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Abstract. We consider the principled incorporation of prior knowl-
edge in deep learning based Bayesian approaches to causal structure
learning via the prior belief. In particular, we investigate how to in-
clude knowledge about individual edges and causal dependencies in
the prior over the underlying directed acyclic graph (DAG). While
conceptually simple, substantial challenges arise because the acyclic-
ity of a DAG limits the modeling choices of the marginal distribu-
tions over its edges. Specifying the marginals iteratively unveils their
dependencies and ensures a sound formulation of the probability dis-
tribution over DAGs. We provide recipes for formulating valid priors
over DAGs for two recent deep learning based Bayesian approaches
to causal structure learning and demonstrate empirically that using
this prior knowledge can enable significantly more sample-efficient
causal structure search.

1 Introduction

Causal structure learning. In the last decades, the field of ma-
chine learning has made remarkable advances, in particular with re-
spect to predictive power. The broad usage of modern ML algorithms
calls for further research targeting explainability and interpretability
as well as fairness and robustness. Causal machine learning promises
to play a crucial role in these research directions as it goes beyond
purely associative relations between variables and allows for inter-
ventional and counterfactual queries [31, 2]. Causal inference typi-
cally assumes that the causal model can be represented by Directed
Acyclic Graphs (DAGs) and Causal Structure Learning (CSL) ad-
dresses the problem of revealing these DAGs in order to deploy them
for causal inference.

In the absence of randomized experiments, it is still possible to
infer some causal directions between variables from purely observa-
tional data. In a non-parametric setting, (conditional) independencies
and dependencies allow to infer the class of graphs that are Markov
equivalent under the assumption of faithfulness. This equivalence
class can be represented by a Completely Partially Directed Acyclic
Graph (CPDAG), an acyclic mixed graph in which some edges of the
true causal graph remain undirected. However, testing conditional in-
dependence is not only a hard statistical problem [32], but its com-
binatorial nature renders it computationally very demanding, already
for moderate numbers of observed variables.

In addition to constraints imposed by independences between vari-
ables, some causal directions may be oriented based on the asymme-
try of the causal model. Several functional causal models exist that
are known to be identifiable [33, 16, 39, 20] and do not require the
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strong assumption of faithfulness. We refer the reader to [11, 35] for
a more comprehensive review of modern CSL.

Uncertainty & Bayesian CSL. Uncertainty quantification is a
major challenge for CSL. The outcome of a single statistical hy-
pothesis test tells the probability that the observed data was gen-
erated under the null hypothesis, a significance level may then be
specified to reject the null hypothesis. To allow for reasonable scal-
ing, independence-based CSL algorithms, e.g. the PC- and FCI algo-
rithm [34], typically restrict their pairwise independence tests repeti-
tively based on the outcome of previous tests. Therefore, a combina-
tion of the probabilities attached to the hypothesis tests is non-trivial
and impractical even for graphs with a moderate number of edges.

This motivates a probabilistic treatment of the underlying causal
graph instead of computing a single point estimate. Analyzing mul-
tiple i.i.d. data sets ,generated by the same causal mechanism or ob-
tained by bootstrapping, directly enables a statistical analysis [8] for
any CSL algorithm. Alternatively, Bayesian inference allows the in-
corporation of a prior belief about the graph structure and the com-
putation of the posterior over that structure accounting for made ob-
servations.

Recent deep Bayesian CSL algorithms can be distinguished by
how they enforce the acyclicity of the graph. The authors of [21,
10, 22] introduce a differentiable DAG constraint [40, 38] in combi-
nation with a prefactor into the prior and apply annealing in order to
restrict the directed graphs to acyclic ones at the end of the training.
By contrast, the authors of [1, 5, 4, 6] constrain the generative model
such that no cyclic DAG may be sampled at any stage. For both lines
of research, there already exists several extensions that include inter-
ventions that are either already present in the data set or appear in
the context of an active learning setting. The clear split into the first
[37, 13] and second group [30] persists.

Contributions. The effectiveness of Bayesian inference for CSL
strongly depends on the considered prior distribution and the therein
incorporated prior knowledge. Nevertheless, the role of edge-wise
different priors is considerably less studied. In particular, when the
amount of data available for CSL is small, the uncertainty about the
underlying causal graph may be substantial, and incorporating a prior
probability becomes highly influential. Practitioners and domain ex-
perts may not exclusively impose hard constraints on the graphical
model but additionally may provide probabilistic beliefs about the
structure. To the best of our knowledge only global priors, that ap-
ply likewise to every single edge or node, are considered in existing
work. This does not reflect the modeling reality as the graphs reflect
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the structure of a causal model over distinct entities and are, hence,
labeled. In Section 4 of this work, we outline how to define differ-
ent priors over individual edges in Bayesian structure learning for
DAGs and how to incorporate them into the two major approaches
regarding enforcing acyclicity. Our major contribution lies in the
novel parametrization of a distribution over DAGs, DPM-DAG, that
we introduced before in Secion 3. It allows to analytically derive
the marginal edge probabilities from the model parameter . Lastly,
we demonstrate in our experiments in Section 5 that the with DPM-
DAG induced probabilistic priors improve learning in comparison to
VI-DP-DAG [4] in terms of sample efficiency when the prior hints
information about the true causal graph.

