
Create and Find Flatness: Building Flat Training Spaces
in Advance for Continual Learning

Wenhang Shia, Yiren Chenb, Zhe Zhaob, Wei Lua;*, Kimmo Yanb and Xiaoyong Dua

aSchool of Information and DEKE, MOE, Renmin University of China
bTencent AI Lab

Abstract. Catastrophic forgetting remains a critical challenge in the
field of continual learning, where neural networks struggle to retain
prior knowledge while assimilating new information. Most existing
studies emphasize mitigating this issue only when encountering new
tasks, overlooking the significance of the pre-task phase. Therefore,
we shift the attention to the current task learning stage, presenting a
novel framework, C&F (Create and Find Flatness), which builds a
flat training space for each task in advance. Specifically, during the
learning of the current task, our framework adaptively creates a flat
region around the minimum in the the loss landscape. Subsequently,
it finds the parameters’ importance to the current task based on their
flatness degrees. When adapting the model to a new task, constraints
are applied according to the flatness and a flat space is simultane-
ously prepared for the impending task. We theoretically demonstrate
the consistency between the created and found flatness. In this man-
ner, our framework not only accommodates ample parameter space
for learning new tasks but also preserves the preceding knowledge of
earlier tasks. Experimental results exhibit C&F’s state-of-the-art per-
formance as a standalone continual learning approach and its efficacy
as a framework incorporating other methods. Our work is available
at https://github.com/Eric8932/Create-and-Find-Flatness.

1 Introduction

As both the size of model parameters and the volume of training data
persistently expand, recent Large Language Models (LLMs) have
exhibited remarkable generalization abilities across a wide array of
tasks [2]. Nevertheless, the competences and knowledge of language
models remain limited to their training data, and even colossal mod-
els struggle in specific situations such as financial scenarios using
private data [35] and recommendation systems using user data [15].
The high cost of retraining the model on enlarged data hinders lan-
guage models to constantly acquire new knowledge. Therefore, Con-
tinual Learning (CL), which enables a single model to continually
learn and adapt over time, maintains its significance in enhancing the
ability of language models.

The major challenge CL faces is the phenomenon of catastrophic
forgetting [19], where the model loses much of the previous acquired
knowledge while adapting to new tasks. To tackle this issue, vari-
ous approaches have been proposed, encompassing data distribution-
based, architecture-based and regularization-based methods. Among
these, the regularization-based method is closely related to our work,
which inhibits excessive model parameter alternations to maintain
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proficiency in earlier tasks [1, 12]. However, most approaches em-
phasize applying constraints during model optimization, neglecting
the construction of an appropriate training space for continual learn-
ing in advance. That is, the current task optimization aims to iden-
tify the global optimal solution, where the loss landscape is sharp.
Consequently, certain model parameters become exceedingly sensi-
tive, implying that minor perturbations can trigger substantial per-
formance decline in previous tasks when adapting to new ones [21].
Flat-minima based measures, which penalize sharpness and find flat
local minima, are employed to mitigate the impact of weight pertur-
bations and enhance single-task model generalization. However, they
are not directly applicable to task sequences in CL [34].

Hence, we propose a novel framework, C&F (Create and Find),
to build flat training spaces in advance for continual learning. Our
framework leverages the geometrical properties of flat minima in
both old and new task optimization processes. While training on
the current task, we create a flat region around the minimum in the
loss landscape. The surrounding of low-loss-value points makes the
model robust to a specific range of perturbations from new tasks.
Moreover, as different parameters’ variations yield disparate effects
on the loss, we find the unique flatness of each parameter in the cur-
rent task using Fisher Information [32]. During the model’s adapta-
tion to new tasks, we restrict parameter changes within the flat region
and regularize them according to distinct flatness degrees. Concur-
rently, we prepare the flat space for the subsequent task optimization.
In the flat training spaces, the model can assimilate new concepts
from new data without forgetting previously acquired knowledge.

