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Abstract. Large Language Models (LLMs) such as ChatGPT have
received enormous attention over the past year and are now used by
hundreds of millions of people every day. The rapid adoption of this
technology naturally raises questions about the possible biases such
models might exhibit. In this work, we tested one of these models
(GPT-3) on a range of cognitive effects, which are systematic pat-
terns that are usually found in human cognitive tasks. We found that
LLMs are indeed prone to several human cognitive effects. Specifi-
cally, we show that the priming, distance, SNARC, and size congruity
effects were presented with GPT-3, while the anchoring effect is ab-
sent. We describe our methodology, and specifically the way we con-
verted real-world experiments to text-based experiments. Finally, we
speculate on the possible reasons why GPT-3 exhibits these effects
and discuss whether they are imitated or reinvented.

1 Introduction

Over the past year, Large Language Models have established them-
selves as the most influential and widely-adopted Al technology to
date. Such models are very large-scale machine learning models de-
signed to process and produce realistic human text. The standard
way in which these models are trained is to present them with essen-
tially all the digital text available in the world — this text is typically
scraped from the World-Wide Web, social media, and indeed every
other source of digital text that the developers can obtain. Because of
their inherently opaque nature, concerns have been raised about pos-
sible biases and hidden goal structures that such models may acquire.
For example, there is a huge amount of racist and misogynistic con-
tent on the World-Wide Web, and while designers might try to filter
out the most obviously toxic content, the scale of the training data
means this must inevitably be an imperfect process. Moreover, hu-
mans fall prey to endless unconscious biases, and it seems inevitable,
firstly, that these will be reflected in the training data, and, second,
that the models will then acquire these biases themselves. It is impor-
tant, therefore, to understand the extent to which this occurs, so that
we can identify it, and hopefully remedy it. A deeper understanding
of these issues will, in turn lead to a deeper understanding of the na-
ture and operation of the technology itself — which at present remains
rather poorly understood.

This work aims to further our understanding of these issues. We in-
vestigate the extent to which Large Language Models (GPT-3 in par-
ticular) exhibit the cognitive effects that human cognitive processes
exhibit. Such effects have been widely studied within cognitive psy-
chology. We begin by describing LLMs and cognitive effects in more
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detail; we then describe our methodology and then investigate the ex-
tent to which GPT-3 exhibits five key cognitive effects. We conclude
with a discussion.

Large Language Models: In more detail, Large Language Models
(LLMs) are deep learning models that have been trained to produce
human-like text, typically by computing a probability distribution
over the possible completions of a given sequence of tokens. Typ-
ically, an LLM is fed by token sequences, where tokens represent
multiple characters in an embedding space [27]. With this technique,
words with similar meaning are closer in the embedding space, hence
have more similar representation than unrelated words. This is in-
tended to enhance the performance of pre-trained models by making
it more natural to the model to treat similar words in similar ways
[1]. GPT-3 is a transformer based pre-trained language model [11].
Before being fed into GPT-3, the text is converted into pre-embedded
words (tokens), which are then fed to GPT-3. As with most language
models, for each token sequence (prompt) GPT-3 computes a proba-
bility distribution for the next token. In order to produce longer texts,
tokens are chosen from this distribution by some criterion and then
fed back into GPT-3 as input tokens.

Transformers are deep learning models that are usually used for
sequence-to-sequence prediction, such as text generation. They have
demonstrated remarkable performance on some important tasks, and
have some interesting characteristics, among them the self-attention
mechanism, which allows such models to concentrate on specific
parts of the input sequence [20]. This is an important consideration
for our work, as GPT-3’s capacity to selectively attend to certain seg-
ments of its input sequence, due to its transformer-based architecture,
could account for certain outcomes.

Cognitive effects: Cognitive processes are mental constructs such as
memory, perception, learning, reasoning, and recall. Investigation of
these processes is the main method through which experimental psy-
chologists try to understand the way the brain processes information.
Through examination of cognitive effects, which are the expressions
of systematic patterns in human cognition, psychologists can learn
about these processes in various domains [4, 2].

For example, the priming effect refers to the influence of a stimu-
lus presented on the subsequent processing of another stimulus. In
a typical experimental setting, participants are required to decide
whether a target letter sequence forms a word. Participants respond
faster when target words follow semantically-associated words than
unrelated words [33, 17]. The standard explanation is that the context
made by the prime stimulus makes the cognitive operations used to
comprehend this content more accessible [17].

