ (Si−1 ∪Qi−1)| ≥ τ(v); (iii) Sk = ∅; (iv) Qk = V . We
denote the minimum size of a TTS in the non-progressive model with←−−→
MTT (G, τ), where the size of a TTS is equal to

∑k
i=0 |Si|.

Note that Si ∪Qi is the set of positive nodes in the i-th step, i.e.,
Ai. The nodes of Qi become positive using their positive neighbors
in step i − 1 (i.e., their neighbors in Si−1 ∪ Qi−1) but the nodes of
Si are chosen to be positive in step i by the manipulator.

We do not define TTS for the progressive model since the ability
to target nodes at different steps does not give the manipulator any
extra power. This is because there is no benefit for a manipulator to
target a node in some step i, for i ≥ 1, instead of targeting it in step
0.

As a warm-up, let us provide the example below.

Example 1. Consider the complete bipartite graph K1,n−1 with
partite sets X = {x} and Y = {y1, y2, . . . , yn−1}. Let τ be the
strict majority threshold, i.e., τ(v) = �(d(v) + 1)/2	 for every node
v.

• S = X is a minimum size TS in the progressive model and thus−−→
MT (K1,n−1, τ) = 1.

• Let S = X ∪ Y ′ where Y ′ is any subset of Y of cardinality τ(x).
It is easy to see that S is a minimum size TS in the non-progressive
model, which yields

←−→
MT (K1,n−1, τ) = τ(x) + 1 = �n

2
	+ 1.

• The sequence S0,S1,S2 with S0 = S1 = {x} and S2 =
∅ is a TTS of size 2 and there is no TTS of size 1. Hence,←−−→
MTT (K1,n−1, τ) = 2.

1.2 Our Contribution

We focus on the minimum size of a TTS in the non-progressive
threshold model, i.e.,

←−−→
MTT (G, τ). We present tight bounds, prove

hardness results, and provide approximation and exact algorithms for
general and special classes of graphs.

Timing Matters. In the non-progressive model, TTS has two ad-
vantages over the original TS: (i) the nodes can be targeted at dif-
ferent steps (ii) a node can be targeted more than once. Example 1
demonstrates that these two advantages amplify the power of a ma-
nipulator significantly since

←−−→
MTT (K1,n−1, τ) is much smaller than←−→

MT (K1,n−1, τ). What if we require that Si ∩Sj = ∅ for every two
distinct sets Si and Sj in the definition of a TTS, i.e., take away the
advantage (ii)? We prove that the advantage (i) suffices to make the
manipulator substantially stronger for some classes of graphs and
threshold assignments. Thus, targeting nodes at appropriate time is
very crucial for successful manipulation and this paper is the first to
consider this fundamental aspect of the target set selection.

Tight Bounds on
←−−→
MTT (G, τ) for Strict Majority. We prove that←−−→

MTT (G, τ) ≥ 2n/(Δ + 1) when τ is the strict majority and this
bound is the best possible. (This extends a result from [24].) We
first prove this bound for bipartite graphs using some combinato-
rial and potential function arguments and then extend to the general
case. This result implies that for bounded-degree graphs, a naïve al-
gorithm which simply targets all nodes has a constant approxima-
tion ratio. When the graph G is even, we provide the stronger bound
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of 4n/(Δ + 2). The improvement might seem negligible at the first
glance, but it is actually quite impactful. For example, for a cycle Cn,
the first bound is equal to 2n/3, but the second one gives the tight
bound of n. Furthermore, while requiring the graph to be even might
seem very demanding, it actually captures some important graph
classes such as the d-dimensional torus. Determining

←−→
MT (G, τ) and−−→

MT (G, τ) for the d-dimensional torus was studied extensively by
prior work, due to certain applications in statistical physics, and the
exact answer was proven only after a long line of papers, cf. [34].

Inapproximability Result. We prove that the problem of find-
ing

←−−→
MTT (G, τ) for a given pair (G, τ) cannot be approximated

within a ratio of O(2log
1−ε n) for any fixed ε > 0 unless NP ⊆

DTIME(npolylog(n)), by a polynomial time reduction from the
progressive variant.

Integer Linear Programming Formulation. A standard ap-
proach to tackle an NP-hard problem is to formulate it as an Integer
Linear Program (ILP). Then, we can use standard and powerful ILP
solvers to solve small-size problems. We provide an ILP formulation
for the problem of finding

←−−→
MTT (G, τ).

