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Abstract. An autoassociative memory model is a function that,
given a set of data points, takes as input an arbitrary vector and out-
puts the most similar data point from the memorized set. However,
popular memory models fail to retrieve images even when the corrup-
tion is mild and easy to detect for a human evaluator. This is because
similarities are evaluated in the raw pixel space, which does not con-
tain any semantic information about the images. This problem can
be easily solved by computing similarities in an embedding space
instead of the pixel space. We show that an effective way of comput-
ing such embeddings is via a network pretrained with a contrastive
loss. As the dimension of embedding spaces is often significantly
smaller than the pixel space, we also have a faster computation of
similarity scores. We test this method on complex datasets such as
CIFAR10 and STL10. An additional drawback of current models is
the need of storing the whole dataset in the pixel space, which is of-
ten extremely large. We relax this condition and propose a class of
memory models that only stores low-dimensional semantic embed-
dings, and uses them to retrieve similar, but not identical, memories.
We demonstrate a proof of concept of this method on a simple task
on the MNIST dataset.

1 Introduction

Throughout life, our brain stores a huge amount of information in
memory, and can flexibly retrieve memories based on related stim-
uli. This ability is key to being able to perform intelligently on many
tasks. In the brain, sensory neurons detect external inputs and trans-
mit this information to the hippocampus via a hierarchical network,
which can retrieve in a constructive way via a generative network [1].
Stored memories that involve a conscious effort to be retrieved are
called explicit, and are divided into episodic and semantic memories.
Episodic memories consists of experienced events, while semantic
memories represent knowledge and concepts. Both these memories
are retrieved in a constructive way via a generative network [1].

In computer science, computational models of associative mem-
ories are basically pattern storage and retrieval systems. A standard
task is to store a dataset, and retrieve the correct data point when
shown a corrupted version of it [10, 11]. Popular associative mem-
ory models are Hopfield networks [10, 11], with their modern con-
tinuous state formulation [20, 14], and sparse distributed memories
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[12]. While these models have a large theoretical capacity, which
can be exponential in the case of continuous-state Hopfield networks
[20, 15], this is not reflected in practice, as they fail to correctly re-
trieve memories such as high-quality images when presented with
even medium-size datasets [17, 22]. In fact, the similarity between
two points is typically computed on the raw pixel space using a sim-
ple function (such as a dot product) that is insensitive to the ‘se-
mantic’ features of images that we wish to discriminate between.
The performance would drop even more when using stronger corrup-
tions, such as rotations, croppings, and translations, as relations be-
tween individual pixels would be lost. These problems can be solved
by learning a similarity function that is sensitive to the semantics
of the stored memories. In essence, we need to embed every data
point into a different space, where simple similarity scores can dis-
criminate well between semantic features. This approach resembles
kernel methods, where the similarity operation is performed after the
application of a feature map φ, which sends both the input and the
data points to a space where the dot product is more meaningful.

This leads to the problem of finding a map φ that embeds different
data points in a space where they can all be well discriminated. In this
work, we demonstrate that the simple approach of using pre-trained
neural networks as feature maps strongly improves the performance
of standard Hopfield networks. We first review a recent mathemat-
ical formalism that describes one-shot associative memory models
present in the literature, called universal Hopfield networks, and ex-
tend this framework to incorporate these features maps. The main
contributions of this paper are briefly as follows:

• We define a class of associative memory models, called semantic
Hopfield networks, that augment associative memory models with
a feature map. In this case, as a feature map, we use ResNet18
and ResNet50, pretrained in a contrastive way, as done in Sim-
CRL [3]. What results is a model that stores the original data
points as in standard memory models, but computes similarities
in an embedding space. This model is able to perform an exact re-
trieval on complex data points, such as CIFAR10, STL10, and Im-
ageNet images, when presented with queries formed by corrupted
and incomplete versions.