An example from the literature of comparative judgement is the
distance effect. In various experiments, participants were required
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to compare the size of two presented stimuli, typically numbers or
animals. The reaction times decreased as the difference between the
stimuli’ sizes increased [22, 21, 8]. This is usually attributed to a
“mental number line” on which comparisons are done, such that it is
easier to compare/encode distant points than close points [6].

A small number of studies that test cognitive biases in GPT-3 have
previously appeared. [5] tested cognitive biases regarding rationality
and judgement, and found some human-like errors that GPT-3 tends
to make. Another study [18] tested similar biases, including the an-
choring effect, which we were unable to replicate (see below). [3]
found that GPT-3 tends to generate digits with a distribution simi-
lar to that of humans. Finally, [24] tried to replicate 14 experiments
that were done on human participants with GPT-3, mostly including
moral and rational dilemmas. They successfully replicated only a few
of them, however, mainly due to what they call “the correct answer
effect”. According to the study, in six of the experiments, GPT-3 re-
sponded with near zero variance between different conditions due
to high certainty in a specific answer (though sometimes subjectively
true, e.g., political opinions). In some of our experiments we encoun-
tered a similar problem — see the general methodology section, be-
low, for details.

In contrast to these previous studies, we focus less on rationality
and judgement and mostly investigate effects relating to mental pro-
cesses. In doing so, we hope to shed more light on the way GPT-3’s
“cognition” works, in the same way that the study of cognitive effects
shed light on human cognition. An important question we raise here
is whether these effects are imitated or reinvented by GPT-3. By ex-
amining diverse cognitive effects from different literature, we hope
to provide insights to this question. Finally, note that if these effects
are indeed reinvented, they might contribute to the field of psychol-
ogy itself, by providing examples of these effects beyond the realm
of the human cognition.

2 A Note on Methodology

LLMs are a fundamentally new type of Al system — large, complex,
and inherently opaque. Interaction with them take the form of a nat-
ural language dialogue, rather than via a language with well-defined
formal semantics (such as logic). In addition, for LLMs to be useful,
it is often necessary to introduce an element of randomness into their
responses (e.g., via the “temperature” parameter in GPT-3). For these
reasons, many attempts to systematically evaluate LLMs have failed
because of flaws in the evaluation methodology. For this reason, and
in the interests of reproducibility, we here comment on our approach.

The majority of the effects in cognitive psychology were origi-
nally discovered by comparing the reaction time of different condi-
tions, apparently reflecting the difficulty of the task (so-called mental
chronometry [25]). In contrast, the response times of an LLM are a
function of the length of the prompt, regardless of its content. Hence,
we measure GPT-3’s confidence, the probability it assigns to the cor-
rect prediction, in proportion to the overall probability assigned to
relevant predictions. This is analogous to error rate, the accompa-
nied dependent variable of reaction time, used to identify the task’s
difficulty.

When using confidence as the dependent variable, it is important
to note that confidence can approach 1, and then it is not possible to
measure possible differences between conditions (this was identified
but not resolved in [24]). In order to overcome this methodological
problem, we added “mental load” to make the task harder, typically
by adding spaces between the stimulus’s letters. We have ignored
queries for which non of the 5 top probabilities were assigned to a

relevant answer, which rarely happened.

There are some limitations regarding the manipulation of the in-
dependent variables. For example, cognitive biases in human partici-
pants were found by comparing responses to clear versus blurred text
[28] or small versus large fonts [29]. Other cognitive effects were
found by comparing responses with left versus right hands [7]. None
of these manipulations can be done directly with GPT-3. In order to
overcome these technical limitations, we implemented the following
original solutions. For example, we “blurred” text by adding spaces
between letters and presented words with different capitalization as
font size analogy. In addition, we have directed GPT-3 to respond
with the words “left” and “right”, instead of spatial responses. Fi-
nally, human cognitive biases were found by testing many partici-
pants and averaging their data. In contrast, exploring GPT-3’s biases
means testing one participant only, as GPT-3 always responds with an
identical probability distribution for identical queries (“determinis-
tic probability”). In order to overcome this statistical-power problem
(N = 1), we have asked the same question with multiple formats to
address the issue of having only one participant. In this way, we were
able to ask multiple queries and obtain sufficient data for analysis.