Our main contributions encompass the following aspects: 1.Our
work pioneers the utilization of flatness in crafting apt training spaces
in advance for new task optimization, and we theoretically demon-
strate the consistency of the flatness in the learning spaces. 2.We
propose C&F, an innovative framework for continual learning, of-
fering flexibility and seamless integration with other advanced CL
techniques. 3.We conduct experiments to evaluate C&F as both a
standalone method and a framework incorporating other methods.
The state-of-the-art results demonstrate C&F’s effectiveness.

2 Related Work

2.1 Continual Learning

Existing CL approaches could be divided into three categories: 1.
Data distribution-based method maintains model’s ability by align-
ing with the distribution of previously encountered tasks. Saving a
subset of old task samples and incorporating them into new task
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training is most direct, referred as replay [5, 16]. In addition, dis-
tillation using both old and new samples is also explored [22, 26].
Some generate pseudo-data of old tasks for replay [30, 31] or dis-
tillation [33]; 2. Architecture-based method focuses on allocating
a subset of the model’s parameters for each task, optimizing the
model exclusively on those parameters. Some allocate and utilize
existing parameters to maintain a fixed model size [7, 18] and oth-
ers freeze all model parameters and introduce additional parameters
for each new task [25, 27]. However, the former imposes a limit
on the model’s capacity and the latter requires expanding the stor-
age occupied by the model as new tasks appear; 3. Regularization-
based method typically incorporates an auxiliary regularization term
into the loss function to impede excessive model weight alterations
[1, 12, 38]. [14] constrains the current model’s output to resemble
the previous model’s output when processing new data. [39] matches
the magnitude of weight vectors corresponding to each task. Owing
to the disparate importance of parameters, C&F implements a soft
constraint on model optimization by adjusting the loss function.

2.2 Continual Pre-training of Large Language Models

Large language models have demonstrated remarkable capabilities.
Enhancing their abilities towards different objectives necessitates
supplementary training. Techniques such as specific domain or task
data training are employed to refine and enrich model’s knowledge
in specific areas [24, 11]. Instruction tuning empowers these models
with the ability to follow instructions, bolstering their performance
in zero/few-shot scenarios [28, 36]. Moreover, for these models to
adhere to human standards, Reinforcement Learning from Human
Feedback (RLHF) is deployed for alignment tuning [20, 23]. All
these continual pre-training sacrifice models’ generic capabilities in
favor of specific abilities, resulting in forgetting.

2.3 Flat-Minima Optimization

Flat-minima optimizers optimize both loss and sharpness to find flat
local minima and leverage the surrounding low loss values to en-
hance generalization and scalability for a single task [3]. [8] opti-
mizes the corrupted loss to ensure low losses around the minima and
[13] introduces the concept of adaptive sharpness to achieve scale-
invariant flatness. Given that the flat regions are inherently suitable
for model’s continual leaning on new tasks, [21] examines the role
of local minima’s geometric properties for each task in the overall
degree of forgetting during continual learning. To the best of our
knowledge, the only work related to our framework is F2M [29],
which identifies a flat local minimum in the base task and employs
it in incremental few-shot learning. Our framework extends to more
general applications in continual learning with a more efficient and
effective framework.

3 Methodology

In continual learning, the model must adapt to new tasks while pre-
serving proficiency in previous ones. C&F incorporates flatness char-
acteristics into continual learning process to address the forgetting
issue (§3.1). Specifically, during current task learning, it builds flat
training spaces in advance by creating flat regions and finding param-
eter flatness (§3.2). The new task optimization should be conducted
in the last constructed space, while involving preparing a training
space for the next task (§3.3). The whole training process is illus-
trated in Figure 1. Last, we justify theoretically the utilization of

Fisher Information as flatness indicator by demonstrating its consis-
tency with the Create phase concerning flatness (§3.4).

3.1 Meaning of Flatness

Flat local minima means surrounding parameter points all have low
loss values. Initially aimed at improving model generalization for a
single task, flatness essentially enhances the model’s resilience to test
set distribution shifts [8]. Continual learning is a process of encoun-
tering perpetually varying task distributions. Therefore, creating flat
regions and constraining subsequent tasks to learn within them fos-
ters the model’s robustness against continual distribution alterations.
In addition, due to the low surrounding loss values around the flat
minima, parameter changes do not substantially affect model’s per-
formance. Continual learning necessitates ongoing model updates.
Learning new tasks within flat regions ensures low losses, i.e., high
performances, on prior tasks, addressing the forgetting issue.