Greedy Algorithm and Experiments. We propose a greedy al-
gorithm which finds a TTS for a given pair (G, τ) and prove its cor-
rectness. Then, we provide the outcome of our experiments on var-
ious synthetic and real-world graph data. Our experiments on small
synthetic networks demonstrate that the minimum size of a TTS is
strictly smaller than the minimum size of a TS in most cases, con-
firming that the effect of timing is not restricted to tailored graphs
(such as the one given in Example 1). To find the optimal solutions,
we rely on our ILP formulation. Furthermore, we observe that our
greedy approach returns almost optimal solutions in most cases. We
also compare the outcome of our greedy algorithm against an analo-
gous greedy algorithm for TS on real-world networks, such as Face-
book and Twitter, and observe a 13% improvement.

Exact Linear-Time Algorithm for Trees. It is known, cf. [15, 13,
8], that if we limit ourselves to trees, then the problem of determining
the minimum size of a TS in the progressive model (i.e.,

−−→
MT (G, τ))

is no longer NP-hard and an exact polynomial time algorithm exists.
It was left as an open problem in [8] whether a similar result could be
proven for the non-progressive variants. Recently, it was shown [39]
that if τ(v) ∈ {0, 1, d(v)} for every node v, then the problem for←−→
MT (G, τ) is tractable on trees. We make progress on this front by
providing a linear-time algorithm which outputs

←−−→
MTT (G, τ ) when

G is a tree and for any choice of τ . Our algorithm can be inter-
preted as a dynamic programming approach. It is worth to empha-
size that algorithms for trees are not only theoretically interesting,
but also the pathway to fixed-parameter tractable algorithms in terms
of treewidth, cf. [8], which are relevant from a practical perspective
too.

Proof Techniques. Whilst for some of our results such as hard-
ness proof and greedy algorithm, we leverage the rich literature on
TS, for others we need to develop several novel proof techniques. In
particular, we introduce several new combinatorial and graph tools
for the proof of our bounds. Furthermore, we devise novel techniques
to establish a linear-time algorithm for trees, which in fact might be
useful to settle the problem for TS (since it is only resolved for a very
constrained setup as mentioned above.)

1.3 Related Work

Numerous models have been developed and studied to gain more in-
sights into the mechanisms and general principles driving the opin-

ion formation and information spreading among the members of a
community, cf. [23, 12, 11, 5, 9]. In the plethora of opinion diffu-
sion models, the threshold models have received a substantial amount
of attention. While both the progressive and non-progressive thresh-
old models had been studied in the earlier work, cf. [37, 4], they
were popularized by the seminal work of Kempe, Kleinberg, and Tar-
dos [27].

Convergence Properties. In the progressive threshold model, it
is straightforward to observe that the process reaches a fixed con-
figuration (where no node can update) in at most n steps. For the
non-progressive variant, Goles and Olivos [26] proved that the pro-
cess always reaches a cycle of configurations of length one or two
(i.e., a fixed configuration or switching between two configurations).
Furthermore, this happens in O(m) steps, where m is the number
of edges, according to [38]. Stronger bounds are known for spe-
cial cases. For example, a logarithmic upper bound is proven in [42]
for graphs with strong expansion properties and the simple majority
threshold. The convergence properties have also been studied for di-
rected acyclic graphs, cf. [18], and when a bias towards a superior
opinion is present, cf. [31].

Bounds. There is a large body of research whose main goal is to
find tight bounds on the minimum size of a TS in threshold mod-
els. Some prior work has investigated this for special classes of
graphs, such as the d-dimensional torus [34] and random regular
graphs [42]. However, the main focus has been devoted to discov-
ering sharp bounds in terms of various graph parameters such as the
number of nodes [28, 6], girth [19], maximum/minimum degree [24],
expansion [42], vertex-transitivity [35], and the minimum size of a
feedback vertex set [2].

Hardness. The problem of determining the minimum size of a
TS in the progressive threshold model has been investigated ex-
tensively, and it is known to be NP-hard even for some special
choices of the threshold assignment and the input graph. Notably, it
was proven in [15] that the problem cannot be approximated within
the ratio of O(2log

1−ε n), for any fixed constant ε > 0, unless
NP ⊆ DTIME(npolylog(n)), even if we limit ourselves to simple
majority threshold assignment and regular graphs. Hardness results
are also known for the non-progressive variant. For the simple major-
ity threshold assignment, the problem cannot be approximated within
a factor of logΔ log logΔ, unless P = NP , according to [33]. For
more hardness results also see [10, 36, 43].