• We then address another drawback of current associative mem-
ory models, namely, the need to store all data points, which is
memory-inefficient. To this end, we propose a model that stores
low-dimensional embeddings of the original data points. The re-
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Figure 1. (a): Decomposition of a universal Hopfield network in score, similarity, and projection. (b) Examples of retrieved data points when given corrupted
versions using Gaussian noise. (c) Examples of retrieved data points when given cropped versions.

trieved data points are not exact copies of the stored ones, as they
are generated via a generative network ψ : Rk −→ R

d. This also
adds a degree of biological plausibility, as the data points in this
model are stored in a declarative way, and retrieved in a construc-
tive way. We provide a proof of concept of this model on MNIST,
using a simple autoencoder.

The rest of this paper is structured as follows. In Section 2, we
introduce Universal Hopfield networks, providing formal definitions
that describe their structure. Sections 3 and 4 introduce the origi-
nal contributions of this work, the semantic memory model and its
fully-semantic variation. In Sections 5 and 6, we end the paper with
a summary of the related literature and a conclusive discussion.

2 Preliminaries

In this section, we review universal Hopfield networks [17]. Accord-
ing to this framework, associative memory models can always be rep-
resented as decompositions of three parametrized functions: score,
separation, and projection, whose parameters depend on the stored
memories. Let D = {x̄i}i≤N be a dataset, with x̄i ∈ R

d for every
i. Informally, given any x̄ ∈ R

d, the goal of an associative mem-
ory model is to return the data point of D that is most similar to x̄
according to a function κ : Rd × R

d −→ R. Hence, we have the
following:

Definition 1. Given a dataset D = {x̄i}i≤N , a universal Hopfield
network is a function μD : Rd −→ R

d such that μD admits a decom-
position μD = πD ◦ α ◦ κD into:

1. score: a function κD : Rd −→ R
N such that κD(x̄)i = κ(x̄, x̄i),

2. separation: a function α : R
N −→ R

N not dependent on the
dataset,

3. projection: a function πD : RN −→ R
d dependent on the dataset.

Ideally, we would like the function μD to store the dataset D as an
attractor of its dynamics. Informally, an attractor is a set of points that
a system tends to evolve towards. In designing associative memories,
we typically wish to store data points as attracting points and design
a retrieval function f that converges to the data points in as few itera-
tions as possible. In a continuous space, however, the attractors may
be close to the data points, but not exactly where the data points are.

This depends on the choice of the separation function. However, this
problem is easily solved by taking the maximum value after comput-
ing the separation function. In practice, models able to retrieve data
points in one shot are preferable. This is always the case when us-
ing max as separation function, or a continuous approximation given
by a softmax with a large inverse-temperature β. We now describe
the main ideas behind the decomposition of universal Hopfield net-
works, and show how popular models in the literature can be derived
from it.

Score. Given an input vector x̄, the score returns a vector that has
the number of entries equal to the number of data points N . The i-
th entry of the vector κD(x̄) represents how similar x̄ is relative to
the data point x̄i. Hopfield networks compute the similarity using
a dot product, while sparse distributed memories use the negative
Hamming distance.

Separation. If the cardinality of the dataset is large, and multiple
data points are close to the input x̄ in terms of similarity, the retrieval
process may require a large number of iterations of μ. However, we
wish to retrieve a specific data point as quickly as possible. The goal
of the separation function α is then to emphasize the top score and
de-emphasize the rest, to make convergence faster. Popular choices
of separation functions are softmax, threshold, and polynomial, used
respectively by modern Hopfield networks, sparse distributed mem-
ories, and dense Hopfield networks [14, 7].

Projection. The projection is a function that, given the vector with
scores, already modified by the separation function, returns a vector
in the original input space. For exact retrieval, the projection function
is set to the matrix of data points. Particularly, consider the matrix
P ∈ R

d×N , which has its i-th column equal to the data point x̄i.
Then, we have π(x̄) = P x̄. If x̄ is a 1-hot vector, a perfect copy of a
data point is returned.