Although these modifications make our experiments slightly dif-
ferent from traditional methodologies, we claim that our novel
methodology capture the essence of the various effects. The fact that
we have been able to replicate most of the cognitive effects we tested
supports this claim.

All the experiments were done with GPT-3, and specifically on the
model text-davinci-003.

3  Our Study

We investigated five cognitive effects from various fields. We present
the effects, the methodologies used in our experiments, and the find-
ings. The priming, distance, SNARC, and size congruity effects were
detected in GPT, while the anchoring effect was absent.

3.1 The Priming Effect

The priming effect pertains to the influence of a stimulus presented
(the priming stimulus) on the subsequent processing of another
stimulus (the farget stimulus). Such influence is typically attributed
to make similar concepts more available [17]. Similar to experi-
ments done with human participants, our objective was to determine
whether GPT-3’s ability to recognize words is improved when they
are presented after associated words, in comparison to when they are
presented after unrelated words [33, 17, 15].

We asked GPT-3 to complete a prompt of one of the three follow-
ing formats:

1. The “question” variation:

Q: Answer with an arbitrary word.

A: [prime stimulus].
Q: Can the letter sequence "[target stimulus]" form a word?
A:

2. The “sentence” variation:

"[prime stimulus]" is a word.
Q: Can the letter sequence "[target stimulus]" form a word?
A.

3. The “simple” variation:

[prime stimulus].
Q: Can the letter sequence "[target stimulus]" form a word?
A:
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The target stimulus was presented in two different conditions, using
an unrelated word or an associated word as the prime stimulus. To
ensure that recognizing the words was not too easy, we separated the
letters of the target stimulus from each other, by 5, 10, or 15 spaces
in different experiments.

Our stimuli were drawn from the semantic priming project [15],
which contains a list of over 1000 target words, each with one asso-
ciated word and two unrelated words. We selected 300 target words,
including three sets of 100 words, of 4, 5, and 6 letter lengths. The
criteria for selection were the words with the strongest association
(as was tested empirically on humans) while having at least one un-
related word with an association weaker than 0.2, which served as
the unrelated priming stimulus.

In order to test GPT-3 multiple times on the same stimulus, we
introduced some variations on the query format. The question and
answer indicators (in the example above, Q&A) could be Q&A or
Question&Answer. The separator between the indicator and the rest
of text could be “:”, “)”, or “.’. Every step was performed with all
combinations (i.e., 2 - 3 = 6 combinations).

In addition, in order to ensure that GPT-3 understands the ques-
tions, we added 100 queries with catch trials of non-word targets.
These targets were composed from S-letter sequences without vow-
els, and presented with 15 spaces and the "question" variation.

Results: As noted before, the confidence is the probability GPT-
3 assigns to the correct answer (“yes”) in proportion to the com-
bined probability of both “yes” and “no” answers. We omitted words
that GPT-3 identifies with high certainty as words (above .99 confi-
dence) for both relevant and non-relevant priming, as well as words
that GPT-3 could not recognize (below .6 confidence) for both types
of priming. Finally, we averaged the confidence over the number of
spaces, for each word. The results are summarised in the following
table.

Table 1. The priming effect

Experiment <& O A O O X

4-sentence .56 .76  <0.001 -9.78 946 79
5-sentence .62 .81 <0.001 -10.19 1066 89
6-sentence .66 .81  <0.001 -8.1 1030 86
4-question .78 .85  <0.001 -4.83 1054 88
5-question .81 .85 0.0044 -2.85 970 81
6-question .81 .85 0.004 -2.89 958 80
4-simple 79 74 0.0054 2.79 1138 95
5-simple 79 78 0.726 0.35 1114 93
6-simple 18 76 0.3037 1.03 1114 93

< confidence with irrelevant priming O with relevant priming
A p-value (O t-statistic O degrees of freedom
X analyzed words

The priming effect was present in the “sentence” and “question”
variations, although stronger for the former. However, the effect was
absent in the “simple” variation. This could imply that the transform-
ers in GPT-3’s attention mechanism may focus more on the primer
when it is explicitly presented as a word, as it appears more relevant
to the query. This mechanism can explain the impact of the priming
words in the “sentence” and “question” variations. Alternatively, it is
possible that the attention mechanism ignores words that are out of
context, as in the “simple” variation.