2 Background

In this section, we present the relevant background for our
work and review Bayesian structure learning with DiBS [21] and
VI-DP-DAG [4].

2.1 Structural Causal Model

A Structural Causal Model (SCM) or Functional Causal Model
(FCM) is a triple of a set of endogenous variables x := (x1, . . . , xD),
a set of exogenous noise variables ε := (ε1, . . . , εD) and a set of
functions f := {f1, . . . , fD}, one to generate each endogenous vari-
ables xd as a function of x and εd: xd = fd(x∼d, εd), where∼d de-
notes the index set {1, . . . , D} \ {d}. Typically the structure induced
by the direct functional dependencies is restricted to be acyclic and,
hence, can be represented by a DAG or equivalently its adjacency
matrix G ∈ {0, 1}D×D . Then the parents of a node xd, i.e. the sub-
set of x∼d that have a direct influence on xd over fd are encoded by
the d-th column ofG. Using a DAG’s adjacency matrixG as a mask
for x, the generally nonlinear functions f can be approximated by
parameterized functions like neural networks. For the remainder of
this work, we summarize the parameters of these parameterized func-
tions as Θ. Moreover, we assume causal sufficiency, i.e. all endoge-
nous variables x are observable and the exogenous noise variables
are mutually independent. This states that all dependencies and inde-
pendencies between the observed random variables x are only due to
their interactions and are not due to unobserved common causes or
conditioning on unobserved confounders.

2.2 Enforcing Acyclicity

Acyclicity via permutation sampling. The adjacency matrix
G ∈ {0, 1}D×D of any DAG admits a representation by a per-
mutation matrix Π ∈ {0, 1}D×D and an upper-triangular matrix
U ∈ {0, 1}D×D as shown in Eq. (1). This illustrates that G may
have at most E :=

(
D
2

)
= D(D − 1)/2 edges. Consequently, there

are 2E different upper-triangular matrices and D! different permu-
tations. Since U may induce only a partial order between the vari-
ables modeled by G, the matrix factorization is not unique in gen-
eral. Yet, the number of labeled DAGs with D variables, nD , still
grows exponentially in D, e.g. for D = 7 there exist already 29 281
different labeled DAGs [27], asymptocially nD � C1/C

D
2 D! 2E

with C1 ≈ 1.741 and C2 ≈ 1.488 [36]. The surjective function
g(U ,Π) = ΠTUΠ provides a generative model to sample a ran-
dom DAG G from distributions over Π and U parameterized by ψ
and φ [4]:

Π ∼ pψ(Π) , U ∼ pφ(U) , G = ΠTUΠ . (1)
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Π G Θ
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(b) VI-DP-DAG

Figure 1: Considered graphical models.

Acyclicity via DAG constraint. Alternatively, the acyclicity may
be enforced by a non-negative, differentiable function h(G) that
equals to zero iffG is a DAG [40, 38]. In Bayesian structure learning
this constraint is typically incorporated as an exponential factor of an
unnormalized Gibbs prior over all graphsG with D nodes, i.e.

pλ(G) ∝ exp (−λh(G)) . (2)

For a sufficiently high prefactor λ, the exponential term in Eq. (2)
allocates negligible probability mass to any cyclic graphGcyclic. Ac-
cording to Eq. (2), all DAGsGacyclic would receive a uniform proba-
bility:

pλ(Gcyclic) −−−−→
λ→∞

0 , pλ(Gacyclic) −−−−→
λ→∞

1

|Gacyclic| . (3)

We denote by GC the subset of all directed graphs with D nodes that
fulfill the condition in the subscript C, here being acyclic. Note that
without any additional factor in Eq. (2), the normalization constant
CG :=

∑
G′∈G

exp(−λh(G′)) is independent of the respective ar-
gument G of the prior, therefore the gradient of the logarithm of the
RHS in Eq. (2) can be evaluated in a sampled graph G without hav-
ing to compute CG explicitly.