This new categorization of one-shot memory models has enabled
a systematic testing and generalization over multiple combinations
of similarity functions, showing that, for image datasets, some simi-
larity and separation functions work much better than others. For ex-
ample, metrics such as negative L1 and L2 distances outperform dot
products. However, distances are less biologically plausible than dot

T. Salvatori et al. / Associative Memories in the Feature Space2066



products, as they require special computations to be computed, while
a dot product can be represented as a perceptron layer. As shown
in Fig. 1, scoring images on the pixel space is highly impractical,
as it suffices to simply rotate or crop an image to trick the mem-
ory model. For separation functions, we use softmax with a large
inverse-temperature β, as it is able to approximate the max function
and hence perform one-shot retrievals.

3 Semantic Memory Model

In this section, we propose a new class of associative memory mod-
els. Intuitively, this class is similar to UHNs, but is augmented with
an embedding function φ that maps memories into a feature space.
Here, two embeddings are scored as in UHNs as if they were the
original stored data points. The resulting vector with the similarity
scores is first separated, and then projected back to the pixel space.
We will show that this approach enables powerful associative mem-
ory models.

Definition 2. Given a dataset D = {x̄i}i≤N and a feature
map φ : R

d −→ R
e, a semantic memory model is a function

μD : Rd −→ R
d such that:

1. μD admits the decomposition μD = πD ◦ α ◦ κφ(D) ◦ φ,
2. the map πD ◦ α ◦ κφ(D) is a universal Hopfield network, where

similarity scores are computed in the embedding space R
e.

SimCLR. The first problem to address is to find a suitable em-
bedding φ to perform associative memory experiments. Ideally, this
function should map corrupted versions of the same data point close
to each other, and different data points away from each other. A
straightforward way of doing this is to train a neural network us-
ing a contrastive loss. This has already been done in the literature,
as it is an effective way of pre-training a neural network when a
large amount of unlabelled data is available [4, 5]. Typically, the pre-
training procedure works as follows: given a dataset D = {x̄i}i≤N ,
the network is provided simultaneously with a batch of B pairs of
data points x̃i, x̃j that are corrupted versions of the data points x̄i, x̄j ,
and trained to minimize the contrastive loss:

Li,j = −log(
exp(sim(z̃i, z̃j))

∑2B
k=0 1i �=kexp(sim(z̃i, z̃k))

),

where z̃i = φ(x̃i) is the output of the network, 1i,k is a binary func-
tion equal to one, if i �= k, and zero, otherwise, and sim is a similarity
function. When training has converged, the original work then adds
a feedforward layer (or more) attached to the output layer, where the
contrastive loss is defined, to fine-tune using the few labelled data
available. This simple framework for contrastive learning of visual
representations is known as SimCRL. As we do not need to perform
supervised learning, here we simply use the pretrained network to
compute similarity scores of pairs of data points embedded into the
latent space of the model.

Set-up. In the following experiments, we test our semantic mem-
ory model on two datasets, CIFAR10 [13] and STL10 [6]. The
first one consists of 60000 32 × 32 colored images, divided in a
50000− 10000 train-test split, while the second consists of 105000
96× 96 colored images, divided in a 100000− 5000 train-test split.
As functions φ, we use a ResNet18 for CIFAR10 and a ResNet50
for STL10 [8], trained as described in the original SimCLR work

[4]. Details about the parameters used can be found in the supple-
mentary material. Then, we use the test sets, never seen by the mod-
els, to evaluate the retrieval performance from corrupted memories.
Particularly, we use the following six kinds of corruptions, visually
explained on the left side of Fig. 2:

1. Cropping (Crop): the corrupted image is a zoomed version of the
original one,

2. Masking (Mask): half of the image is masked with uniform ran-
dom noise,

3. Color filters (Color): different color filters are randomly applied
to the original images,

4. Rotation: the images are randomly rotated by an angle of
0, π/2,−π/2, π,

5. Salt and pepper (S&P): a random subset of the pixels of the orig-
inal images is set to 1 or 0,

6. Gaussian noise (Gauss): Gaussian noise of variance η = 0.1 and
different means is added to the original images.

As similarity functions, we tested the dot product, the cosine similar-
ity, the negative Euclidean distance (L2 norm), and the negative Man-
hattan distance (L1 norm). As separation function, we used a softmax
with large inverse temperature. To make the comparison with UHNs
clear, we also report the accuracies using the same corruptions and
activation functions.