3.2 Build Flat Training Spaces

3.2.1 Create Flat Regions

To ensure that the parameter points around minimum all possess low
loss values, we optimize for the point with the largest loss value in
the entire neighborhood. To formally state the concept, we denote the
loss function L : W × X × Y → R+ and S represents the train-
ing set. We convert the original LS(w) minimization into a MIN-
MAX problem, minimizing the maximum loss value around the cur-
rent point. This approach has been extensively demonstrated, both
experimentally and theoretically, to be effective and efficient in cre-
ating flat regions [8, 13]. The optimization objective is as follows:

min
w

max
‖ε‖2≤ρ

LS(w + ε). (1)

where ρ denotes the range of the flat region. It is challenging to find
the exact optima ε∗ with the maximum loss value, so we employ a
first-order approximation. Since ρ determines the learning space for
new tasks, we aim to expand it while avoiding the problems associ-
ated with its size. To accomplish this, we further adaptively adjust ρ
based on the parameter values:

ε̂(w) = ρ
w2∇wLS(w)

‖w∇wLS(w)‖2
, (2)

where w2 is an element-wise operation and ε̂ is an approximation of
ε∗. Finally, we use the gradient of w + ε̂(w) to update the current
parameter point w

∇wLCreate
S (w) ≈ ∇wLS(w)

∣∣∣
w+ε̂(w)

, (3)

and the loss for Create is

LC(w) = LS(w + ε̂(w)). (4)

3.2.2 Find Parameter Flatness

Within flat regions, sharp parameters still exist. As minor fluctua-
tions in these parameters can result in considerable changes in the
loss value, they are crucial to the task and should be found and op-
timized sparingly. However, determining the exact flatness of each
parameter is challenging, so we use Fisher Information as a rapid ap-
proximation of flatness [32]. It gauges importance by indicating the

W. Shi et al. / Create and Find Flatness: Building Flat Training Spaces in Advance for Continual Learning 2139



Figure 1: Task optimization in the C&F framework involves two parts: 1.Build a flat training space for the next task: 1) Create a flat region
around the minimum and 2) Find parameter flatness for the current task; 2.Optimize the model in the last flat space with two constraints. Yellow
and green represent sharpness and flatness, respectively. L(w1) and L(w2) denote the loss of task n-1 and n after optimization, respectively.

extent to which altering the parameter impacts the model’s output.
Due to the assumption of parameter independence, we only consider
the diagonal elements in the Fisher Information matrix. The compu-
tation is as follows:

F (wi) =
1

|S|
|S|∑
j=1

(
∂ log p (yj | xj ;w)

∂wi

)2

. (5)

A smaller Fisher value suggests that the parameters are more likely
situated in a flatter region, thereby permitting the model to update
more substantially on them.

To enable Fisher Information to represent the flatness of each pa-
rameter across all seen tasks, it is computed for every task and accu-
mulated using the following formula:

F (wi)
′
= γ ∗ F (wi)

′
+ F (wi) . (6)

3.3 Optimization in the Flat Spaces

The last task’s Creating and Finding flatness constructs a learning
space for the current task. Optimizing parameters in it involves two
corresponding constraints.

Hard Constraint. One is a hard constraint for Create, restricting
the model to be optimized in the flat region to preserve its perfor-
mance on the previous task. After each batch optimization, we clamp
parameter changes to ensure they remain in the region:

w� − ρ ∗ (w�)abs � w � w� + ρ ∗ (w�)abs. (7)

since we create the flat regions adaptively, we also implement an
adaptive clamping strategy based on the size of the parameters.

Soft Constraint. We apply a soft constraint for Find step to incor-
porate the found flatness into the optimization process. Specifically,
we add an L2 loss term to the loss function, with the flatness serving
as a unique coefficient for each parameter, as described in [12]. Due
to the smaller flat range of sharp parameters, restricting their update
not only sustains performance on old tasks, but also shrinks the gap
between successively created regions so that most parameters stay
within all regions. The loss for Find is

LF (w) =
∑
i

F (wi)
′
(wi −w�

i )
2
. (8)

where w� and w denote the optimal parameter vector learned in the
last task and the current parameter vector, respectively.

