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Abstract. Model-based diagnosis is a powerful, versatile and well-
founded approach to troubleshooting a wealth of different types of
systems. Diagnosis algorithms are both numerous and highly het-
erogeneous. In this work, we propose a taxonomy that allows their
standardized assessment, classification and comparison. The aim is
to (i) give researchers and practitioners an impression of the diverse
landscape of available techniques, (ii) allow them to easily retrieve
and compare the main features as well as pros and cons, and (iii) fa-
cilitate the selection of the “right” algorithm to adopt for a particular
problem case, e.g., in practical diagnostic settings, for comparison
in experimental evaluations, or for reuse, modification, extension, or
improvement in the course of research. Finally, we demonstrate the
value and application of the taxonomy by assessing and categorizing
a range of more than 30 important diagnostic methods, and we point
out how using the taxonomy as a common guideline for algorithm
analysis would benefit the research community in various regards.

1 Introduction

Model-based diagnosis is a well-founded, principled approach to de-
tecting, finding, and fixing faults in numerous types of systems. One
of the key tasks to this end is the computation of diagnoses (fault hy-
potheses), which are essential for both fault localization and repair.
Due to its generality, the model-based diagnosis formalism has been
used to express and tackle a wide diversity of debugging problems
in application areas ranging from software [30], recommender sys-
tems [19], spreadsheets [32], ontologies [28] and knowledge bases
[60] to hardware [21], circuits [13], robots [69], scheduling prob-
lems [55], cars [57], and aircrafts [24]. This has led to a remarkable
multitude and heterogeneity of the diagnosis computation methods
proposed in the literature, which are often motivated by and tailored
for application-specific requirements and problem cases. As a result,
it is a hard task for researchers and practitioners to
• get an overview of existing approaches,
• identify the crucial properties of diagnostic techniques,
• assess the methods based on these properties, and
• choose the appropriate approach for a (research- or application-

related) diagnostic task at hand.
With this work, we account for this by presenting a taxonomy for di-
agnosis computation algorithms. Specifically, we introduce and for-
mally define a range of features which are arguably vital for a proper
understanding, comparison, selection, and use of diagnostic tech-
niques. We explain the influence of each feature on the selection of
an algorithm for a diagnostic task, discuss the potential impact of

feature manifestations on the performance of diagnosis algorithms,
and examine relationships among the features. To demonstrate the
value and application of the proposed taxonomy, we provide a multi-
dimensional assessment and categorization of numerous important
diagnostic methods in the literature.

2 Preliminaries

Model-based diagnosis [45] assumes a system (e.g., circuit, soft-
ware, knowledge base) consisting of a set of components COMPS =
{c1, . . . , cn} (e.g., gates, lines of code, axioms) which is formally
(and correctly1) described in some monotonic logical language. Be-
side relevant general knowledge about the system, this system de-
scription SD includes a specification of the normal behavior (logi-
cal sentence BEH(ci)) of all components ci of the form OK(ci) →
BEH(ci). As a result, when assuming all components to be fault-free,
i.e., OK(COMPS) := {OK(c1), . . . , OK(cn)}, conclusions about the
normal system behavior can be drawn by means of theorem provers.
When the real system behavior, ascertained through system observa-
tions and/or system measurements (stated as logical sentences OBS

and MEAS), is inconsistent with the behavior predicted by SD, the
normality assumption for some component(s) has to be retracted. We
call 〈SD, COMPS, OBS, MEAS〉 a diagnosis problem instance (DPI).
Example: Consider the problem of diagnosing a propositional
knowledge base consisting of five axioms {ax1 : A → ¬B, ax2 :
A → B, ax3 : A → ¬C, ax 4 : B → C, ax 5 : A → B ∨ C},
given a single observation, A, and no measurements to start with.
Then, a corresponding DPI would be defined as follows: COMPS :=
{c1, . . . , c5}, SD := {OK(ci) → BEH(ci) | ci ∈ COMPS} where
BEH(ci) := ax i for i ∈ {1, . . . , 5}, OBS := {A}, MEAS := ∅. Note
that SD ∪ OBS ∪ MEAS ∪ OK(COMPS) is inconsistent. Hence, at least
one component (axiom in the knowledge base) must be faulty.

For a DPI, one is interested in finding a diagnosis, i.e., a set of
components whose abnormality would explain the observed incor-
rect system behavior. Formally, a set D ⊆ COMPS is called a diagno-
sis iff SD ∪ OBS ∪ MEAS ∪ OK(COMPS \D)∪ NOK(D) is consistent
where OK(X) := {OK(ci) | ci ∈ X} and NOK(X) := {¬OK(ci) |
ci ∈ X}. A diagnosis D is termed minimal / minimum-cardinality
iff there is no diagnosis D′ such that D′ ⊂ D / |D′| < |D|.
Example (cont’d): For our example DPI, there are four minimal
diagnoses, given by D1 : [c1, c3], D2 : [c1, c4], D3 : [c2, c3],

1 Techniques for handling violations of this assumption are discussed in [3].
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and D4 : [c2, c5]. For instance, D1 is a diagnosis as the knowl-
edge base SD ∪ OBS ∪ MEAS ∪ OK(COMPS \ D1) ∪ NOK(D1) =
{A, ax2, ax4, ax5} = {A,A → B,B → C,A → B ∨ C} is con-
sistent, and D1 is minimal because the addition of ax1 or ax3 (or
both) to this knowledge base would imply its inconsistency. Since
there is no diagnosis of cardinality one, all diagnoses D1, . . . ,D4

are also minimum-cardinality diagnoses.
For efficiency and tractability reasons, the focus in model-based

diagnosis is often laid on minimal diagnoses only [37]. In particular,
the minimal diagnoses are representative of all diagnoses under the
weak fault model [11], where the system description SD contains only
information about the normal behavior of the system components
(and leaves the components’ behavior undefined in case of failure,
as opposed to techniques using strong fault models, e.g., [14, 42]).
We restrict the study in this paper to diagnosis computation methods
relying on a weak fault model. They address the following problem:

Problem 1 (Diagnosis Computation).
Given: A DPI 〈SD, COMPS, OBS, MEAS〉, an integer k ≥ 1.
Find: Find k minimal diagnoses (satisfying a property p) for
〈SD, COMPS, OBS, MEAS〉.