Implementation Details. As a loss function, we always used a
contrastive loss with cosine similarity, as done in the original work
on SimCLR. As parameters, we followed a popular PyTorch imple-
mentation.1 It differs from the official one, which is only available
in TensorFlow, but is equivalent in terms of the pre-training regime.
For the experiments on CIFAR10, we used a ResNet18 with embed-
ding dimension 512 trained for 100 epochs; for STL10, we used a
ResNet50 with embedding dimension 2048 trained for 50 epochs.
The hyperparameters used for both models are the same: batch size
of 256, learning rate of 0.0003, and weight decay of 1e− 4. As it is
complex to exactly describe the details of the corruptions used to per-
form our associative memory tasks, we refer to the PyTorch code in
the supplementary material. For the first three corruptions, rotations,
filters, and croppings, we have used the relative torchvision transfor-
mations. For Gaussian noise, masks, and salt and pepper noise, we
report the corruption on the original data point. The following code
allows to generate the same corruptions of Fig. 2.

Results. Detailed results about the performance of this method,
where the percentage of wrongly retrieved images for each task,
dataset, and similarity function are given in Tables 1 and 2. As ex-
pected, our models outperform UHNs on corruptions where the po-
sition of the pixels is altered. This corresponds to all the corruptions
considered, besides masking and salt and pepper noise. In fact, when
masking an image, 50% of the pixels remain unchanged, allowing
similarity functions on the pixel space to return high values. In this
task, UHNs outperform our models. A similar reasoning can be ap-
plied to salt and pepper noise. Here, however, our method performs
better by a small margin.

In all the other considered tasks, the margin is large, and the
few correctly retrieved images by UHNs belong to particular cases:
UHNs were able to retrieve cropped or rotated images only when
they had close to uniform colors/backgrounds. In those cases, in fact,
it is much more likely that a crop or a rotation leaves the embedding

1 https://github.com/sthalles/SimCLR
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Figure 2. Example of a semantic memory model, where the function φ is a ResNet pre-trained using a contrastive loss. On the left, examples of the six kinds
of corruptions used in this section; on the right, the original image to be retrieved by the model.

Table 1. Percentage of wrongly retrieved memories on CIFAR10.

Crop Mask Color Rotation S&P Gauss μ = 0.3 Gauss μ = 0.5

UHN (Cosine Sim.) 74.53% 72.11% 19.36% 42.73% 99.12% 29.12% 99.19%
UHN (L2 Norm) 65.73% 37.42% 51.31% 39.91% 4.31% 85.13% 99.92%
UHN (L1 Norm) 57.32% 2.41% 57.11% 33.13% 4.17% 91.11% 99.81%

Ours (Cosine Sim.) 25.34% 63.69% 0.09% 0.05% 20.50% 15.38% 52.11%
Ours (L2 Norm) 25.89% 88.03% 0.04% 0.06% 14.31% 18.78% 29.83%
Ours (L1 Norm) 30.55% 20.33% 0.05% 0.33% 3.65% 7.19% 27.88%

of an image in the pixel space mostly unchanged. Uniform images
are in fact fixed points of those transformations.

In terms of similarity functions used, semantic models are gener-
ally more robust than UHNs, where the final performance of a spe-
cific similarity function strongly depends on the corruption used. In
most cases, the cosine similarity and distances obtained a completely
different performance. While this also happened in some cases for
our model, the negative L1 norm always obtained the best (or close
to the best) performance. For UHNs, no similarity has shown to be
preferable to the others. This is an advantage of semantic models, as
we want to build a memory model that is robust under different kinds
of corruptions.