Apart from two constraints from Create and Find, current task’s
optimization involves the same creating and finding process to pre-
pare a flat space for the next task. The overall optimization loss is

LO = LC + λLF . (9)

where λ is the coefficient for the soft loss. The full C&F training
process is shown in Algorithm1.

Algorithm 1: The training algorithm for C&F framework
Input: Loss function L : W ×X × Y → R+,
Train set S � ∪n

i=1 {(xi,yi)}, Batch size b, Learning rate α,
Flat region range ρ, Coefficient λ γ, Weight w0, Task t ≥ 1.
Output: Trained weight w.
// Optimization for Task 1 and Build a Flat Space for Task 2
begin

Initialize weight w1 := w0.
Create a flat region around minimum
while not converged do

Sample a mini-batch B of size b from S,
Compute ε̂(w) with Eq.2,
Compute loss for Create objective with Eq.3,
Compute gradient gC ,
Update weights: w1 = w1 − αgC .

end

Find flatness F (w) for each parameter in w1 with Eq.5
end

for task t = 2,..., M do
// Optimization for Task t and Build a Space for Task t+1
begin

Initialize weight wt := wt−1, w� := wt−1.
while not converged do

Sample a mini-batch B of size b from S,
Compute gradient gC for Create objective,
Compute gradient gF for Find flatness with Eq.8,
Update weights: wt = wt − α(gC + λgF ),
Clamp the parameters wt with Eq.7.

end

Find flatness F (w) of wt with Eq.5,
Accumulate flatness F (w)

′
with Eq.6.

end

end

return wt;
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3.4 Flatness Consistency between Create and Find

The selection of Fisher Information as the flatness indicator is due
to its consistency with Create concerning flatness. To prove this, we
illustrate that the process of creating also minimizes the Fisher values
of parameters. Firstly, min-maximization of loss optimizes both the
task loss and the sharpness. According to Eq.1:

LCreate
S (w) = max

‖ε‖2≤ρ
LS(w + ε)

= ( max
‖ε‖2≤ρ

LS(w + ε)− LS(w)) + LS(w),
(10)

Since ε is around 0, the sharpness could be defined:

sharpness = max
‖ε‖2≤ρ

LS(w + ε)− LS(w), (11)

Substituting it back, we then have:

LCreate
S (w) = sharpness+ LS(w). (12)

Therefore, in the process of create, the task loss and the sharpness
are optimized simultaneously.

Then we prove that minimizing the sharpness equals to minimiz-
ing the Fisher Info. According to Eq.2, the approximately optimal
ε∗(w) is:

ε∗(w) ≈ ρ
∇wLS(w)

‖∇wLS(w)‖2
, (13)

Notice that we don’t consider adaptively adjusting ρ here, so it is
different from Eq.2. Substituting it back to Eq.11 and approximating
the sharpness via a first-order Taylor expansion of LS(w + ε̂(w))
w.r.t ε around 0, obtaining:

sharpness ≈ ε∗(w)T∇wLS(w)

= ρ ‖∇wLS(w)‖2 ,
(14)

Denoting g(w) = ‖∇wLS(w)‖2 as the norm of gradient of the loss
function and I(w) = E

[
g(w)g(w)T

]
as Fisher Information matrix.

Now, let’s consider the square of the Euclidean norm of the gradient:

‖g(w)‖22 = g(w)T g(w), (15)

Taking the expected value of both sides:

E
[‖g(w)‖22

]
= E

[
g(w)T g(w)

]
= Tr(I(w)). (16)

where Tr(•) denotes the trace of a matrix. This reveals that mini-
mizing sharpness essentially minimizes the trace of the Fisher Infor-
mation matrix. Since we compute only the diagonal elements of the
matrix during the Find phase, the trace is solely interested, which
represents the overall flatness for all parameters. Thus, the flatness
created and found are consistent.