For the non-words case the average confidence was higher than
.99, that is, they were classified correctly by GPT-3 as non-words,
and so we conclude GPT-3 indeed “understood” the question.

3.2 The Distance Effect

Another widely-accepted phenomenon in cognitive psychology is the
distance effect, which suggests that the amount of time needed to
compare two symbols is dependent on the distance between their
referents along the dimension being evaluated. The effect has been
consistently demonstrated across various domains, such as percep-
tion and symbolic processing [22, 21, 8], and is mostly attributed to
a "mental number line" on which comparisons are done, such that it
is easier to compare/encode distant points than close points [6].

Comparison between animal sizes: We asked GPT-3 to compare
the size of animals by completing a prompt of the following format:

Q: Is [first stimulus] [smaller/bigger] than [second stimulus]?
A:

GPT-3 was queried for every two animals from an overall set, and
for every possible combination (is first bigger than second, is second
bigger than first, is first smaller than second, etc).

In order to get more data, we introduce variations in the query for-
mat. The question & answer indicators (in the example above, Q&A)
could be any of the following: Q&A, Question&Answer, q&a, ques-
tion&answer, QUESTION&ANSWER. The separator between the
indicator and the rest of text could be ““:”, “)”, “.’, 1", “}”, *“;”. Each
step was performed with all combinations (overall 5 - 6 = 30 com-
binations). In addition, each pair was tested with plural and singular
forms. Overall, for each pair of animals, there were 2 combination of
order, 2 of comparison word, 2 of plural/singular form, 30 of ques-
tioning way, giving 240 queries in total.

There were two sets of animals, the first with length of 3 letters
each, and the second with length of 5 letters each:

e First set: ant, bat, owl, cat, pig, cow.
e Second set: snail, raven, koala, camel, whale.

In order to prevent the confidence in pair comparisons from being
influenced by the frequencies of the animals’ names, which could
obscure the distance effect, we selected animal names with similar
frequencies.

For each set, two experiments were performed. The first was with
the letters of the animals separated by a space (e.g., ¢ 0 w) and the
second with regular representation (e.g., cow). The idea was to test
whether the effect could be presented with and without tokens.

We performed another experiment with animals taken from [23] in
which participants were asked to rate the sizes of various objects on a
scale ranging from 1 to 10. We selected 7 animals of increasing size,
with an average distance of 1-1.5 and a standard deviation smaller
than 1. The animals are:

e Pavio’s set: ant, rat, goose, wolf, donkey, bear, whale.

However, since the names of the animals are not of fixed length, we
didn’t run the experiment with letters separated by spaces, as it might
be that animals with longer names would be more confusing than
animals with shorter names, thus obscuring the effect.

Comparison between numbers: When asking GPT-3 to compare
two numbers directly, it was too certain about the correct result,
so no effect could be found. In order to overcome this, GPT-3 was
asked to complete a text in the following format:

X is [first number]
y is [second number]
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Q: Is x [less/greater] than y?
A:

The same variations from the previous section were introduced
here as well, except for the plural form, which is of course non-
relevant for numbers. Overall, there were 120 variations for every
two numbers. All numbers from one to nine were tested, in their
wording form. In addition, another experiment was done with dozens
(ten, twenty, etc) and hundreds (one hundred, two hundred, etc).

Comparison between months: We asked GPT-3 to complete a text
of the following format:

Q: Is [first month] [before/after] [second month]?
A:

The same variations were used here, 120 for each two months. The
first nine months were tested.

Comparison between letters: We asked GPT-3 to complete a text
of the following format:

Q: In the alphabet, is [first letter] [before/after] [second let-
ter]?
A:

The same variations were used here, 120 for each two letters. The
first nine letters were tested.

Results: As before, we define the confidence as the probability GPT-
3 assigns to the right answer (yes/no), out of the overall probability
GPT-3 assigns to "yes" and "no".

In the graphs, the = axis is the distance between the compared
stimuli, and the y axis is the average confidence for such stimuli.
It can be seen that, generally, as the distance increased, the confi-
dence increased as well. We present only a few graphs, but the effect
was similar for all animals/numbers comparisons. The full results are
available on our github project.

0.85 _—

Confidence

Distance

Figure 1. The distance effect with Pavio’s animals. It can be seen that
the confidence increased as the distance between the compared animals in-
creased. ANOVA: F'(5,5034) = 39.45, p < 0.001, MSE = 0.16.