Efficiency. In this paragraph, we show the better efficiency of
our method against standard memory models. As already stated, dot
products are slightly faster than distances to be computed. However,
under some kinds of corruptions, the better performance of the L1
norm makes it the best candidate. In Table 3, we have compared the
running times of the proposed experiments. The results show that
semantic models are much faster than UHNs, despite the fact that
they have to perform a forward pass to compute the semantic embed-
dings. This better efficiency is simply a consequence of the smaller
dimension of the embedding space with respect to the pixel space,
but it may be crucial in some scenarios. Particularly, the dimension
of the semantic spaces is given by the dimension of the output of
the embedding function φ considered, in our case 512 for ResNet18
and 2048 for ResNet50. This is a large improvement over the pixel

space, as a single CIFAR10 image has the dimension 3072 and a sin-
gle STL10 image has the dimension 27648. In tasks where having an
efficient model is a high priority, it is possible to speed up the model
by using pre-trained models with a smaller output dimension. This
could be important in online applications.

Changing the Mean. To better study how the two models differ
when retrieving images with different levels of noise, we replicate
the experiments performed above using as corruptions added Gaus-
sian noise with different means (μ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}),
and variance 0.1. Visual examples of the resulting corrupted images
are given on the left side of Fig. 3. This kind of noise corrupts the im-
age by both adding random noise, and by making it “whiter”. UHNs
are robust with respect to noise with zero mean [17], but weak when
this is increased, as they have a large impact on the position of an
image in the pixel space. Making an image “whiter”, however, does
not alter the semantic information that it contains: from a human per-
spective, we are easily able to determine that the six images repre-
sented on the left side of Fig. 3 are different corrupted versions of
the same image. Hence, we expect semantic models to perform better
than UHNs when dealing with images corrupted by adding Gaussian
noises of high mean. This is indeed the case, as the results presented
on the right side of Fig. 3 show. Here, the performance of the two
models is comparable (with UHNs being slightly better) when us-
ing a mean of 0.3 or smaller. The performance of UHNs, however,
significantly dropped when using higher means: they were able to
retrieve less than 5% of the images when presented with Gaussian
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Table 2. Percentage of wrongly retrieved memories on STL10.

Crop Mask Color Rotation S&P Gauss μ = 0.3 Gauss μ = 0.5

UHN (Cosine Sim.) 81.12% 63.77% 16.39% 41.11% 99.57% 21.37% 99.98%
UHN (L2 Norm) 77.133% 0.09% 40.81% 39.61% 4.13% 80.36% 99.51%
UHN (L1 Norm) 65.15% 0.13% 33.62% 31.43% 16.18% 88.02% 99.65%

Ours (Cosine Sim.) 31.12% 57.27% 0.22% 0.03% 19.83% 15.38% 52.11%
Ours (L2 Norm) 34.13% 51.72% 0.20% 0.04% 31.72% 18.78% 49.18%
Ours (L1 Norm) 33.32% 59.11% 0.36% 0.08% 3.66% 6.19% 17.92%

Figure 3. Retrieval accuracies of UHNs and semantic models when presented with images corrupted with Gaussian noise of variance η = 0.1 and different
levels of mean μ. On the left, examples of images after this corruption was applied; on the right, retrieval accuracies plotted considering the best result obtained

testing different similarity functions.

Table 3. Running times of the experiments (in seconds).

Cosine L2 Norm L1 Norm

CIFAR10 7.601 8.858 8.904
STL10 41.788 44.973 47.835
CIFAR10 (ours) 2.931 3.282 3.310
STL10 (ours) 12.662 14.439 15.646

noise with mean 0.4, and less than 1% when this mean was further
increased to 0.5. Instead, the performance of semantic models were
stable, and suffered only a small decrease: they were able to always
retrieve more than 70% of the original memories when presented
with Gaussian noise of mean 0.5.