4 Experiment

4.1 Datasets and Experimental Setup

We validate our method on NLP tasks. For most of the experiments,
we follow MBPA++ [5] and IDBR [10] to use five text classification
datasets and map Amazon and Yelp tasks to the same label space,
resulting in 33 classes with 4 task layers in total. Since the original
datasets are too large, we randomly sample 2000 examples per class
for training and validation sets to build sampled-version datasets. We
conduct major experiments on the sampled-setting text classification

datasets, except when comparing to state-of-the-art methods because
they are all trained and validated on the full setting. To exclude the ef-
fect of task order and sequence length, we follow IDBR [10] and con-
struct seven task sequences of various lengths and orders. Our imple-
mentation is based on TencentPretrain [41], a pre-training toolkit ex-
tended from UER-py [40]. More specific information about datasets
and task sequences is in supplemental material.

4.2 Methods for Comparison

We compare our C&F as an individual approach with the follow-
ing methods: Seq [37], sequentially finetunes the model at each task,
and Replay [10], stores and replays the most representative old ex-
emplars while learning new tasks, which could be seen as the lower
bound. LwF [14], EWC [12] and MAS [1] are three regularization-
based methods. LwF limits the output of the current model to be
consistent with the old model. EWC and MAS constraint parameter
optimization based on their effects on loss and model output, respec-
tively. F2M [29] finds a flat local minimum in the first task and con-
straints the following task to update around it. ORT [6] stores the
gradients of some samples (size is 20 here) for each task to construct
the orthogonal basis and projects gradient direction of the subsequent
tasks to be orthogonal to the basis. MTL learns all the tasks simulta-
neously and is considered an upper-bound of continual learning.

Apart from baseline methods, we also compare with the state-of-
the-art methods. MBPA++ [5] replays the seen exemplars at training
time and uses KNN to select the most representative examples for
local adaptation at test time. LAMOL [31] converts all tasks into a
Q&A format and trains a language model by learning the task and
generating training samples at the same time. IDBR [10] disentan-
gles text representation space into a task generic space and a task
specific space. ProgressivePrompt [25] learns a new soft prompt for
each task and sequentially concatenates it with the previously learned
ones, while keeping the base model frozen.

All baseline methods except for Seq are equipped with replay. We
follow [10] to store the most representative training samples at the
end of each task’s learning and replay them while learning new tasks
with the same frequency. It’s noted that the state-of-the-art meth-
ods except ProgressivePrompt also incorporate replay, even with
a higher replaying frequency. The concrete implementation details
could be found in supplemental material.

4.3 Model

We employ BERT-base-uncased as the pretrained model to ensure
a fair comparison, as it has been utilized in all preivious works. It
should be noted that our C&F framework is versatile and applica-
ble to models of any size. While it might be appealing to investigate
whether CL techniques can further enhance the capabilities of re-
cently emergent large language models, no benchmark is effective
against LLMs’ extensive knowledge, as they are all composed of
public datasets. Additionally, the high costs associated with LLMs
and the closed-source nature of the most powerful models pose chal-
lenges for comparisons on them. Consequently, we use the medium-
sized model to validate the efficacy of the continual learning methods
on benchmarks and select the most effective one.

5 Result and Analysis

When training on the current task, we validate with a frequency of
500 steps using validation sets consist of all seen tasks, and select the
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Table 1: Summary of baseline methods’ performance and error bar on Sampled Setting datasets. Metric is averaged accuracy after training on
the last task. For each order, we conduct significance test against the best reproducible model, and ∗ means that the improvement is significant
at 0.05 significance level.

Method Length-3 Task Sequences Length-5 Task Sequences

Order I II III AVG IV V VI AVG

Seq 69.91 63.91 70.78 68.20(±1.00) 68.38 67.21 69.87 68.49(±1.08)
Replay 72.85 70.54 73.48 72.29(±0.46) 71.68 71.84 74.37 72.63(±0.57)
MAS [1] 73.45 72.99 73.61 73.35(±0.38) 73.78 75.22 74.30 74.43(±0.5)
EWC [12] 74.39 74.12 74.47 74.33(±0.19) 75.15 74.51 75.29 74.98(±0.25)
LwF [14] 75.17 74.21 74.57 74.65(±0.24) 75.37 74.98 75.48 75.28(±0.21)
F2M [29] 73.56 71.43 73.71 72.90(±0.37) 73.08 72.49 74.61 73.39(±0.29)
ORT [6] 73.82 71.50 73.78 72.88(±0.44) 72.58 74.79 73.03 73.42(±0.67)
C&F 75.89∗ 74.81∗ 75.01∗ 75.24(±0.19) 76.61∗ 76.46∗ 76.06∗ 76.38(±0.23)
MTL 75.31 75.31 75.31 75.31(±0.08) 76.94 76.94 76.94 76.94(±0.09)