Algorithms. For certain classes of graphs and threshold assign-
ments, the problem of finding the minimum size of a TS becomes
tractable. For the progressive variant, it is proven that there is a poly-
nomial time algorithm when the input graph is a tree, cf. [15, 13, 8].
This was generalized to block-cactus graphs in [17]. The problem
also is tractable when the feedback edge set number is small, cf. [36].
Following up on an open problem from [8], recently it was shown
in [39] that in the non-progressive variant if τ(v) ∈ {0, 1, d(v)} for
every node v, then the problem is polynomial time solvable for trees.
It is still open whether a polynomial time algorithm for the general
threshold assignment on trees exists or not. (As mentioned in Sec-
tion 1.2, we provide a linear-time algorithm for TTS for any choice
of the threshold assignment.) Furthermore, it is known that for the
non-progressive model with the simple majority threshold, there ex-
ist a (logΔ)-approximation algorithm for general graphs [33] and
an exact linear-time solution for cycle and path graphs [21]. Finally,
the integer linear programming formulation of the problem has been
studied by prior work, cf. [1, 40, 14].
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2 Bounding Minimum Size of a TTS

Let a disjoint TTS be the same as a TTS except that a node cannot be
targeted more than once (i.e., Si ∩Sj = ∅ for every two distinct sets
Si and Sj in the definition of a TTS) and define

←−−−→
MDTT (G, τ) to be

the minimum size of a disjoint TTS in the non-progressive model. In
Theorem 1, we prove that there are graphs and threshold assignments
for which

←−−−→
MDTT (G, τ) is asymptotically smaller than

←−→
MT (G, τ).

This indicates that from the two advantages that TTS has over TS
(namely, (i) the nodes can be targeted at different steps (ii) a node can
be targeted more than once), advantage (i) solely suffices to make the
manipulator substantially more powerful.

Theorem 1. There are arbitrarily large graphs G such that←−→
MT (G, τ) = ω(

←−−−→
MDTT (G, τ)), where τ is strict majority.

Proof Sketch. For an arbitrary integer κ, let set Li, for 1 ≤ i ≤ κ,
contains i nodes. Then, add an edge between every node in Li and
Li+1, for 1 ≤ i ≤ κ−1. Finally, attach two leaves to the node in L1

to construct a graph G with n = Θ(κ2) nodes. (See Figure 1 for an
example.)

L1

L2

L3

...

Lκ−1

Lκ

· · ·

· · ·

Figure 1: A graph where
←−→
MT (G, τ) = ω(

←−−−→
MDTT (G, τ)).

Suppose that S0 = Lκ ∪ L′
κ−1 in which L′

κ−1 is any subset of
Lκ−1 of cardinality

⌈
κ
2

⌉
. Also assume that Sκ−2 consists of the node

of L1 and one of its leaf neighbors. For 1 ≤ i 
= κ − 2 ≤ κ − 1
set Si = ∅. It is straightforward to check that S0,S1, . . . ,Sκ−1 is a
disjoint TTS of size κ+

⌈
κ
2

⌉
+2. This implies that

←−−−→
MDTT (G, τ) =

O(
√
n).

Let S be a TS in the non-progressive model with strict majority.
We claim that |(Li−1∪Li+1)∩S| must be at least i+1, for 2 ≤ i ≤
κ− 1. Thus, we have |S| = Ω(n), which implies that

←−→
MT (G, τ) =

Ω(n). For the sake of contradiction, assume that |(Li−1 ∪ Li+1) ∩
S| < i+1 for some 2 ≤ i ≤ κ−1. Consider the initial configuration
where only the nodes in S are positive. We observe that Li becomes
fully negative after one step. One step after that, Li−1 becomes fully
negative and so on until the only node in L1 is negative. Once this
happens, in all the following steps either the node in L1 or its two
leaf neighbors will be negative, regardless of the state of other nodes.
This is in contradiction with S being a TS. (A full proof is given in
the extended version..) �

2.1 General Graphs

We first prove that
←−−→
MTT (G, τ) ≥ 2n

Δ+1
for the strict majority

threshold assignment if G is bipartite in Theorem 2 (which is based
on Lemma 1). Then, we provide Theorem 3 which sets a connection
between the value of

←−−→
MTT (G, τ) in bipartite graphs and general

graphs. Combining these two theorems gives us our desired bound
for general graphs in Theorem 4. The full proofs for these theorems
are given in the extended version.