Pretraining on ImageNet. We now show that it is possible to
drastically improve the results by using more powerful embedding
functions. Particularly, we follow the same procedure defined above,
but we use different models pre-trained on ImageNet, instead of the
respective training sets. The considered models are a ResNet50x1,
ResNet50x2, and ResNet50x4 [4], all downloaded from the official
repository.2 In Table 4, we report the results using the cosine similar-
ity for all models. The results confirm the current trend in machine
learning: the larger the model, the better the performance. Particu-
larly, ResNet50x4 obtains the best results that we have achieved in
this work with cosine similarity, with a huge improvement with re-

2 https://github.com/google-research/simclr

spect to smaller models presented in Tab. 2. This shows that the pro-
posed method is general, and strongly benefits from large pre-trained
models made available for transfer learning.

4 Fully-semantic Memory Model

From the biological perspective, the family of memory models intro-
duced in the previous section is implausible, as it stores exact copies
of the dataset in memory instead of low-dimensional representations.
In fact, our brain poorly performs when it comes to exact retrievals,
but it is excellent in recalling conceptual memories [19, 21, 26]. Here,
we provide a memory model that, on the one hand, is coherent with
the biological constraints, and on the other hand, is more memory-
efficient. The main drawback, however, is the inability of not retriev-
ing memories exactly, often useful in practical tasks. As both scoring
and retrievals are computed in a low-dimensional embedding space,
we call this family of models fully-semantic memory model.

Note that both the score and the projection function defined in the
previous section require access to a dataset D. To overcome this, we
need two functions φ and ψ, where φ is conceptually similar to the
ones used for the semantic memory model, as it again maps data
points to a low-dimensional embedding space R

e, and ψ is a gen-
erative function that follows the inverse path of mapping from the
embedding space back to images. A formal definition is as follows.

Definition 3. Given a dataset D = {x̄i}i≤N , a feature map φ :
R

d −→ R
e, and a generative map ψ : Re −→ R

d, a fully-semantic
memory model is a function μφ(D) : R

d −→ R
d such that:

T. Salvatori et al. / Associative Memories in the Feature Space 2069



Table 4. Percentage of wrongly retrieved memories on STL using pre-trained models on ImageNet.

Crop Mask Color Rotation S&P Gauss μ = 0.3 Gauss μ = 0.5

ResNet50x1 (STL10) 26.99% 64.12% 0.01% 0.01% 43.88% 14.58% 29.51%
ResNet50x2 (STL10) 19.95% 32.42% 0.0% 0.01% 23.40% 9.20% 16.2%
ResNet50x4 (STL10) 13.92% 11.74% 0.0% 0.0% 15.12% 4.22% 7.94%

ResNet50x1 (ImageNet64) 24.82% 57.09% 0.01% 0.01% 36.42% 12.55% 27.74%
ResNet50x2 (ImageNet64) 17.64% 28.11% 0.0% 0.01% 21.71% 8.96% 14.99%
ResNet50x4 (ImageNet64) 13.01% 10.07% 0.0% 0.0% 13.63% 4.02% 7.18%

Figure 4. (a): Example of a fully-semantic memory model, where φ and ψ are the encoder and decoder parts of a trained autoencoder, and the goal is to
retrieve an MNIST image given a corrupted version. (b) Retrieved images when provided with a corrupted version of the first 20 images of the MNIST test set

with Gaussian noise of mean 0 and variance 0.2 (left). The best result is obtained with the cosine similarity, identical to the original retrievals of the
autoencoder when provided with clean data. (c) Examples of retrievals with the cosine similarity when varying the temperature constant β.

1. μφ(D) admits the decomposition μφ(D) = ψ◦πφ(D)◦α◦κφ(D)◦φ,
2. the map πφ(D) ◦α ◦ κφ(D) is a universal Hopfield network on the

embedded dataset φ(D).