Table 2: Summary of previous state-of-the-art methods’ performances on Full Setting datasets. Metric is averaged accuracy after training on
the last task. Results of other methods are fetched from the original papers, and C&F’s results are averaged over 3 runs.

Method Length-5 Task Sequences

Order IV V VI VII AVG

MBPA++ [5] 70.7 70.2 70.9 70.8 70.7
MBPA++ [31] 74.9 73.1 74.9 74.1 74.3
LAMOL [31] 76.1 76.1 77.2 76.7 76.5
IDBR [10] 75.9 76.2 76.4 76.7 76.3
ProgressivePrompt [25] 78.0 77.7 77.9 77.9 77.9
C&F 78.5 78.2 77.9 78.8 78.4

model with the best performance at the end of the task training. We
report the averaged accuracy for text classification tasks on test sets
after training on all tasks. Without special statement, all results are
averaged over 5 runs.

5.1 Main Results

Firstly, we evaluate C&F as an individual method against baselines
on sampled-setting task sequences of length-3 and length-5. As il-
lustrated in Table 1, C&F outperforms other methods across all 6
orders and the performance enhancement becomes more pronounced
as the task sequence gets longer, indicating a diminished accumula-
tion of forgetting for C&F. Notably, when compared to flatness-based
or gradient-based methods like F2M or ORT, our approach yields su-
perior results, demonstrating that a simple employment of gradient or
flatness features is insufficient to address forgetting in NLP task se-
quences. While the overall performance improvements might not be
statistically significant, they are far from negligible. The pretrained
model’s strong capabilities have raised the performance lower bound,
rendering further advancements challenging, and our performance
closely approaches the upper bound MTL.

In Table 2, we compare with the previous state-of-the-art methods:
MBPA++ [5], LAMOL [31], IDBR [10] and ProgressivePrompt [25]
on full-setting datasets. The results show that C&F achieves the best
performances on 4 different orders. These findings suggest that com-
bining continual learning and geometric properties effectively allevi-
ates catastrophic forgetting, and the flat training spaces constructed
in advance indeed aid the model’s constant adaptations.

5.2 Integration with other methods

Our proposed C&F can function not only as a stand-alone approach
for continual learning, but also as a framework to integrate other
approaches. We incorporate the IDBR [10] approach and conduct

experiments in the full-dataset setting as in Table 2. In addition to
IDBR’s original regularization, C&F framework creates flat regions
and finds parameter flatness during current task learning, and adds
the corresponding constraints in optimization. Results in Table 3
show that C&F brings further performance boost to IDBR. More-
over, we extend the experiments to NER tasks, in which a new en-
tity type is learned at a time and classification head’s dimensions are
continually expanded. We integrate our framework with the state-
of-the-art method ExtendNER [22], which employs knowledge dis-
tillation to replay previous entities while learning a new one using
samples annotated exclusively on the new entity type. Full dataset
details of NER tasks are available in the supplemental material. Re-
sults in Table 3 indicate that C&F further enhances the performance
of the SOTA method on NER tasks. These findings suggest that C&F
framework is versatile and CL techniques can be seamlessly and ef-
fectively introduced to improve performance further.