Lemma 1. Let S0,S1, . . . ,Sk be a TTS of (G, τ) for a bipartite
graph G with partite sets X and Y . Define Se := S0∪S2∪S4∪· · ·
and So := S1∪S3∪S5∪· · · . If for D ⊆ V we have D∩Se∩X = ∅
and D ∩ So ∩ Y = ∅ (or D ∩ So ∩X = ∅ and D ∩ Se ∩ Y = ∅),
then |E(G[D])| ≤ ∑

u∈D (d(u)− τ(u)).

Proof Sketch. Let us first prove Claim 1, which is the main ingre-
dient of this proof.

Claim 1. If D is nonempty, then there is a node u ∈ D such that
dD(u) ≤ d(u)− τ(u).

Assume that D ∩ Se ∩X = ∅ and D ∩ So ∩ Y = ∅ (the proof is
analogous for the other case). For the sake of contradiction, assume
that dD(u) > d(u)−τ(u) for all u ∈ D. One can show that for every
odd i, (D ∩ Y ) ∩Ai = ∅ and for every even i, (D ∩X) ∩Ai = ∅.
Since D 
= ∅, this contradicts the fact that S0,S1, . . . ,Sk is a TTS.
This finishes the proof of Claim 1.

The statement of the lemma is trivial for D = ∅. For |D| ≥ 1 the
proof is by induction on |D|. The base case of |D| = 1 is straight-
forward. Assume that the inequality holds for |D| < k. Using Claim
1, there exists a node v ∈ D such that dD(v) ≤ d(v) − τ(v). Ap-
plying the induction hypothesis for D′ := D \ {v} and some small
calculations finish the proof. �

Theorem 2.
←−−→
MTT (G, τ) ≥ 2n

Δ+1
if G is bipartite and τ is the strict

majority.

Proof Sketch. Let X and Y be the partite sets of G. Assume that
S0,S1, . . . ,Sk is a TTS of (G, τ). Let So and Se be as defined in
Lemma 1. Furthermore, define S := So∪Se, S′ := So\Se, S′′ :=
Se \ So, S′′′ := So ∩ Se. Let SX := S ∩ X, S ′

X := S′ ∩
X, S′′

X := S′′ ∩ X, S′′′
X := S′′′ ∩ X (and similarly, define SY ,

S ′
Y , S ′′

Y , and S ′′′
Y ). Let F1 := I ∪S ′

X ∪S′′
Y and F2 := I ∪S′′

X ∪S ′
Y ,

where I := V \ S. Both F1 and F2 clearly satisfy the conditions
of Lemma 1. Combining the two inequalities obtained from applying
Lemma 1 and some calculations, we get:

∑
u∈I

(2τ(u)− d(u)) ≤
∑
u∈S

(d(u)− τ(u)) +
∑

u∈S′′′
τ(u). (1)

Using the fact that for the strict majority threshold assignment,
τ(u) ≥ d(u)+1

2
and some further calculations, we can conclude that

2n
Δ+1

≤ |S′ ∪ S′′|+ 2 |S′′′| ≤ ←−−→
MTT (G, τ). �

Theorem 3. Let G be a graph with node set V (G) :=
{v1, v2, . . . , vn} and τ be a threshold assignment of its nodes. Con-
struct the bipartite graph H with partite sets X := {x1, x2, . . . , xn}
and Y := {y1, y2, . . . , yn} whose edge set is E(H) :=
{xiyj |vivj ∈ E(G)}. Consider threshold assignment τ ′ for H with
τ ′(xi) = τ ′(yi) = τ(vi) for 1 ≤ i ≤ n. Then,

←−−→
MTT (H, τ ′) =

2
←−−→
MTT (G, τ).

Combining Theorems 2 and 3 gives us Theorem 4.
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Theorem 4.
←−−→
MTT (G, τ) ≥ 2n

Δ(G)+1
if τ is the strict majority.

Tightness. According to Example 1,
←−−→
MTT (K1,n−1, τ) = 2

when τ is the strict majority. This implies that the bound of←−−→
MTT (K1,n−1, τ) ≥ 2n

Δ(K1,n−1)+1
= 2n

(n−1)+1
= 2 is tight.

2.2 Even Graphs

Theorem 5.
←−−→
MTT (G, τ) ≥ 4n

Δ+2
if G is even and τ is the strict

majority, and this bound is tight.

Proof Sketch. It suffices to prove the bound for bipartite graphs.
Then, we can apply Theorem 3 to extend to general graphs. Thus, let
G be bipartite.