Note that the dataset is not stored, but only its embeddings are.
If the dimensionality of the embedding space is significantly smaller
than the dimensionality of the data, then this results in significant
memory savings. However, also the parametric functions φ and ψ
have to be stored, and hence the effective advantage in terms of mem-
ory is a tradeoff between these two quantities.

Learning φ and ψ. To make the retrieval of the fully-semantic
model effective, we need the functions φ and ψ to be meaningful.
This means that they again have to be pre-trained on a dataset that
has similar features to the ones that we want to store. We will now
show an example on a small autoencoder, i.e., a multi-layer percep-
tron trained to generate the same data point used as an input. The
distinguishing characteristic of an autoencoder is the presence of a
bottleneck layer, much smaller than the input layer, which is required
to prevent the network from simply learning the identity mapping.
The sequence of layers that maps the input to the bottleneck layer
is called encoder; the remaining part, which maps the output of the
encoder back to the input space is called decoder. We consider the

functions φ and ψ to be the trained encoder and decoder, respectively.
A sketch of this network is shown in Fig. 4(a).

Set-Up. The task that we tackle now is a standard one in the as-
sociative memory domain: we present the model with a corrupted
version of an image that it has stored in memory as a key, and check
whether the model is able to retrieve an image that is semantically
equivalent to the original one. As a consequence, the results that we
present in this section are purely qualitative, as it does not make sense
to score images based on how similar they are to the original with re-
spect to a distance on the pixel space. To learn the functions φ and ψ,
we trained an autoencoder to generate images of the training dataset,
composed of 60000 images. Then, we perform associative memory
tasks on the test set, composed of 10000 images. To do that, we first
saved the embedding of the test set (every embedding has the dimen-
sion 12), and then corrupted every image with Gaussian noise. As
similarity functions, we tested the dot product and the cosine simi-
larity, and as separation functions, we used the softmax with different
inverse temperatures β. For completeness, we have also reported the
reconstructions of MHNs, by using the dot product as a similarity
function. In both cases, we have not performed any normalization
before scoring the similarities.
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Implementation Details. The autoencoder has 8 layers of di-
mension 784, 64, 32, 16, 12, 16, 32, 64, 784, and was trained with a
ReLU activation, learning rate of 0.001, and a batch size of 250 for
300 epochs. The corruption used is simple Gaussian noise with mean
0 and variance 0.2. Training the functions φ and ψ (hence, the au-
toencoder) takes approximately 5 minutes on an RTX Titan. Note
that the experiments proposed for fully-semantic models are not to
be considered for practical applications, as we have used a simple
and deterministic generative model.

Results. Representations of corrupted keys, as well as the retrieved
constructive memories, are given in Fig. 4(b). Particularly, the recon-
structions show that the model is able to correctly retrieve memories
in the embedding space, even when the cardinality of the dataset is
large. However, the retrieval is not perfect, and sporadic errors may
occur. These results can be improved, and scaled up to more complex
datasets, by using more complex encoders and decoders. In terms of
functions used, the cosine similarity outperforms the dot product, and
the softmax with large inverse temperatures (β ≤ 50) is needed for
one-shot retrievals, as shown in Fig. 4(c). In fact, a softmax separa-
tion function with a small temperature is not enough to discriminate
between different stored data points when performing one-shot re-
trievals.