Diagnostic techniques may solve different manifestations of this
problem. E.g., they might aim at computing m / all minimal diag-
noses (by specifying k := m / k := ∞), or at finding all minimum-
cardinality diagnoses (by specifying k := ∞ and p := minimum-
cardinality).

Useful for diagnosis computation and technically closely related to
the concept of a diagnosis is the notion of a conflict, which is a set of
components such that the assumption of all of them being fault-free is
inconsistent with the current knowledge about the system. Formally,
a set of components C ⊆ COMPS is a conflict iff SD ∪ OBS ∪ MEAS ∪
OK(C) is inconsistent. Again, we call a conflict C minimal iff there is
no conflict C′ with C′ ⊂ C.
Example (cont’d): For our example DPI, we have four minimal con-
flicts, namely C1 : 〈c1, c2〉, C2 : 〈c2, c3, c4〉, C3 : 〈c1, c3, c5〉, and
C4 : 〈c3, c4, c5〉. For example, C1 is a conflict since the knowledge
base SD ∪ OBS ∪ MEAS ∪ OK(C1) = {A, ax1, ax2} = {A,A →
¬B,A → B} is inconsistent, and C1 is minimal since the elimina-
tion of ax1 or ax2 (or both) would imply its consistency.

Two important links between diagnoses and conflicts are [45]:
Hitting-Set Property A (minimal) diagnosis is a (minimal) hitting

set of all minimal conflicts.
(X is a hitting set of a collection of sets S iff X ⊆ ⋃

S∈S S and
X ∩ S �= ∅ for all S ∈ S.)

Duality Property X is diagnosis iff COMPS \X is no conflict.
Example (cont’d): Considering the minimal conflicts C1, . . . , C4

and the minimal diagnoses D1, . . . ,D4 for our example DPI, we can
easily verify the Hitting-Set Property by checking that each Di is in-
deed a hitting set of all Cj . Verifying the Duality Property for, e.g.,
D4, means to check if COMPS \D4 is not a conflict. This can be seen
by observing that SD∪OBS∪MEAS∪OK(COMPS \D4) = {A, ax1,
ax3, ax4} = {A,A → ¬B,A → ¬C,B → C} is consistent.

In many cases, there is a substantial number of competing diag-
noses. The goal is then to isolate the actual diagnosis which pinpoints
the actually faulty components. Basically, two strategies exist to han-
dle multiple diagnoses, aiming at reducing or avoiding the effort for
a manual inspection of the diagnoses: (i) rank or restrict the com-
puted diagnoses based on some informative criterion such as max-
imal probability or minimal cardinality [37], or (ii) apply sequen-
tial diagnosis techniques to acquire additional information about the

diagnosed system to gradually refine the set of diagnoses [13, 53].
Whereas rankings or focusing techniques can be very powerful if the
actual diagnosis appears (early) in the solution list, there is no guar-
antee that the actually faulty components will be located (efficiently).

The more sophisticated sequential diagnosis techniques, on the
other hand, gather further system measurements (MEAS) to itera-
tively rule out spurious diagnoses. They aim at solving the following
problem (with highest efficiency):

Problem 2 (Sequential Diagnosis).
Given: A DPI 〈SD, COMPS, OBS, MEAS〉. Find: A sequence of mea-
surements (i.e., logical sentences) m1, . . . ,mk, such that there is
a single (highly probable) minimal diagnosis for 〈SD, COMPS, OBS,
MEAS ∪ {m1, . . . ,mk}〉.

Many sequential diagnosis methods can be characterized by a re-
curring execution of four phases [12]: (1) computation of a set of
(preferred, e.g., most probable) minimal diagnoses, (2) selection of a
(most informative) system aspect to be measured based on the given
diagnoses, (3) conduction of measurement actions (by some oracle,
e.g., an engineer if a circuit is diagnosed), and (4) exploitation of
the measurement outcome to formulate a new measurement (logical
sentence) mi to update the system knowledge. That is, the DPI is
modified (by extending MEAS) between each two iterations of these
phases. The execution stops if Problem 2 is solved, i.e., sufficient
diagnostic certainty is achieved.
Example (cont’d): Assume we would like to impose a ranking on
the minimal diagnoses D1, . . . ,D4 obtained for our example DPI.
Then, in this particular case, a ranking criterion based on cardinality
would not be helpful as all diagnoses have the same cardinality two.
We could however draw on a notion of axiom fault probability de-
termined by means of the syntactic complexity of axioms (cf., e.g.,
[59, 46]). For instance, we might know from experience that knowl-
edge engineers are usually much more prone to faults when using
logical negation rather than disjunction or implication. Based on this
assumption, diagnoses would be the more likely to pinpoint the ac-
tual fault in the knowledge base the more axioms with negation they
involve. A possible ranking (from more to less likely) obtained from
this analysis would be [D1,D2,D3,D4].