Since d(u) is an even number for any node u, we have τ(u) =⌈
d(u)+1

2

⌉
= d(u)+2

2
which implies 2τ(u) − d(u) = 2. Plugging

this into Equation (1) in the proof of Theorem 2 yields 2|I| ≤∑
u∈S (d(u)− τ(u))+

∑
u∈S′′′ τ(u). Executing some calculations

similar to the proof of Theorem 2, we can show that 4n
Δ+2

≤
|S′ ∪ S′′| + 2 |S′′′| ≤ ←−−→

MTT (G, τ). For a full proof of the theo-
rem (including its tightness), see the extended version. �

3 Algorithms to Find Minimum TTS

We first prove that the TIMED TARGET SET SELECTION problem is
hard to approximate. In Subsections 3.2 and 3.3, we provide an ILP
formulation and propose a greedy algorithm for the problem, respec-
tively. Then, we provide our experimental findings for real-world
and synthetic graph data in Subsection 3.4. Finally, we present our
linear time algorithm for trees in Subsection 3.5.

TIMED TARGET SET SELECTION

Input: A graph G and a threshold assignment τ .
Output: The minimum size of a TTS, i.e.,

←−−→
MTT (G, τ).

3.1 Hardness Result

Theorem 6. The TIMED TARGET SET SELECTION problem cannot
be approximated within a ratio of O(2log

1−ε n) for any fixed ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

Proof Sketch. For a given pair (H, τ ′), construct (G, τ) as follows.

For each node v ∈ V (H), add
⌈

d(v)
2

⌉
copies of the complete graph

K2 and connect both nodes of each copy to v. Set τ(v) = τ ′(v) if
v ∈ V (H) and τ(v) = 1 otherwise. We claim that

−−→
MT (H, τ ′) =←−−→

MTT (G, τ).
Assume that there is a polynomial time algorithm for finding←−−→

MTT (G, τ) with the approximation ratio C2log
1−ε |V (G)| for some

constants C, ε > 0. Since |V (G)| = O(|V (H)|2), the above poly-
nomial time reduction gives us a polynomial time algorithm with ap-

proximation ratio C′2log
1−ε′ |V (H)|, for some constants ε′, C′ > 0,

for the problem of finding the minimum size of a TS in the pro-
gressive model. However, this is not possible according to the results
from [15], unless NP ⊆ DTIME(npolylog(n)). (Please refer to the
extended version for a full proof.) �

3.2 Integer Linear Programming Formulation

Here, we provide an Integer Linear Program (ILP) formulation for
the TIMED TARGET SET SELECTION problem. The binary variables
xvi and yvi stand for the state of node v in time step i. We have
xvi = 1 if and only if v ∈ Si and yvi = 1 if and only if v ∈ Qi. So
xvi + yvi ≥ 1 if and only if v is positive in time step i, i.e., v ∈ Ai.
Let K := {1, · · · , k} and K0 := K∪{0}. Furthermore, let us define
the constraints

• C := (d(v) + 1− τ(v))yvi + τ(v)− 1 ≥ ∑
u∈N(v)(xu(i−1) +

yu(i−1))
• C′ :=

∑
u∈N(v)(xu(i−1) + yu(i−1))− τ(v)yvi ≥ 0.

min
∑k

i=0

∑
v∈V xvi

s.t. C ∀v ∈ V ∀i ∈ K

C′ ∀v ∈ V ∀i ∈ K

xvk + yvk = 1 ∀v ∈ V
xvi + yvi ≤ 1 ∀v ∈ V, i ∈ K0

yv0 = 0 ∀v ∈ V
xvi ∈ {0, 1} ∀v ∈ V ∀i ∈ K0

yvi ∈ {0, 1} ∀v ∈ V ∀i ∈ K0

(2)

If the number of positive neighbors of a node v in time step i− 1
is greater than or equal to τ(v), then v becomes positive in time
step i. This is expressed as constraint C in the ILP. Note that for
yvi = 0, the constraint C is equal to τ(v) >

∑
u∈N(v)(xu(i−1) +

yu(i−1)). Furthermore, if the number of positive neighbors of a node
v in time step i−1 is strictly less than τ(v), then v becomes negative
in time step i (unless we force it to be positive i.e., xvi = 1). This is
expressed as the constraint C′. We observe that if yvi = 1, then the
constraint C′ is equal to

∑
u∈N(v)(xu(i−1) + yu(i−1)) ≥ τ(v). The

other constraints and the objective function are self-explanatory.
The ILP (2) formulates the problem of finding the minimum size

of a TTS which reaches the fully positive configuration in k steps.
To prove this, we need to show that a solution to the ILP corresponds
to a TTS of the same size and vice versa. A formal proof of this is
given in the extended version, which builds on the observations from
above on the connections between the constraints of the ILP and the
updating rules.