2.3 Bayesian Structure Learning with SVDG (DiBS)

Generative model & graph posterior. The authors of DiBS [21]
translate the discrete structure learning problem into an inference
problem over continuous latent variables Z = [V,W] ∈ R

2×D×K .
They enforce the acyclicity of G by a Gibbs prior over the latent
variables Z via the expectation value of h(G)over G given Z:

pλ(Z) ∝ exp
(−λEG|Z h(G)

)
. (4)

The probability of a directed, loopless graph G given Z is modeled
by applying the sigmoid function σ element-wise to the inner product
of two latent embedding matrices V andW ∈ R

D×K :

p(G|Z) =

D∏
i=1

D∏
j �=i

p(Gij |vi,wj)

with p(Gij |vi,wj) = σ(viw
T
j ) . (5)

Denoting the training data set by X := {x(n)}Nn=1, their joint gen-
erative model displayed in Fig. 1a factorizes as

p(Z,G,Θ,X) = pλ(Z) p(G|Z) p(Θ|G) p(X|G,Θ) . (6)

The posterior over the graph G and the SCM implied by G and Θ
can be obtained by marginalization over Z as

p(G,Θ|X) ∝ p(G)p(Θ|G)p(X|G,Θ) . (7)
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Differentiable likelihoods. Using the factorization from Eq. (6)
analytical expressions for the gradients of the logarithm of the
posterior density p(Z,Θ|X) w.r.t. Z and Θ can be derived,
which can then be evaluated by pathwise gradients using the
Gumbel-Softmax trick [24, 17]. In case the data generation mech-
anism p(Θ|G) p(X|G,Θ) is only defined for discrete G, discrete
Gumbel-max samples can be drawn in the forward pass and their
continuous softmax versions can then be used for backpropagation.
Alternatively to this straight-through gradient estimator [3], the score
function estimator can be applied.

Particle variational inference. To approximate the intractable
posterior p(Z,Θ|X) DiBS employs Stein Variational Gradient De-
scent (SVGD) [19] which yields a particle approximation of the joint
density in Eq. (6). At each iteration, a set of particles with fixed,
preassigned size is mapped to match the target distribution and gets
updated using the derived gradients.

Prior formulation. The authors of DiBS [21] choose in their im-
plementation p(Gij) = 4(D−1)−1 as a global prior for every single
edge. Their prior knowledge about the causal graph states that the
edges are independent and every node of the DAG has 2 (incident or
outgoing) edges in expectation. This matches the Erdös-Renyi DAGs
in their evaluation which they generated by the permutation sampling
strategy described in Section 2.4 with the very same probability for
each entry of U and a uniformly chosen permutation Π. While for
any DAG this global prior evaluates to the same, intended marginal
prior probability for every single edge, it depends on the fact that ver-
tices of the graph are unlabelled and that any permutation is assumed
to be equally likely. This constitutes a very generic case and limits
the type of prior knowledge of modelers can be incorporated. Since
the prior over the complete DAG does not differentiate between dif-
ferent edges, it is better understood as a prior over the number of
edges in the DAG.

2.4 DAG Sampling over Permutations (DP-DAG)

Generative model. The DP-DAG model [4] enforces acyclicity by
Eq. (1) and also employs a straight-through estimator with Gumbel-
softmax samples perturbed by log(σ(φ)) with φij ∈ R. Note that in
the implementation1 the authors of DP-DAG model a full adjacency
matrix A instead. Omitting to model U or A explicitly, the genera-
tive model depicted in Fig.1b induces the following factorization of
the joint distribution:

pψ,φ,Θ(Π,G,X) = pψ(Π) pφ(G|Π) pΘ(X|G) . (8)

Variational DP-DAG loss. In contrast to DiBS (see Eq. (6)), VI-
DP-DAG [4], a variational method for CSL based on DP-DAG, does
not infer a joint probability distribution that also includes the SCM
parameters Θ and is hence not as fully Bayesian as DiBS [21].
Instead it only yields a point estimate for Θ by maximizing the
ELBO L:

max
ψ,φ,Θ

L = max
ψ,φ,Θ

EG∼pψ,φ(G) [log pΘ(x|G)]︸ ︷︷ ︸
(i)

− β DKL (pφ(A) || pγ(A))︸ ︷︷ ︸
(ii)

. (9)

1 https://github.com/sharpenb/Differentiable-DAG-Sampling

This loss L consists of a reconstruction term (i) and the Kullback-
Leibler divergence DKL (ii) with prefactor β and prior pγ(A) act-
ing as a regularization on the unmasked adjacency matrix A. For
0 ≤ β it constitutes a lower bound to the joint probability p(x,G).
In contrast to Variational Auto Encoders (VAEs) it does not employ
an amortization network for ψ and φ. We emphasize that the cal-
culation of the posterior from Eq. (7) depends on p(X,G) instead.
Assuming i.i.d. samples x(n) ∈ X ,

∏N
n p(x(n)|G) provides an un-

biased estimate of p(X|G), therefore 1/N should be incorporated
into β to recover the dependence of the posterior on the size of the
data setX .