Alternatively, one might choose to provably rule out spurious diag-
noses by adding new measurements to the DPI. Employing sequen-
tial diagnosis techniques to our example DPI could yield the query
to a knowledgeable user (e.g., a domain expert) whether B or ¬B
must hold. Assuming the answer B and the addition of B to MEAS,
we would find that all minimal conflicts for the new DPI are given
by C5 := 〈c1〉 and C6 := 〈c3, c4〉, which would disprove D3 and D4

and give rise to only two remaining minimal diagnoses, D1 and D2

(all minimal hitting sets of C5, C6). In a final step, to distinguish be-
tween D1 and D2, a sequential diagnosis method could ask the user
about the truth value of C, where a positive (negative) answer would
prove that D1 (D2) is the correct diagnosis, i.e., that the axioms ax1

and ax3 (ax1 and ax4) are actually faulty.

3 A Taxonomy for Diagnosis Algorithms

We now propose a collection of pivotal features of diagnosis com-
putation algorithms, based on which we will classify and compare
important existing techniques in Sec. 4 and Tab. 1. In the following,
we assume that an algorithm A addresses (some manifestation of)
the diagnosis computation problem (cf. Problem 1) and is given as
input a DPI and possibly some meta information (such as compo-
nent failure rates that allow to derive diagnosis probabilities [13], or
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algorithm-specific parameters, e.g., stop, pruning or restart criteria
[16, 1]).2 We describe each feature by giving a definition of its possi-
ble manifestations, a brief explanation of its relevance wrt. algorithm
selection for a diagnostic task, a short discussion of the practical im-
pact of different feature manifestations, and a comment on the re-
lationship to other features. The features can be logically grouped
into five categories, i.e., Output Qualities (Bullets 1–4 below), Way
of Computation (5–6), Sequential Diagnosis Context (7–8), Applica-
tion Context (9–11), and Performance (12), as shown in Tab. 1 and
discussed next.

Output Qualities

(1) Soundness: Definition: A is sound iff it outputs only minimal
diagnoses; otherwise, it is unsound. Relevance: Soundness is neces-
sary if (a) no actually healthy components should be marked as faulty
in a diagnostic scenario, e.g., when inspecting or changing parts un-
necessarily is costly such as in a car [27], or when a modification of
correct components impacts the quality of the system such as for ax-
ioms in a knowledge base [47], or if (b) every solution returned by the
algorithm should indeed be a possible explanation for the observed
system misbehavior, e.g., to avoid the necessity of additional com-
putations and a potentially costly post-processing of the solutions.
Apart from that, the soundness requirement is in line with the gen-
erally accepted principles of parsimony [45] and Occam’s razor [4],
which postulate that from two different (fault) explanations, the sim-
pler one is preferable. Impact: Forgoing the requirement of sound-
ness can lead to a higher efficiency of diagnosis computation, as cer-
tain unsound algorithms are designed to drop soundness to the benefit
of performance (e.g., [38, 16]). There are basically two forms of un-
soundness for returned diagnoses, i.e., they might be (a) non-minimal
diagnoses (intuitively: “too large” component sets; cf., e.g., [16]), or
(b) non-diagnoses (intuitively: “too small” component sets; cf., e.g.,
[38]). Both cases can be handled by a suitable post-processing of the
returned solutions (cf., e.g., [34]), the cost of which depends on the
number of solutions that are non-(minimal) diagnoses and on their
degree of unsoundness (i.e., how much “too small” or “too large”
they are). Relationship: Unsoundness can entail incompleteness (cf.
Bullet 2) or a violation of the best-first property (cf. Bullet 3), e.g.,
for systematic hitting set searches [47].
(2) Completeness: Definition: If A computes a set of diagnoses, it
is all-complete iff it outputs all minimal diagnoses given sufficient
time and memory, and it is property-complete iff it outputs all mini-
mal diagnoses with a particular property (e.g., minimum cardinality)
given sufficient time and memory. If A computes a single diagnosis
(with a particular property p, e.g., minimum-cardinality), it is one-
complete iff it outputs a minimal diagnosis (with property p) when-
ever such a diagnosis exists. Else, if there is any minimal diagnosis
that A might fail to compute, it is incomplete. Relevance: Complete-
ness is necessary if it is crucial in a diagnostic scenario that the actual
diagnosis is found with certainty, or when missing the actual diagno-
sis or a diagnosis with a particular property might have serious con-
sequences, e.g., when diagnosing critical systems such as aircrafts,
medical ontologies or security software. Moreover, completeness is
vital for reasonable stop conditions in sequential diagnosis scenarios,
e.g., if a single diagnosis remains after taking some measurements,
only completeness implies that this diagnosis is the only possible

2 Works describing diagnostic methods draw on a variety of notations and
formalisms, which can however also be expressed using Reiter’s general
theory [45], as reviewed in Sec. 2.