It is known [38] that the non-progressive model stabilizes in
O(n2) steps. Putting this in parallel with the fact that a minimum
TTS is of size at most n, we conclude that there is always a minimum
TTS which reaches the fully positive configuration in O(n3) steps.
(Some details are left out.) Thus, the ILP (2) can be used to solve the
TIMED TARGET SET SELECTION problem by ranging over different
values of k.

3.3 Greedy Algorithm

We provide a greedy algorithm which finds a TTS S0, S1, ∅ for a
given pair (G, τ). The algorithm first sorts the nodes in ascending
order of their degrees as v1, · · · , vn and set S0 = ∅,S1 = ∅. Then,
nodes are processed one by one, and they are decided to be in S0, in
S1, or in neither of them. The processed nodes which are in neither
S0 nor S1 are called unselected nodes. When processing a node vi,
a neighbor u ∈ N(vi) is said to be blocked if the number of uns-
elected nodes in N(u) is equal to d(u) − τ(u) (i.e., if vi is set to
be unselected, u cannot become positive in the first step when only
the nodes in S0 are positive). Let blocked[vi] be the set of blocked
nodes in N(vi). If |blocked[vi]| = 0, we can safely set vi to be
unselected. If |blocked[vi]| > 1, then we set vi to be in S0. If
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Algorithm 1: Greedy Algorithm for TTS

1 Sort the nodes of G in ascending order of their degrees as the
sequence v1, . . . , vn.

2 Set S0 = ∅, S1 = ∅, and unselected[vi] = 0,
blocked[vi] = ∅ for all 1 ≤ i ≤ n.

3 for i = 1 to n do

4 for u ∈ N(vi) do

5 if unselected[u] = d(u)− τ(u) then

6 add u to blocked[vi]
7 end

8 if |blocked[vi]| = 0 then

9 for u ∈ N(vi) do

10 unselected[u]+ = 1
11 end

12 if |blocked[vi]| > 1 then

13 Add vi to S0

14 if |blocked[vi]| = 1 then

15 for w ∈ blocked[vi] do

16 if d(w) > d(vi) then

17 for u ∈ N(vi) do

18 unselected[u]+ = 1
19 end

20 Add w to S1, set τ(w) = 0

21 else

22 Add vi to S0

23 end

24 end

25 end

|blocked[vi]| = 1, we could either add vi to S0 or set vi to be uns-
elected. For the latter, we add the only node in blocked[vi], say w,
to S1. If d(w) > d(vi), we do the latter (since w is more “influen-
tial”), otherwise we execute the former. A precise description of the
algorithm is given in Algorithm 1. It is straightforward to prove that
Algorithm 1 returns a TTS, using an inductive argument. For the sake
of completeness, a formal proof is given in the extended version.

Our algorithm is inspired by the well-known greedy algorithm for
finding a TS (cf. [24]) where there is no S1 and node vi is assigned
to S0 if |blocked[vi]| ≥ 1 and set to be unselected otherwise. The
final S0 is a TS which make all nodes positive in one step of the
non-progressive model.

We did not provide any approximation guarantee for our algo-
rithm, but according to Theorem 6 we cannot hope for an approxima-
tion ratio better than O(2log

1−ε n) for any fixed ε > 0. Furthermore,
our algorithm takes advantage of timing only for one extra step, but
as we observe in the next subsection this would already allow us to
produce solutions close to optimal. Devising algorithms which fully
take advance of timing is left to future work.

3.4 Experiments

Our experiments were carried out on an Intel Xeon E3 CPU, with 32
GB RAM, and a Linux OS and the code is in C++ and Python.

Synthetic Networks. We conducted experiments on BA
(Barabási–Albert) model [7] and ER (Erdős–Rényi) model [22]. The
number of nodes were set to n = 10, 15, · · · , 40 and the edge pa-
rameter, in both models, was set to obtain average degree 8 (which is
comparable to the average degree of the real-world networks of sim-
ilar size, for example, see Karate club network [30]). For each value

of n, 10 instances of the random graph (BA and ER) were generated.
Then, the optimal size of a TS and TTS and the outcome of the orig-
inal greedy algorithm for TS and our algorithm for TTS were com-
puted. The optimal solutions were found using the ILP formulations
and a CBC solver [25]. We considered the strict majority threshold
assignment in all these experiments. The average outcome of each
approach over all 10 graph instances are reported in Figure 2. (The
standard deviations were very small, namely smaller than 0.7 in all
cases.) Let us make the following two observations from Figure 2:

• Observation 1. Our proposed greedy algorithm performs very
well and returns a solution very close to the optimal one in most
cases.