5 Related Work

While using the same networks as in several computer vision tasks,
the final goal of our work is to perform memory tasks, and is hence
mostly related with the associative memory literature. The first model
of this kind, called the learnmatrix [23], dates back to 1961, and was
built using the hardware properties of ferromagnetic circuits. The
first two influential computational models, however, are the Hop-
field network [10, 11] and sparse-distributed memory models [12].
The first emulates the dynamics of a spin-glass system, and the sec-
ond was born as a computational model of our long-term memory
system. In recent years, associative memory models have re-gained
popularity, as their literature is increasingly intersecting that of deep
learning. A variation of Hopfield networks with polynomial capac-
ity has been introduced to perform classification tasks [14], and a
sequential result showed that this capacity can be made exponen-
tial with a simple change of activation function [7]. However, these
models were used to perform classification tasks also due to their
limitation in dealing only with discrete vectors. The generalization
to continuous valued vectors has been developed several years later
[20]. There is also a line of research that uses associative memory
models mixed with deep architectures, such as deep associative neu-
ral networks [16], which augment the storage and retrieval mecha-
nism of dense Hopfield networks using deep belief networks [9], and
generative predictive coding networks [22], which rely on the the-
ory of predictive coding to store and retrieve images. Recent lines
of works have also focused in implementing forget operations, to re-
move stored memories that are not needed anymore [27, 18].

While many works primarily focus on retrieval tasks, recent ones
have also used associative memory models to study and understand
the popular transformer architecture [25]. It has in fact been shown
that the attention mechanism is a special formulation of modern
continuous-state Hopfield networks [20], and that their dynamics can
also be approximated by a modern formulation of sparse-distributed
memory models [2]. A similar result has been proven for the fully
MLP architecture [24], able to achieve excellent results in classifica-
tion tasks despite only using fully connected layers.

6 Conclusion

In this work, we have addressed the problem of storing and retrieving
natural data such as colored images in associative memory models.
First, we have discussed the problem of computing similarities on
the pixel space, which creates a mismatch between human and ma-
chine performance when it comes to associate similar stored data
points. Due to the fact that modern associative memory models com-
pute simple similarity scores on raw pixels, it is in fact possible to
simply rotate or translate an image to trick modern memory mod-
els. The same transformations, however, would not be able to trick
a human judge. To address this mismatch, we have defined two as-
sociative memory models that compute similarity scores in an em-
bedding space, allowing to perform associative memory tasks in sce-
narios where corruptions do not alter the conceptual content of the
stored data points.

In terms of generality of the considered benchmarks, we have
tested against an associative memory model that is a generalization
of most of the models present in the literature, the universal Hop-
field network. In detail, it is a generalization of modern Hopfield net-
works, continuous state Hopfield networks, as well as Kanerva asso-
ciative memories. Hence, we believe that our analysis is rich enough,
as it shows how the performance is sometimes orders of magnitude
better. In terms of architecture considered, we have used ResNets,
as they are both the most powerful pre-trained models available with
contrastive loss, as well as the ones expected to achieve a better per-
formance. Hence, we expect the results of almost any other class
of models to be worse than the ones obtained in this work. How-
ever, our method is highly generalizable: given any state-of-the-art
(SOTA) memory model X, we can apply our embedding function to
enhance X’s retrieval performance for natural images while signifi-
cantly increasing capacity. This generalizability eliminates the need
to test against every individual model, as our method naturally im-
proves performance by leveraging the quality of the embedding from
a large pretrained ResNet.

As embedding models, we have used neural networks trained with
a contrastive loss. As this is a popular method in the modern liter-
ature, it is easy to find pre-trained models suitable for a given task,
freeing the user from the burden of training one from scratch. Train-
ing your own contrastive model, however, has an interesting advan-
tage for some practical applications, where original data points are
often faced with the same kind of corruptions. One example is that
of adversarial attacks: let us assume our memory model gets always
tricked by one kind of corruption, it is now possible to collect mul-
tiple examples of this corruption, and feed it in the contrastive loss
using them as data augmentation. This would enforce the model to
group together corrupted versions of the same data point, where the
corruption is the same one that will be faced by the dataset. The sec-
ond model that we propose has the goal of making the model lighter
and more plausible, as well as generating images similar, but not
identical, to the stored ones. It is a fully semantic model, which per-
forms both similarities and reconstructions in the embedding space.
We have proposed simple experiments on an autoencoder trained on
MNIST. Applications in practice would need more powerful genera-
tive models, picked according to the needed task and data.
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