minimal fault. Impact: Forgoing the requirement of completeness al-
lows for a higher efficiency of diagnosis computation in many cases,
as incomplete algorithms are often devised with a particular focus
on performance, cf., e.g., [16, 1, 38]. Relationship: If not carefully
devised, incomplete methods are usually not best-first (cf. Bullet 3).
(3) Best-First Property: Definition: A is generally best-first iff it
computes and outputs diagnoses in order according to a given sort-
ing criterion (often: minimal cardinality or maximal probability); A
is focused best-first iff it is best-first only for a particular sorting crite-
rion (often: minimal cardinality); A is only-best iff it computes only
the best diagnosis (if its type is single-solution, cf. Bullet 4) / diag-
noses (if its type is multiple-solution, cf. Bullet 4) wrt. a particular
property (often: minimum-cardinality); A is best-subset-no-order iff
it computes a subset of all diagnoses including exactly the best diag-
noses wrt. a particular property (often: minimal cardinality), but the
diagnoses are not computed or output in best-first order; A is any-
first iff it does not satisfy any of the above conditions and cannot
guarantee any particular output order of diagnoses; if A is any-first,
but uses heuristic techniques to approximate a particular order of the
computed diagnoses, it is heuristic best-first. Relevance: The best-
first property is useful, e.g., if (one expects) there is a large number
of diagnoses and the actual diagnosis is likely among the best diag-
noses (e.g., when all components fail with an equal small likelihood
[37]), if focusing techniques are adopted where only the best sub-
set of all diagnoses is further considered [37], if informative sam-
ples for sequential diagnosis should be computed [51], or if users
intend to monitor the best diagnoses throughout the debugging pro-
cess [50]. Impact: Forgoing the best-first requirement usually leads
to a higher computation efficiency, as any-first algorithms can use
more performant (e.g., depth-first [60] instead of breadth-first [45] or
uniform-cost [47]) diagnosis search techniques. Also, generally best-
first methods might be significantly more expensive than related fo-
cused best-first ones (cf., e.g., [50]). Relationship: To the best of our
knowledge, all generally best-first algorithms are conflict-dependent
(cf. Bullet 5), i.e., rely on a systematic search based on conflicts
(cf. Tab. 1). Moreover, compilation-based approaches (cf. Bullet 5)
are usually only-best techniques wrt. minimum-cardinality diagnoses
(cf. Tab. 1).
(4) Type of Output: Definition: A is called multiple-solution iff it
can compute a set of two or more diagnoses per call; otherwise, if A
returns at most one diagnosis, it is called single-solution. Relevance:
The optimal algorithm choice wrt. this feature is trivial and depends
on whether one or multiple diagnoses are required in a scenario.
Note, most algorithms considered in Tab. 1 can output multiple so-
lutions. Clearly, any such algorithm can also be employed if only
a single solution is desired. Impact: Single-solution techniques can
be highly performant as they may use optimizations that harm com-
pleteness by manipulating the set of all solutions for the benefit of
computational efficiency [10]. To allow for some degree of control
over their performance, multiple-solution approaches are sometimes
also configurable, e.g., to compute a number of exactly k solutions,
to stop after some timeout occurs, to prune a specified part of the
search space, or to stop after a predefined number of search itera-
tions have been performed [50, 49, 54, 16, 1]. Relationship: Single-
solution methods are usually one-complete (cf. Bullet 2) and only-
best (cf. Bullet 3), see Tab. 1. Simply put, when focusing on only one
solution, approaches normally aim at finding the best diagnosis wrt.
some property among all minimal diagnoses.
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Way of Computation

(5) Conflict Dependency: Definition: A is conflict-dependent iff it
requires the computation of (minimal) conflicts; otherwise, i.e., if A
works without taking information about conflicts into account, it is
direct; a direct algorithm which translates the DPI into a target lan-
guage and performs diagnosis computation based on this alternative
problem representation is called compilation-based. Relevance: If
conflict computation or theorem proving is very expensive in a diag-
nostic scenario (cf., e.g., [55]), then direct algorithms are preferable,
or even the only feasible approach. If a systematic exploration of di-
agnoses (allowing, e.g., inferences that all diagnoses with a specific
property, say minimum-cardinality, are already computed) is desired
[37] or the general best-first property (see Bullet 3) is relevant [50], or
the used method should be optimized for certain sequential diagnosis
problems [52], then a conflict-dependent approach might be the only
viable choice. When adopting a conflict-dependent method, it is im-
portant to note that an adequate conflict generation approach—which
is sound and complete wrt. the computation of (minimal) conflicts as
well as applicable to and performant for the DPI at hand—needs to be
combined with the diagnosis algorithm. Choosing such an approach
might not be an easy task for non-expert users. Impact: Compilation-
based techniques often allow to answer important diagnostic queries
(such as minimum-cardinality diagnosis computation) in polynomial
time in the size of the compilation (which however might be expo-
nential). Hence, these methods might be the best choice given that
the DPI at hand is amenable to a compact compiled representation.
Direct techniques, some of which (e.g., [20, 60]) are based on the Du-
ality Property (cf. Sec. 2), sometimes allow to escape computational
bottlenecks concerning memory consumption [60] or time [16] by
forgoing a systematic enumeration of the diagnoses. Most of the al-
gorithms in the literature appear to be conflict-dependent (cf. Tab. 1),
and most (but not all, e.g., [66]) of them are based on the Hitting-set
Property (cf. Sec. 2); hence, there is a great selection of such meth-
ods, which cover numerous different combinations of other features,
so that there will be a reasonable choice among them for many diag-
nosis tasks and applications. Relationship: Considering the literature,
it appears that conflict-dependency implies (if judgeable) the general
applicability of an algorithm (cf. Bullet 9 and Tab. 1). The reason for
this is that, for diagnosis computation, the set of minimal conflicts is
representative of a DPI (cf. [9, Theorem 1]), and thus can be seen as
a kind of general abstraction from the DPI, which can be applied to
any DPI. Hence, algorithms relying on this abstraction (usually) do
not make assumptions about system specifics.
(6) Way of Conflict Computation: Definition: (Prerequisite: A is
conflict-dependent, cf. Bullet 5) A is preliminary iff it requires (a
non-empty, non-singleton subset of) all minimal conflicts to be given
as an input, or if it computes (a non-empty, non-singleton subset of)
all minimal conflicts preliminarily, before the diagnosis computa-
tion starts; otherwise, if conflicts are computed on-demand in the
course of diagnosis computation, A is on-the-fly. Relevance: If the
prior generation of all minimal conflicts is feasible or even practical
in a diagnosis scenario, there are highly efficient preliminary tech-
niques available for diagnosis computation (cf., e.g., [61, 10]). These
preliminary techniques can also benefit from insights of a significant
body of research regarding the minimal hitting set problem (cf. [22]
for an overview). On-the-fly algorithms, on the other hand, are often
still efficiently applicable even if preliminary conflict generation is
infeasible. That said, it might in certain diagnostic use cases not be
necessary to explicitly derive all (minimal) conflicts, e.g., in sequen-
tial diagnosis scenarios [37, 48] where only a subset of diagnoses is