5.3 Analysis of CREATE

To investigate whether the created flatness helps mitigate catas-
trophic forgetting and provides ample learning space for new tasks,
we compare C&F with F (Find), which discards Create, in terms of
learning ability, forgetting and accuracy. Despite the absence of Cre-
ate, F still retains the parameter clamping after each update for a
fair comparison. We adopt the measure of intransigence, represent-
ing the inverse of learning ability, and forgetting from [4]. We detail
the measures in supplemental material. Figure 2 displays the compar-
ison of the two methods under sampled-setting order 4 as ρ rises and
the updating regions expand. C&F consistently exhibits lower levels
of forgetting, suggesting that the creation of flat regions effectively
diminishes forgetting. Additionally, C&F’s lower intransigence indi-
cates its enhanced ability to learn new tasks. Although the improve-
ment in generalization partially stems from the created flatness, it
demonstrates that the flat regions do not impede new task learning.
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Table 3: Comparisons between original method and method in C&F framework. Metric for Text Classification is averaged accuracy after
training on the last task. Metric for NER is the averaged F1 over seen entity types on the test set at each step and scores at each step are
averaged over all class orders.

Text Classification
Method IV V VI VII AVG
IDBR [10] 75.9 76.2 76.4 76.7 76.3
+C&F 77.4 77.2 77.4 77.6 77.4

NER
Method CoNLL-03 OntoNotes-5.0

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

ExtendNER [22] 86.41 86.47 86.41 86.41 79.80 80.59 80.88 80.80 80.27 79.51
+C&F 87.10 87.20 87.23 86.98 81.24 81.58 81.68 81.41 80.98 80.21

Figure 2: Comparisons of intransigence, forgetting and accuracy be-
tween C&F and F, C&F without creating, under order 4 as ρ rises.
INT is short for intransigence and FOR is short for forgetting. Left
y-axis is for intransigence and forgetting, and right is for accuracy.

It is worth noting that C&F’s intransigence increases when the value
of ρ is high, as the flatness comes at the expense of increased loss.
Overall, C&F successfully reduces forgetting and bolsters learning
by creating flat regions, as evidenced by the accuracy curves as well.

5.4 Analysis of FIND

5.4.1 Overlap of Regions

Flat regions are created for each task, but the model only needs up-
dating within the most recent region. Overlapping regions ensure that
more parameters remain in areas of low task loss, crucial for main-
taining performances across all tasks. Regularizing parameter opti-
mization according to the found flatness helps shrink the gap between
the regions. Experimentally, Figure 3 shows the overall model sharp-
ness change for the first task after trained on each task by C&F and
C (Create), which discards Find and the corresponding loss regular-
ization term. We approximate the Hessian Spectrum using the Lanc-
zos algorithm [9] and choose the largest eigenvalue to characterize
sharpness, reporting the log value. As expected, the model trained
with Find maintains lower sharpness for the first task as learning new
tasks, implying that more parameters reside in the firstly created flat
region. Thus, Find enhances the regions’ overlap degree, resulting in
the construction of superior flat training spaces.

Moreover, although the creation of flat regions flattens all param-
eters, some parameters remain sharp with a small flat range. Over-
optimizing them can cause the model to deviate from the minimum

and leave the region. Results in Figure 3 demonstrate that Find fur-
ther constrains the parameters within regions by preventing exces-
sive optimization on those sharp parameters. It experimentally veri-
fies that the flatness found for each parameter is consistent with the
created flatness.

5.4.2 Flatness Indicator

We have validated the use of Fisher Information as the flatness in-
dicator in our framework both theoretically (§3.4) and experimen-
tally (§5.4.1). Furthermore, we experiment with alternative indica-
tors from MAS [1] and SI [38] and replace Fisher with them in C&F
framework, respectively. We also compare with C (Create), eliminat-
ing Find and its corresponding regularization from C&F, and Ran-

dom, randomly sampling flatness value for each parameter. Results
in Table 4 underscore the superiority of Fisher Information as a flat-
ness indicator within our C&F framework, proving that it is more
conducive to constructing optimal learning spaces.

Table 4: Comparisons of different flatness indicator for Find. MAS
and SI replace Fisher Information, which is originally used in C&F,
with indicator utilized in MAS [1] and SI [38], respectively.