The effect, however, wasn’t found for months and letters. Indeed,
the effect was completely reversed for months: GPT-3 was more cer-
tain when comparing two following months than two distant months.
Generally, the effect seems to be presented for size comparisons, but
not for order comparisons.
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Figure 2. The distance effect with numbers. Not only the confidence in-
creased as the distance increased, but merely adding the word *hundred’ to
the stimuli increased GPT’s confidence in the correct result. ANOVA for dig-
its: F'(7,4312) = 15.06, p < 0.01, MSE = 0.06. ANOVA for hundreds:
F(7,4312) = 10.59, p < 0.01, MSE = 0.02.

3.3 The SNARC Effect

The SNARC effect refers to the association between left and small
numbers, right and large numbers [31]. In a typical experiment, par-
ticipants were required to respond to even numbers with their right
hand and odd numbers with their left hand, or vice versa. Large num-
bers yielded faster responses with the right hand, and small numbers
with the left [7]. The SNARC effect might originate from the di-
rectionality of the mental number line [6] according to reading di-
rections [32] or alternatively could be attributed to associations be-
tween large numbers and good, good and right, and similarly between
small, bad, and left [26] or even to the brain’s asymmetry [9].

Another version of SNARC, known as the vertical SNARC effect,
is the association between small numbers with the downward direc-
tion and large numbers with the upward direction [16].

Magnitude classification: We asked GPT-3 to complete a text of
the following format (experiment 1):

In the following instructions, X is equal to 5.

A word is about to be presented to you.

If the word represents a number [smaller/larger] than X, respond
with "[left/right]".

If the word represents a number [larger/smaller] than X, respond
with "[right/left]".

Word: [number word]

Response:

X could be any of the following: B, C, D, E, X, Y, W, Z.
In another experiment (2), the following format was tested (i.e.
implicit association test; see [14, 10]):

In the following instructions, X is equal to 5.

A word is about to be presented to you.

If the word is a spatial word associated with [right/left] or the word
represents a number [smaller/larger] than X, respond with [first
response].

If the word is a spatial word associated with [left/right] or the word
represents a number [larger/smaller] than X, respond with [second
response].

Word: [number word]

Response:
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The responses were one of the following five characters: “!”, “@”,
“#”,“$”, or “%”, and X could be either “X” or ‘Y”. All combinations
were tested.

The possible number words were one, two, three, four, six, seven,
eight and nine. All possible combinations (starting with the case of
even number or the case of odd number, responding with right/left)
were tested.

Parity classification: We asked GPT-3 to complete a text of the
following format (experiment 3):

A word is about to be presented to you.

If the word represents an [even/odd] number, respond with
"[right/left]".

If the word represents an [odd/even] number, respond with
"[left/right]".

Word: [number word]

Response:

In another experiment (4), the following format was tested:

A word is about to be presented to you.

If the word represents an [even/odd] number, respond with
"[right/left]".

If the word represents an [odd/even] number, respond with
"[left/right]".

Is the number greater than five?

Word: [number word]

Response:

And another variation (experiment 5):

A word is about to be presented to you.

If the word represents an [even/odd] number, respond with
"[right/left]".

If the word represents an [odd/even] number, respond with
"[left/right]".

After responding, write whether or not the number is greater than
five.

Word: [number word]

Response:

The separator between the word label and actual word, and be-
tween the response label and the actual response, could be any of the

[TRINNTRL) “)” 721

following: “:”, *;”, “)”,“,“I”, “]”, and “}” and overall 7 possibilities.

Vertical SNARC: All the above experiments were repeated, with
down/up replacing left/right.

Introducing uncertainty: Due to high certainty about the correct an-
swer (approaching 1), we added spaces between the number words
letters (e.g., o n e). We started by adding two spaces between each
two adjacent letters and increased the spaces up to 20. When the
confidence for a number word was less than .6, both when the de-
sired response was congruent with the number and when it wasn’t,
we didn’t test the number word with higher number of spaces.

Results: The confidence is the probability GPT-3 assigns to correct
response, out of the overall probability GPT-3 assigns to legal re-
sponses. In the results, for each number word, we present the average
confidence when the query was congruent with the size of the num-
bers (small number with left, large with right) and the confidence

when the query wasn’t congruent (large number with left, small with
right). We include only numbers of spaces for which at least one of
the confidences (congruent/incongruent) was smaller than .99, and at
least one was larger than .6.