• Observation 2. In most cases, the minimum size of a TTS (re-
tuned by TTS-OPT) is strictly smaller than the minimum size of
a TS (returned by TS-OPT). This confirms that the effect of tim-
ing is not limited to theoretically tailored graphs (such as the ones
given in Example 1 and Theorem 1).
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Figure 2: The average size of a TS/TTS retuned by ILP (TS-OPT and
TTS-OPT) and greedy approach (TS-Greedy and TTS-Greedy) on
BA graphs (top) and ER graphs (bottom).

Real-world Networks. We also have run our algorithm and the
original greedy algorithm on different real-world networks, namely
Twitter, Facebook, and Twitch Games from [32] where we removed
edge directions for Twitter. We again used the strict majority thresh-
old assignment. (Note that computing the optimal solutions are not
possible due to the large size of networks. However, based on dia-
grams in Figure 2, the greedy algorithms seem to return solutions
close to the optimal ones.) The outcomes, presented in Table 1,
demonstrate that allowing a manipulator who conducts a greedy ap-
proach (which is the most commonly proposed mechanism in the
literature for various target set selection problems, cf. [27, 24]) to
target nodes at their desired time gives them more than 13% advan-
tage for the graphs under experiment, indicating another time that
timing matters, even on graph which emerge in the real world.

H. Soltani et al. / Minimum Target Sets in Non-Progressive Threshold Models: When Timing Matters 2183



Network Nodes TTS-Greedy TS-Greedy Imp.
Facebook 4039 1727 1985 13%
Twitter 81306 25022 28991 13.7%
Twitch Games 168114 44795 53726 16.6%

Table 1: The size of a TS obtained by the greedy algorithm versus the
size of a TTS from our greedy approach (Algorithm 1), for the strict
majority, and the improvement (Imp.) in the form of (TS-TTS)/TS.

3.5 Exact Linear-time Algorithm for Trees

Our goal in this section is to provide an exact algorithm for the
TIMED TARGET SET SELECTION problem for a given tree T and
threshold assignment τ .

Let L(v) and L̄(v) be the set of leaf and non-leaf neighbors of
v, and define l(v) := |L(v)| and l̄(v) := |L̄(v)|. Furthermore, we
define L[v] := L(v) ∪ {v} and L̄[v] := L̄(v) ∪ {v}. We partition
the non-leaf nodes of T into three sets:

• A :=
{
v ∈ V (T ) : d(v) > 1, τ(v) > l̄(v)

}
• B :=

{
v ∈ V (T ) : d(v) > 1, τ(v) < l̄(v)

}
• C :=

{
v ∈ V (T ) : d(v) > 1, τ(v) = l̄(v)

}
.

Furthermore, we partition A into A′ := {v ∈ A : τ(v) < d(v)} and
A′′ := {v ∈ A : τ(v) = d(v)}.

Let us set a root v for T . Then, we can partition V (T ) into L0 ∪
L1∪· · ·∪Ld, where the i-th level Li consists of nodes whose distance
from v is equal to i and d is the depth of the tree. Set L−1 = ∅.

Let us first consider the special case of |A′′ ∪ C| ≤ 1. Set the
only node in A′′ ∪ C (or an arbitrary non-leaf node if A′′ ∪ C =
∅) as the root. Consider the sequence Si = (Ld−i ∪ Ld−i−1) ∩
A for 0 ≤ i ≤ d. We can prove that this is a TTS by induction
on d, where the base case of d = 1 corresponds to a star graph
(similar to Example 1). Since each node in A appears exactly twice
in this TTS, its size is equal to 2|A|. On the other hand, for any TTS
S0,S1, . . . ,Sk and any node v ∈ A, we have

∑k
i=0 |Si ∩ L[v]| ≥ 2.