Method IV V VI AVG

C 74.70 74.06 75.32 74.70
Random 75.34 74.67 75.49 75.17
MAS 76.26 75.03 75.87 75.72
SI 76.00 75.04 75.63 75.45
C&F 76.61 76.46 76.06 76.38

5.4.3 Sparsity of Find

Given that continual learning necessitates saving every model for
rollback in practical applications, we further investigate the effect of
parameter sparsity in Find. The most straightforward approach is to
find parameters with the least importance to the last task in each layer
and solely optimize on them in the new task. Table 5 presents the re-
sults of varying sparingly optimizing ratios applied to C&F per layer.
The performance gradually increases as the ratio rises, with only 50%
of parameters being optimized achieving performances comparable
to full optimization. Sparsity ensures more parameters located in the
flat regions, especially those are sharp, which further alleviates catas-
trophic forgetting. Therefore, C&F with sharp parameters fixed can
be a suitable choice in practice.

5.5 Time Comparison

While the C&F framework offers a distinctive approach that encom-
passes both the creating and finding flatness processes, it tends to
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Figure 3: Comparisons of whole model’s sharpness for first task during continual learning on different orders. Red lines denote C&F and green

lines denote C, C&F without Find. Sharpness is calculated by the log value of the largest eigenvalue of the Hessian Spectrum.

Table 5: Comparisons of performance with increasing sparingly up-
dating ratio per layer. 100% is the setting of C&F.

SU_Ratio IV V VI AVG

0.1% 69.41 72.83 68.04 70.09
1% 71.26 74.77 68.60 71.54
10% 74.74 75.82 73.96 74.84
20% 75.34 75.89 74.90 75.38
50% 76.26 75.92 75.83 76.00
100% 76.61 76.46 76.06 76.38
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Figure 4: Time comparisons in hours for the main methods on
sampled-setting order4 task sequence.

exhibit marginally lower efficiency compared to direct optimization
methods. This primarily results from the additional time required for
creating flat regions, which may impede the optimization speed. We
provide time comparisons in Fig 4, illustrating the learning time in
hours for the main methods on the sampled-setting order4 task se-
quence, as used in Table 1. The training settings of these methods are
consistent. It’s noted that C&F’s time extension is insignificant and
its training time is considerably less than that of other flatness-based
or gradient-based methods like F2M or ORT. This reveals that di-
rectly incorporating gradient or flatness characteristics into continual
learning may lead to substantial efficiency degradation.

5.6 Effect of C&F Components

We have devised a generic framework for continual learning, with the
core of creating and finding flatness and the associated optimization
constraints. We outline each component of C&F below and examine
the effects of ablating them one by one. Firstly, We replay samples
saved from previous tasks, which are picked out as the most repre-
sentative using K-Means [17]. In addition, we create a flat region
around the minimum of each task. To further mitigate catastrophic
forgetting, we incorporate an L2 loss term in optimization, employ-

ing random coefficient as the flatness value for each parameter. Fur-
thermore, we find each parameters’ flatness and use it as the coeffi-
cient of the L2 term specific to each parameter. Finally, we clamp all
parameters’ optimization within the created regions. As shown in Ta-
ble 6, incrementally discarding each ingredient leads to a decline in
accuracy. Thus, every component in the C&F framework is essential
for achieving the optimal performance.

Table 6: Effects of ablating different components in C&F.

Method IV V VI AVG

C&F 76.61 76.46 76.06 76.38

- Clamp 76.32 75.26 75.80 75.79
- Find 75.77 73.73 75.61 75.04
- L2 74.10 73.64 75.21 74.31
- Create 71.68 71.84 74.37 72.63
- Replay 68.38 67.21 69.87 68.49

6 Conclusion

In this work, we introduce C&F, an innovative framework incorpo-
rating geometrical properties of flatness to build flat training spaces
in advance for continual learning. C&F creates a flat region around
the minimum and finds each parameters’ flatness both with respect
to the current task. During the new task’s optimization, C&F con-
straints parameter changes in the created flat regions and regularizes
them according to the found flatness, simultaneously preparing a new
flat training space for the subsequent task. As an individual continual
learning method, C&F outperforms the previous state-of-the-art ap-
proaches in text classification task sequences. Moreover, when other
methods are integrated into C&F framework, their performances at-
tain further boost. In future research, we aim to explore the flatness’s
applicability to other fields concerning continual learning.
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