Our results are summarised in the following table:

Table 2. The SNARC effect

Experiment < m] A O O X
1 horizontal .74 91 <0.001 =727 254 8
1 vertical 62 91  <0.001 -8.79 254 8
2 horizontal .82 .91  <0.001 -452 382 8
2 vertical 85 .87 0.3933 -0.85 334 7
3 horizontal .82 .68  <0.001 3.47 222 8
3 vertical 71 .65 0.1972 1.29 194 7
4 horizontal 45 .89 <0.001 -10.89 194 7
4 vertical 38 .84 <0.001 -10.89 222 8
5horizontal .74 .88  <0.001 -3.44 194 7
5 vertical .67 .81 0.0021 -3.13 194 7

< confidence with incongruence 0 with congruence
A p-value (O t-statistic O degrees of freedom
X analyzed digits

We hypothesise that the effect exists only when the size of the
digits is relevant (all experiments, except 3). In some experiments,
this was also the case with human participants [31].

When the size was relevant, the effect seems to be present in all
experiments except the case of 2-vertical (7/8 of the experiments).

3.4 The Size Congruity Effect

The size congruity effect refers to the phenomenon where people
tend to respond faster when comparing the sizes of two stimuli that
match in both their real and presentation sizes [12, 30]. For instance,
when large animals’ names are presented in a large font and small an-
imals’ names are presented in a small font, participants demonstrate
a quicker response time than when the opposite is the case [29]. A
standard explanation is that the brain does both comparisons (pre-
sented and real sizes) and conflicting results reduce reaction time.
Alternatively, it is harder to encode incongruent stimuli [29].

Comparison between animals’ sizes We asked GPT-3 to compare
animals’ sizes, by completing a prompt of the following format:

Q: Is [first stimulus] [smaller/bigger] than [second stimulus]?
A:

Each time, one of the stimuli was capitalized (e.g., COW) and the
other wasn’t. Apart from that, the variations and the stimuli were the
same as in the distance effect for animals.

In addition, the following set of animals was tested:

e 4-animals: Moth, frog, duck, goat, puma, bear.

Comparison between numbers: GPT-3 was asked to compare
numbers, by completing a prompt of the following format:

[first letter] is [first number]

[second letter] is [second number]

Q: Is [first letter] [less/greater] than [second letter]?
A:
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Each time one stimulus was capitalized (e.g., X is ONE, y is two).
The same variations from the distance effect were used here.

Another experiment was done when the comparison words were
[smaller/larger] instead (variation 2).

Results: As before, the confidence is defined as the probability GPT-
3 assigns to the right answer (yes/no), out of the overall probability
GPT-3 assigns to “yes” and “no”. When analyzing the results, we
ignored pairs of animals that GPT-3 was certain about their sizes
(more then .99 confidence, both for congruent and for incongruent
queries) or too low confidence (less then .6, both for congruent and
for incongruent queries).
Our results are as follows:

Table 3. The size congruity effect

Experiment < =] A O O X
Pavio’s animals 67 .74 <0.001 -8.94 8158 17
3-animals 61 .68  <0.001 -5.4 5758 12
4-animals 68 .72 0.0239 -2.2604 2398 5

S-animals .68 .74
spaced 3-animals .63 .67
spaced 4-animals .64 .70
spaced 5-animals .76 .78
numbers (1) 88 .82
numbers (2) 79 .83

<0.001 -5.84 5758 12
0.0079 -2.66 2878 6
<0.001 -5.65 4318 9
0.0096 -2.59 5278 11
<0.001 8.09 8638 36
<0.001 -5.18 8638 36

< confidence with incongruence O with congruence
A p-value (O t-statistic O degrees of freedom
X analyzed pairs

The impact was considerable for animals, but limited or even op-
posite when it comes to numbers.

3.5 The Anchoring Effect

The anchoring effect is a cognitive bias that occurs when people rely
on an irrelevant piece of information they are exposed to (the “an-
chor”) when making decisions or estimates. People tend to adjust
their estimates or judgments from the initial anchor, but the adjust-
ment is often insufficient, leading to biased decisions toward the orig-
inal anchor [35, 13].