required per iteration. Some preliminary techniques (e.g., [13]) can
be modified to act on-the-fly, but not all of them (e.g., ones that ex-
ploit the structure in the collection of minimal conflicts [70]). Any
on-the-fly algorithm can be modified to be preliminary in a straight-
forward way (by pre-computing the collection of minimal conflicts
and by choosing appropriate conflicts from this collection on-the-
fly). Impact: Forgoing the preliminary computation of the (full) set of
minimal conflicts and intermixing conflict generation with diagnosis
computation can allow to escape a combinatorial explosion and thus
enhance the performance of diagnosis methods [37]. Relationship:
Usually, preliminary algorithms do not incorporate mechanisms for
generating minimal conflicts, but assume them to be given a priori
(e.g., [39, 70, 10]). For such methods, we cannot assess the features
general applicability, black-box reasoning, and logics-agnosticism
(cf. Bullets 9, 10 and 11) as these methods do not directly use the
DPI, but require some “external” technique to provide the required
collection of conflicts, where the three said features above depend on
the adopted conflict generation technique.

Sequential Diagnosis Context

(7) Focus on Sequential Diagnosis: Definition: A is sequential iff
it provides mechanisms to address the sequential diagnosis problem
(cf. Problem 2), e.g., in terms of measurement proposal techniques
or system knowledge update procedures after measurement actions;
otherwise, A is one-shot. Relevance: To solve a sequential diagnosis
problem, algorithms devised specifically for this purpose will often
be more practical than iteratively re-invoking a one-shot algorithm
for the various DPIs (successively extended by new measurements,
cf. Sec. 2) during a sequential diagnosis session (cf., e.g., [49, 62]).
Apart from that, the former techniques will often be directly appli-
cable to a sequential diagnosis task, whereas a user might need to
adapt the implementation of a one-shot algorithm to make it ready
for sequential diagnosis. On the other hand, if sequential diagnosis is
not the task in a diagnostic scenario, then a user is generally better
off (wrt. efficiency, implementation complexity, etc.) when using one
of the often less sophisticated (cf., e.g., [52]) one-shot techniques.
Impact: Relying on sequential techniques will usually boost the per-
formance of diagnosis computation in a sequential setting, but will
generally also tend to worsen the performance in non-sequential set-
tings. Relationship: Sequential techniques are usually sound, com-
plete and stateful (cf. Bullets 1, 2 and 8, and Tab. 1) where the former
two properties can be useful for diagnostic decision-making (e.g.,
measurement proposal, stop criteria) and the latter can improve the
time performance of an algorithm (cf. [52, 13]).
(8) Maintenance of State: Definition: A is stateful iff it can maintain
its state when used throughout a sequential diagnosis process (e.g.,
by storing or reusing data structures, intermediate values, etc.); oth-
erwise, A is stateless. Relevance: Since this feature describes the in-
ternal workings of an algorithm, users might basically be indifferent
whether the used diagnosis method is stateful or stateless. However,
requirements wrt. the algorithm’s performance may (ceteris paribus)
have a bearing on the proper choice between stateful and stateless
algorithms (see below). Impact: When memory is the more critical
resource, e.g., on small or mobile devices, stateless algorithms may
be a way to trade more time for less space, whereas, when time is the
more critical resource, stateful algorithms may be preferable [52, 54].
Relationship: Stateless algorithms are usually (but not always, cf.
[60]) one-shot (cf. Bullet 7), and algorithms that can be used in a
stateful way are normally (but not always, cf. [41]) sequential (cf.
Bullet 7). See Tab. 1.
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Application Context