This is true because if
∑k

i=0 |Si ∩ L[v]| ≤ 1, then v and its leaf
neighbors cannot become positive simultaneously in any step and
this contradicts the assumption that S0,S1, . . . ,Sk is a TTS. (This
uses that τ(v) > 0 for any node v, which can be assumed as we will
explain.) Since for any two distinct nodes u and v, we have L[u] ∩
L[v] = ∅, we can conclude that

←−−→
MTT (T, τ) ≥ 2|A|. Furthermore,

we argued that there is a TTS of size 2|A|. Thus,
←−−→
MTT (T, τ) =

2|A|, which explains the lines 3-5 in Algorithm 2.
Now, let’s consider the case of |A′′∪C| ≥ 2. Again, we set a node

v ∈ A′′ ∪C as the root. Then, we iterate over the nodes respectively
from Ld to L1. Let T ′ be the subtree induced by the node u which
is being processed and its descendants. In the next two paragraphs,
we explain that if T ′ has a certain structure, then we know how to
efficiently compute the minimum size of a TTS for T ′ and how to
connect it to the minimum size of a TTS in the original tree. This
permits us to keep reducing the size of the tree while guaranteeing
that the subtree induced by the next node that is processed will have
one of our desired structures.

Suppose that u (not equal to the root v) is a node in A′′ and none
of its descendants belongs to A′′ ∪ C. Denote the parent of u by z.
Let T ′ be the induced subtree on u and its descendants and T ′′ be the
induced subtree on V (T ) \ V (T ′). For T ′, define τ ′(w) = τ(w) −
1 if w = u and τ ′(w) = τ(w) otherwise. For T ′′, let τ ′′(w) =
τ(w) − 1 if w = z and τ ′′(w) = τ(w) otherwise. We can show
that

←−−→
MTT (T, τ) =

←−−→
MTT (T ′, τ ′) +

←−−→
MTT (T ′′, τ ′′). Using a proof

similar to the case of |A′′ ∪ C| ≤ 1 (which was handled before), we
can prove that

←−−→
MTT (T ′, τ ′) = 2|V (T ′) ∩ A|. (There is a similar

Algorithm 2: Minimum Size of a TTS in Trees

1 Determine sets A,A′, A′′, B, C.
2 Set x = 0.
3 if |A′′ ∪ C| ≤ 1 then

4 Set x = 2|A|.
5 end

6 else

7 Choose some v ∈ A′′ ∪ C as the root.
8 for i = d to 1 do

9 for u in Li do

10 Let T ′ be the induced subtree on u and its
descendants, and z be the parent of u.

11 if u ∈ A′′ or τ(u) = 0 then

12 Set x+ = 2|V (T ′) ∩A|. Remove V (T ′) and
set τ(z) = τ(z)− 1. Update sets
A,A′, A′′, B, C.

13 end

14 else if u ∈ C then

15 Set x+ = 2|V (T ′) ∩A|. Remove
V (T ′) \ {u} and set τ(u) = 1. Update sets
A,A′, A′′, B, C.

16 end

17 end

18 end

19 Set x+ = 2|V (T ) ∩A|.
20 end

argument for τ(u) = 0.) This should explain the if statement in line
11.

Suppose that u is a non-root node in C and none of its descendants
belongs to A′′ ∪ C. Furthermore, let T ′ be the induced subtree on
u and its descendants and T ′′ be the induced subtree on (V (T ) \
V (T ′)) ∪ {u}. For T ′, we define τ ′(w) = τ(w) − 1 if w = u and
τ ′(w) = τ(w) otherwise. For T ′′, we set τ ′′(w) = 1 if w = u

and τ ′′(w) = τ(w) otherwise. We can prove that
←−−→
MTT (T, τ) =←−−→

MTT (T ′, τ ′) +
←−−→
MTT (T ′′, τ ′′). Again, using an argument similar

to the case of |A′′ ∪ C| ≤ 1, we can prove that
←−−→
MTT (T ′, τ ′) =

2|V (T ′) ∩A|. This justifies the if statement in line 14.
In the extended version, we provide a series of lemmas which ex-

plain Algorithm 2 in a step by step and constructive fashion and prove
its correctness.

4 Future Work

In [8], a polynomial time algorithm for finding
−−→
MT (G, τ) on trees

was provided, and it was left open to determine whether finding←−→
MT (G, τ) is tractable on trees. Recently, a polynomial time algo-
rithm was given [39] when τ(v) ∈ {0, 1, d(v)} for any node v, but
the problem remains open for general threshold assignment. We pro-
vided a linear-time algorithm to compute

←−−→
MTT (G, τ) on trees for

any threshold assignment. Can our techniques be leveraged to settle
the problem for

←−→
MT (G, τ)?

In practice, targeting some nodes, such as “influencers”, might be
more costly than others. A potential avenue for future research is to
study the set-up where each node has a cost assigned to it and the
manipulator aims to minimize the cost.

Finally, it would be interesting to devise new algorithms which
take advantage of timing fully (unlike our greedy approach) and eval-
uate their performance on different real-world data.
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