Methodology: It is noteworthy that the anchoring effect manifests
itself primarily when participants are unaware of the actual value be-
ing estimated; otherwise, they would simply provide the correct re-
sponse, rendering any variance across anchors negligible (i.e., judge-
ment under uncertainty: see [19]). However, GPT-3 has very exten-
sive knowledge and can readily provide accurate answers to diverse
questions posed in conventional experiments (such as the number of
countries in Africa), compelling us to seek an estimation task that we
can be confident is outside its training set. To this end, we opted for
measuring sequence lengths as the chosen task.

GPT-3 was asked to complete code of the following form (experi-
ment 1):

a = [anchor]
length = len(’[sequence]’) # equals to

Or the following form (experiment 2):

a = [first anchor]

b = [second anchor]
z = len(’[sequence]’) # equals to

Here, the anchors are numbers, and sequence is a sequence of
characters. We observed that GPT-3 can only estimate the length
of sequences that are sufficiently long (over 30 characters), rather
than providing an exact value. It should be noted that the charac-
ters are first converted into tokens before being processed by GPT,
with some tokens representing multiple characters. To avoid that un-
expected difficulty in the task, certain characters were chosen that
do not form a token for sequences that do not contain any character
presented twice in a row. The chosen characters are “!”, “#”, “%”,
« «&” and “*”, and test sequences were randomly generated using
these characters.

Two more variations were tested (experiments 3, 4):

len(’[anchor sequence]’) # equals to [anchor length]
len(’[sequence]’) # equals to

And:

len(’[first anchor sequence]’) # equals to [first anchor length]
len(’[second anchor sequence]’) # equals to [second anchor length]
len(’[sequence]’) # equals to

Here the anchors exhibited greater similarity to the stimulus used
in the actual task.

Throughout all stages of the experiments, anchors were classified
into two categories: small and large. Small anchors were randomly
selected from a uniform distribution within the range of 10 to 29,
while large anchors were drawn from the range of 71 to 90. The eval-
uated sequence had a length between 40 to 60, and for each length,
20 queries were conducted with small anchors and 20 with large an-
chors, resulting in a total of 840 queries overall. For each query, the
answer for which GPT-3 assigned the highest probability was taken.

Results: Our results are summarised in the following table:

Table 4. The anchoring effect

Experiment < m] A O O X
1 41.5 41.28 0.6102 0.5099 838 21
2 41.08 3990 0.0059 2.762 838 21
3 4578  42.04 <0.001 9.58 838 21
4 48.86  46.31 <0.001 5.51 838 21

< estimation with small anchor O with large anchor
A p-value (O t-statistic O degrees of freedom
X analyzed lengths

We conclude that the effect doesn’t appear to be presented. The
mean estimates of the first two variations are similar when different
anchors are used, while for the latter two, the effect is observed to be
even reversed.

4 Discussion

We found that four out of five effects that we tested are presented by
GPT-3: namely the priming, distance, SNARC, and size congruity
effects. Although it is conceivable that some patterns in GPT-3 could
perhaps exist due to pure randomness, we believe this result suggests
more than a coincidence.
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To begin, we note that it is likely that GPT-3 was trained on pa-
pers describing the effects we have tested for. However, it is unlikely
that these papers have text with formats similar to our queries, and
it would be absurd to expect GPT-3 to generalize such as “people
respond faster to words recognition when words following associ-
ated words, and so I should assign such cases higher probabilities”.
Hence, we conclude that GPT-3’s knowledge about the effects is not
the origin of their presentation within GPT-3 itself, and so we con-
sider some alternative options.

4.1 The Priming Effect

The priming effect could be attributed, as with humans, to “making
the cognitive operations used to comprehend this content more ac-
cessible" when associated words follow the priming words [17]. Al-
ternatively, we can say simply that associated words follow previous
words more frequently than unrelated words and so GPT-3 handles it
better. Apart from that, however, the effect is not likely to be imitated
from people, as it’s hard to see how this could be manifested in the
training data.