(9) General Applicability: Definition: A is generally applicable iff
it can be used for any diagnosis problem expressible by means of
Reiter’s theory [45], i.e., for any DPI as specified in Sec. 2; oth-
erwise, e.g., if A makes certain assumptions about (e.g., the struc-
ture or some properties of) the tackled DPI, it is problem-dependent.
Relevance: The appropriate choice of diagnosis algorithm depends
on its application area and scope. E.g., if only certain system types
(such as circuits) are addressed, then a problem-dependent algorithm
that considers and leverages the peculiarities of this system type
will be the proper and often much more performant approach (cf.
[18, 62, 41]). If, on the other hand, a diagnosis system’s intended
use is for frequently changing application domains (e.g., in the Se-
mantic Web context, where a multitude of different domains are
modeled in terms of ontologies with highly heterogeneous content,
structure, expressiveness, reasoning complexity and used logical lan-
guages [59, 47, 50]), problem-dependent techniques might not be el-
igible and generally applicable ones allow to deal with various diag-
nosis problems without modifying the diagnosis system. Impact: If
general applicability is required, the price to pay for this is the use of
general-purpose diagnostic techniques which naturally cannot match
up in terms of performance to approaches geared to optimizing di-
agnostic efficiency for specific problem cases. Relationship: General
applicability implies logics-agnosticism (cf. Bullet 11) since an algo-
rithm incapable of dealing with some (monotonic) logical language
is, by definition, not generally applicable. However, there might be
logics-agnostic techniques which exploit structural properties of a
particular system type (regardless of how it is modeled), which are
thus not generally applicable. Moreover, most (but not all, cf. [13])
of the generally applicable methods are black-box (wrt. reasoning),
i.e., can use an arbitrary (sound and complete) inference mechanism
(cf. Bullet 10).
(10) Black-Box Reasoning: Definition: A is black-box (wrt. reason-
ing) iff it uses a reasoner as a black-box oracle (for consistency or
model checking) and can use an arbitrary (sound and complete) rea-
soner for the logical language used to express the DPI; otherwise, if
A requires additional computations or mechanisms (e.g., operations
pertinent to a specific problem representation [65, 6] or bookkeeping
techniques [13]) from a reasoner beyond the main reasoning result, it
is reasoner-dependent (sometimes also referred to as glass-box, cf.,
e.g., [43, 28]). Relevance: If the logic used to model the diagnosed
system is stable in an application area, then reasoner-dependent ap-
proaches might be the better choice as they might be advantageous in
terms of diagnostic efficiency (given a suitable “glass-box” reasoner
for the respective logic). E.g., when DPIs expressible by means of
propositional logic are the target use case of a diagnosis system, then
a reasoner-dependent algorithm based on propositional logic might
be preferable to a black-box one with otherwise equal features. If,
on the other hand, different formalisms might be used to describe
the faulty system [50], black-box techniques can be more expedient.
They can always simply use the best reasoner for the particular prob-
lem at hand without needing to incorporate any modifications into the
reasoner (or the diagnosis algorithm)—unlike reasoner-dependent
approaches, which require the incorporation of the necessary addi-
tional mechanisms into any adopted reasoner. And, performances of
various reasoners might differ substantially [23]. As a rule of thumb,
if the performance for one fixed system description language should
be maximized, then reasoner-dependent approaches tend to be more
favorable, whereas black-box methods tend to be preferable if the
performance over variable modeling languages should be optimized.

Impact: Reasoner-dependent techniques can lead to an improved
time performance [28, 35], e.g., when reasoners extract conflicts as
a byproduct of consistency checks [35], or store sets of logical sen-
tences sufficient for derived entailments to hold [13], but might also
incur memory overheads [36]. Advantages of black-box methods are,
e.g., their robustness (no sophisticated, and potentially error-prone,
modifications of complex reasoning algorithms), their simplicity (in-
ternals of reasoner irrelevant), their flexibility (e.g., black-box meth-
ods can use a portfolio reasoning approach by switching to the most
efficient reasoner in a simple plug-in fashion depending on the lan-
guage used to describe the diagnosed system [56]), and their up-to-
dateness (black-box methods can directly benefit from advances in
the general research on automated reasoning). Relationship: There
are no general implications on other features resulting from the pres-
ence or absence of the black-box property; however, it is often (but
not always) the case that black-box techniques are also generally ap-
plicable, logics-agnostic, sound, complete and multiple-solution (cf.
Bullets 1, 2, 4, 9 and 11).
(11) Logics-Agnosticism: Definition: A is logics-agnostic iff it can
deal with DPIs expressed by arbitrary (monotonic) logics; otherwise,
A is logics-dependent. Relevance: If a diagnosis approach is intended
to be used with only one fixed system description language, then a
user should choose the method with (expected/reported) best per-
formance for the faced diagnostic task, regardless of whether it is
logics-agnostic or -dependent. Logics-dependent approaches, how-
ever, can offer very attractive features, e.g., compilation-based ap-
proaches (e.g., [41, 65, 6]) can often compute diagnoses in polyno-
mial time once the DPI has been compiled into a target representa-
tion; however, they are restricted to propositional logic system de-
scriptions. If a diagnosis approach needs to deal with diverse system
modeling languages, the adoption of a logics-agnostic method might
be the only choice. Impact: As our literature study suggests, logics-
dependent approaches are usually particularly attractive wrt. perfor-
mance. The reason is that these methods often use sophisticated (e.g.,
representation, optimization, or reasoning) techniques specific to one
logic (often: propositional logic, cf. Tab. 1). Relationship: The prop-
erty of logics-agnosticism appears to co-occur with the black-box
property (cf. Bullet 10) in most (but not all, cf. [13]) cases. And,
logics-agnostic techniques are often generally applicable (cf. Bul-
let 9).

Performance

(12) Space Efficiency: Definition: A is space-efficient iff its worst-
case memory complexity is polynomial in the input size; other-
wise, A is space-inefficient. Relevance: If time is the resource to be
minimized and the diagnostic task is expected to manage with the
available memory, then space-inefficient methods can be the better
choice, due to their generally lower time complexity. If, on the other
hand, the available memory capacity of an (e.g., mobile) device is
low or the diagnostic task is expected to be memory-intensive (e.g.,
if high-cardinality diagnoses exist [60]), then space-efficient algo-
rithms might be the only viable approach (as memory consumption
increases exponentially with the size of diagnoses for many space-
inefficient techniques). Note, only few space-efficient diagnosis com-
putation strategies have been proposed in the literature, thus there
is not plenty of choice, which is why a trade-off between space-
efficiency and other properties might be necessary. Only recently has
a space-efficient algorithm exhibiting all desirable properties wrt. the
features discussed here, along with a reasonable time performance,
been suggested [50]. Impact: Space-efficiency is often bought for a
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Technique Features
Output Qualities Way of Computation Seq. Diag. Context Application Context Performance