4.2 The Distance Effect

As we saw, GPT-3’s confidence increased as the distance between
the stimuli it compared increased, for objects that included animals
and numbers (similar results with RoOBERTa found in [34]). One may
claim that for animals, the effect could be attributed to GPT-3 being
merely unsure about their exact sizes but only having a vague, wide
range estimation, which overlaps more for animals of closer sizes.
However, it hardly explains the presence of the effect beyond the first
few distances, and fails completely to explain the case for numbers,
as without our added “mental load" GPT-3 compares small numbers
almost perfectly. Another explanation was suggested by one of our
group members, attributing the effect to the tokens’ distance in the
embedding space. Further experiments, however, showed it can’t be
the sole reason, as the effect remained when we presented the ani-
mals’ letters separated by spaces, for which no tokens exist.

In contrast to priming, it is hard to explain the distance effect in
terms of frequencies. Especially with numbers, it is somewhat sur-
prising that GPT-3 is more confident when comparing distant num-
bers, as we expect that comparisons between consecutive numbers to
be more frequent on the internet. Especially, we expect comparisons
between digits to be more frequent than between hundreds.

To conclude, we attribute the effect to some kind of a "mental num-
ber line", as with humans [6]. It might be that it takes more time to de-
cide about close stimuli, or to encode them in the first place [36] [37].
If GPT-3 indeed possess such a "mental number line", it’s an indica-
tion for its ability to perform robust comparisons, even without direct
training. Further investigations, such as measuring the frequencies of
different numbers comparisons in the internet, might shed more light
on the reasons for this effect being present with GPT-3.

4.3 The SNARC Effect

We showed that GPT-3 associates between left and small numbers,
right and large numbers, and similarly with down and up. While
the latter could be seen somewhat natural, attributed to graphs, floor
numbers, and heights, the former is considered more arbitrary [38].
The lateralization of the brain, or reading directions might explain
the effect with humans [32, 9] but this explanation does not hold
for GPT-3, as it lacks both (GPT-3 reads tokens one by one, without

any spatial association regarding the process, similar to listening).
The other explanation could be an association between left to bad,
bad to small numbers, and between right-good-large, as some claims
with humans [26]. Alternatively, GPT-3 may simply imitate this ef-
fect from humans, although it is hard to imagine how it is expressed
in the training data. Future research may provide further insights.

4.4  The Size Congruity Effect

When comparing animals, GPT-3’s confidence was higher when the
smaller animal’s names were presented with lowercase letters, and
the larger with uppercase, compared to the reversed situation. Hence,
it was demonstrating the size congruity effect. As with the other ef-
fects, it’s hard to imagine this being expressed through training data.

Two major psychological models attempt to explain the effect. The
shared decisions model claims that the decision about the presented
sizes and the real sizes interfere in some way. In contrast, the shared
representation model claims the encoding of the stimuli is more com-
plicated when the stimuli are incongruent than when they congruent
(e.g., encoded as small and large versus presented-small-actually-
large and presented-large-actually-small) [29]. Either of these the-
ories could account for our results, although it might be surprising
that GPT-3 treats letters capitalization so similar to how people treat
font sizes.

5 Conclusions

We have shown that some cognitive effects, namely the priming,
distance, SNARC, and size congruity effect are presented in GPT-
3, while the anchoring effect was absent. We have presented our
methodology in detail, and some analogies that served us when turn-
ing real-world experiments to text-based. Finally we have speculated
on the possible reasons why these effects are present in GPT-3, and
provided some classical, psychological explanations to their exis-
tence in humans, which might be relevant to GPT-3 as well.

A huge body of work remains to be done on this and related prob-
lems. We have worked with GPT-3 — it would be natural to study
GPT-4 (released while this article was being written), and in par-
ticular to study whether the cognitive effects presented by GPT-3
are magnified or reduced in GPT-4. Comparison with LLMs outside
OpenAl’s GPT stable are also natural. Finally, note that the question
of methodology for investigating questions like these with LLMs re-
quires considerable further work.

Acknowledgements

We would like to thank Samuel Shaki for his useful insights from
cognitive psychology. The research was supported in part by the EU
Project TAILOR under grant 952215.

Technical Appendix

Our complete results, including the data and the code
used to analyze it, are available on our github project:
https://github.com/GPTBiases/results.

All experiments were conducted on GPT-3 and specifically the
model text-davinci-003. In order to calculate the confidence
we examined the 5 top probabilities predicted by GPT-3 (log-
probs=5). Other settings, such as temperature or top-P, are not rel-
evant since they determine how to sample a single token from the
generated probability distribution, while we examined the distribu-
tion itself directly.
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