Name Work Year SND COMPL BEST-F MULT CONF-DEP O-T-FLY SEQ STATE GEN-APP BL-BOX-RS ANY-LOG POLY-SPACE
GDE [13] 1987 � �(all) �(gen) � � × � � � ×(bk) � ×
HS-Tree [45] 1987 � �(all) �(foc=mc) � � � × × � � � ×
HS-DAG [25] 1989 � �(all) �(gen) � � � × × � � � ×
DIAGNOSE [29] 1994 � �(all) × � � × � � � � � ×
HST [67] 2001 � �(all) �(foc=mc) � � � × × � � � ×
DNNF [6] 2001 � �(p=mc) �(only=mc) � ×(cp-b=DNNF) na × ? × × ×(PL) ×
Genetic Alg. [38] 2002 × × × � � × × × na na na ?
BHS-Tree [39] 2003 � �(all) × � � × × × na na na ×
Bool. Alg. [39] 2003 � �(all) × � � × × × na na na ×
HSSE-Tree [68] 2006 � �(all) �(foc=mc) � � × × × na na na ×
HA* [18] 2006 � �(one=mc) �(only=mc) × ×(cp-b=h-DNF) na × ? ×(circ) � ×(PL) ×
OBDD [65] 2006 ∼(1) �(all) �(only=mc) � ×(cp-b=OBDD) na � � × × ×(PL/HL) ×
CDA* [66] 2007 � × �(gen) � � � × ? � � � ×
SAFARI [16] 2008 ∼(2) × × � ×(dir) na × × � � � ×
STACCATO [1] 2009 ? ∼(3) ×(heur) � � × × × na na na �
NGDE [9] 2009 � �(p=mc) �(only=mc) � � � × ? � ×(bk) � ?(4)

Recurs. MHS [61] 2010 � �(one=mc) �(only=mc) × � × × na na na na ∼(5)

SDA [62] 2011 � �(one=SD-sol) �(only=SD-sol) × ×(cp-b={BN, d-DNNF}) na � � ×(circ) × ×(PL) ×(6)

cminc [10] 2011 � �(one=mc) �(only=mc) × � × × na na na na ?(7)

FastDiag [20] 2011 � �(all) × � ×(dir) na × × � � � �
SDE [64] 2012 � �(all) �(foc=mc) � � � × × � � � ×
Improved Bool. Alg.(∗) [44] 2012 � �(all) �(bsno) � � × × na na na na ×
Inv-HS-Tree [60] 2014 � �(all) × � ×(dir) na � × � � � �
SATbD [41] 2014 � �(p=mc) �(only=mc) � ×(cp-b=SAT) na × � ×(circ) � ×(PL) ?
Increm-distrib-MHS(∗) [70] 2015 � �(all) × � � × � � na na na ×
Unif-cost HS-Tree(∗) [47] 2015 � �(all) �(gen) � � � × × � � � ×
Parallel HS-Tree [33] 2016 � �(all) �(foc=mc) � � � × × � � � ×
StaticHS [54] 2018 � �(all) �(gen) � � � � � � � � ×
MOA [17] 2020 � �(p=mc) �(only=mc) � ×(cp-b=SAT) na × × × � ×(PL) ×
DynamicHS [49] 2020 � �(all) �(gen) � � � � � � � � ×
D-CMMO [71] 2022 � �(one=mc) �(only=mc) × ×(cp-b=SAT) na × � ×(circ) � ×(PL) ×
RBF-HS [50] 2022 � �(all) �(gen) � � � × × � � � �
HBF-HS [50] 2022 � �(all) �(gen) � � � × × � � � ×
Heuristic Inv-HS-Tree(∗) [51] 2022 � �(all) ×(heur) � ×(dir) na × × � � � �

Table 1: Classification of some important existing diagnosis computation algorithms based on their characteristics wrt. the features proposed in Sec. 3. Table rows are sorted by the year of publication of the
algorithms. Features (table columns) are thematically grouped as described in Sec. 3. (Column meanings:) SND...is the algorithm sound? (Bullet 1); COMPL...is it complete? (2); BEST-F...is it best-first? (3);
MULT...is it multiple-solution? (4); CONF-DEP...is it conflict-dependent? (5); O-T-FLY...does it (if applicable) compute conflicts on-the-fly? (6); SEQ...is it sequential? (7); STATE...is it stateful? (8); GEN-
APP...is it generally applicable? (9); BL-BOX-RS...is it black-box wrt. reasoning? (10); ANY-LOG...is it logics-agnostic? (11); POLY-SPACE...is it space-efficient? (12); (Symbol meanings:) �...yes; ∼...under
certain circumstances; ×...no; �(all)...all-complete; �(p=X)...property-complete (wrt. property X); �(one=X)...one-complete (wrt. property X); �(gen)...generally best-first; �(foc=X)...focused best-first (wrt.
property X); �(only=X)...only-best (wrt. property X); �(bsno=X)...best-subset-no-order (wrt. property X); ×(heur)...heuristic best-first; ×(cp-b=X)...compilation-based (using target language X); ×(dir)...direct;
na...not applicable; ×(circ)...specific to circuit diagnosis problems; ×(bk)...uses bookkeeping mechanism for reasoning (ATMS for [13], HTMS for [10]); ×(PL)...specific to propositional logic; ×(PL/HL)...specific
to propositional / Horn logic; ?...unknown. (Table notes:) (∗)...algorithm name given in table not used in the original work; (1)...sound wrt. all diagnoses, but not wrt. all minimal diagnoses; (2)...unsound in most
efficient configuration; can be parametrized to be sound; (3)...incomplete in most efficient configuration; can be parametrized to be complete; (4)...the diagnosis search is depth-first, i.e., requires linear space,
but unclear if the used HTMS is polynomial space; (5)...polynomial-space hitting set computation, but assumes a given (i.e., preliminarily computed) set of conflicts; (6)...d-DNNF is less succinct (i.e., larger
in general) than DNNF [7, Sec. 2], and compilation to DNNF may result in exponential-size compilations [6]; (7)...uses (linear-space) depth-first search, but unclear if FullReduce() function [10] (considers all
conflicts at once) is polynomial space.P.
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higher (empirical or theoretical) time complexity [50], or for a drop-
ping of other desirable properties such as best-firstness [60, 20] or
completeness [1]. Relationship: With the exception of one method
[50], space-efficiency appears to be achievable only for algorithms
that are not generally best-first (cf. Bullet 3), or are preliminary wrt.
conflict computation (cf. Bullet 6) and whose complexity thus does
not take into account the conflict generation phase.

Remarks:

• We do not propose a feature concerning the time complexity. This
is due to well-known complexity results [5], which imply (unless P
= NP) that there cannot be an algorithm that computes at least two
minimal diagnoses and generally finishes in polynomial time; this
holds even if reasoning (consistency checking) is in P, which how-
ever is already NP-complete if (only) propositional logic models
are used (let alone more expressive logics, cf., e.g., [2]).

• The list of proposed features is not an exhaustive account of all
possible properties diagnosis algorithms might have. There are
further conceivable aspects from the (a) theoretical viewpoint,
e.g., whether an algorithm uses abstractions or alterations of a DPI
(cf. [52, Sec. 4]), or whether it is suitable for multi-observation
problems (cf., e.g., [71]), (b) empirical viewpoint, e.g., whether an
algorithm was experimentally evaluated, or which other methods
an algorithm was compared against, (c) presentation viewpoint,
e.g., whether formal proofs for algorithm properties are given, or
from the (d) pragmatic viewpoint, e.g., whether there are freely
accessible implementations of or tools based on an algorithm. Ex-
ploring further features like these is a future work topic.

4 Classification of Existing Works

Tab. 1 gives a classification of several existing works based on their
characteristics wrt. the features suggested in Sec. 3:
• The table can be read row-wise to inspect the features of the diag-

nostic techniques, and column-wise to find methods with certain
characteristics wrt. the features.

• We assessed the algorithms enumerated in the table as they are de-
scribed in the respective cited work, without assuming any modi-
fications or extensions.

• The list of algorithms studied in the table raises no claim to com-
pleteness. The idea is to illustrate the use(fulness) of the discussed
features for algorithm assessment and comparison by showing the
properties of a significant number of important methods in the lit-
erature. We plan to analyze further ones as part of our future work.

5 Conclusions

We propose a taxonomy for diagnosis algorithms, with the intention
of helping researchers and practitioners in assessing, comparing, and
selecting diagnostic techniques for their tasks and purposes. Specifi-
cally, we present a set of 12 crucial features of diagnosis techniques
and classify 34 important existing methods based on these. In our
study of the works in the literature, we observed that, for some al-
gorithms, it was relatively hard to determine their properties wrt. the
proposed taxonomy since various algorithmic aspects are often left
implicit or not addressed at all. Moreover, even if properties are dis-
cussed, not all works provide formal proofs of them. Hence, we en-
courage authors to explicitly discuss the material properties of their
proposed diagnostic approaches, for which we hope the suggested
taxonomy will constitute a useful basis and guideline. Making algo-
rithm characteristics explicit, clear and accessible will certainly help
other researchers put novel works appropriately into the context of

existing works and allow readers to better understand the proposed
algorithms. And, adhering to shared assessment and categorization
criteria while doing so can have several advantages. Examples are
• the better accessibility of diagnostic research through a reduction

of potential ambivalence, e.g., resulting from different terminolo-
gies used in algorithm descriptions,

• a facilitation of comparisons between algorithms,
• a shared vocabulary to promote and simplify discussions among

researchers,
• the usage of the taxonomy as a unified guiding principle for the

structure of algorithmic analyses in papers (e.g., for theoretical
studies of algorithms or related work sections),

• fair empirical evaluations that contrast methods which are actually
comparable (e.g., comparing an incomplete method to a complete
one wrt. performance might be pointless, as they simply accom-
plish different things and have different use cases),

• the potential inspiration for and detection of open research ques-
tions (e.g., find an algorithm with a particular subset of the fea-
tures that no existing algorithm has),

• an easier, faster and more informed finding of a suitable algorithm
for a specific purpose (e.g., is there a space-efficient method for a
mobile device that is also sound, complete and best-first?),

• the better understanding of the evolution and reality in research
and practice (e.g., that certain feature combinations are the reason
why some techniques are not used in some application domains
while they are state-of-the-art in others), or

• the realization that basically all algorithms have their right to ex-
ist, as they cover a wide variety of feature combinations and thus
address a broad range of diagnostic problem scenarios, and that al-
gorithms “superseding” others due to performance improvements
mostly achieve this at the cost of losing some desirable properties.

Finally, due to the close relationship of diagnosis computation to
other important domains such as hitting set problems [22, 45], ab-
duction [5], set-theoretic duality [63], (MAX)SAT [8], MSMP [40],
constraint satisfaction and optimization [15, 58], machine learning
[26], or explainable AI [31], our study can have a positive impact far
beyond the realm of diagnosis.
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