Prior formulation. The authors of VI-DP-DAG [4] apply the
same marginal prior on all edges, p(Aij) =: γ, and assume
their independence. The resulting KL term (ii) then becomes∑

i,j KL (pφ(Aij)||γ). Note that during training they evaluate this
term for all edges, even for edges masked by the sampled permuta-
tion matrix Π. They abstain from defining a prior over the permuta-
tion, although for hard Gumbel-softmax there exists a closed form
for the KL-divergence as we show in Section 4.2.

3 DAG Sampling by Masking (DPM-DAG)

In the following we introduce DPM-DAG as an alternative to DP-
DAG and derive an analytical expression for the marginal edge prob-
abilities analytical which facilitates the specification of edge-wise
priors in Section 4.

Generative model. Under different permutations, the entries of
the upper triangular matrix U in Eq. (1) correspond to different
edges. Learning the entries Uij directly can become unstable, be-
cause they can represent different functional causal dependencies
and, thus, receive alternating gradient updates. This would imply a
mean-field approximation of p(G) by p(U)p(Π) that severely limits
the expressiveness of the distribution [5]. Following the implemen-
tation of DP-DAG, we model a full adjacency matrix A and mask
it by element-wise multiplication with a permuted upper-triangular
adjacency matrix of a fully connected DAGM 2:

Π ∼ pψ(Π) , A ∼ pφ(A) , G = A ◦ (ΠTM Π
)︸ ︷︷ ︸

:=M(Π)

. (10)

We refer to this model as differentiable probabilistically masked
DAG (DPM-DAG), since the key difference to Eq. (1) consists in
implicitly modeling a distribution over the acyclicity mask M(Π) by
probabilistically modeling the permutation Π. In combination with
the distribution overA that has independent entries, it yields a more
expressive distribution over DAGs than DP-DAG. Omitting to model
A explicitly, the generative model is then still equivalent to the one
described by Eq. (8) and Fig.1b. For details on the influence of A in
pφ(G|Π) we refer to our full paper version.

Variational DPM-DAG loss. Additionally formulating a prior
over the permutation pω(Π) for the generative model in Eq. (8)
yields a different regularization term than (ii) in Eq. (9):

DKL (qψ,φ(Π,G) || pψ,ω(Π,G)) =

= EΠ,G∼pψ,φ

[
log

(
pψ(Π)

pω(Π)

pφ(G|Π)

pγ(G|Π)

)]
. (11)

2 The random upper-triangular matrix U in Eq. (1) is then defined by(
ΠAΠT

) ◦M .
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Differentiable sampling. In order to generate a discrete random
permutation matrix Π that is path-wise differentiable, we perturb
a feature vector of log-probabilities ψ ∈ R

D by a random vector
g ∈ R

D of i.i.d. Gumbel random variables gi. As proposed in [4]
we then apply the (one-hot) argsort operator row-wise in the for-
ward pass, but the SoftSort operator [29], its continuous approxima-
tion, for the gradient computations in the backward pass. This again
yields a straight-through estimator.

Taking a single argmax of perturbed Gumbel samples is equal in
probability to drawing discrete samples from a categorical distribu-
tion with weights {wi := expψi}Di=1, this is known as the Gumbel
trick [12, 25]. Applying the argsort operator row-wise to the per-
turbed Gumbel samples ψ + g is equivalent to repetitively taking
the argmax of the sample vector where we ignore already selected
rows. Hence, argsort of perturbed Gumbel samples is equal in prob-
ability to sampling from a categorical distribution over the index set
I := {1, . . . , D} without replacement until each category was se-
lected once. Both approaches sample a permutation π over the in-
dex set I and can be described by the Plackett-Luce (PL) distribu-
tion [28, 23]. Denoting the set of not yet selected indices by S ⊂ I,
the probability of selecting index i ∈ S as the next index in the se-
quence that defines the permutation π by its total order is coupled to
the Gumbel samples g by

argmax
i∈S

(ψi + gi) ∼ p

(
exp(ψi)∑
j∈S

exp(ψj)

)
. (12)

Marginal edge probability. The marginal probability that the
edge Gij is masked by the randomly permuted matrix M(Π) as de-
fined in Eq. (10) equals the probability of selecting index j before i
in the Plackett-Luce distribution, mij = p(i ≺ j),3 The DPM-DAG
model allows to analytically read off the marginal edge probabili-
ties from the model parameters wj , wj and aij := pφ(Aij = 1) =
σ(φij).

Proposition 1 (Marginal edge probabilities) The marginal proba-
bility of sampling edge Gij in the DPM model is given by the product
of mij and aij := p(Aij = 1).

Proof 1 The proof for Proposition 1 directly follows from Eq (10).

Proposition 2 (Marginal probability of pairwise preference)

The marginal preference probability of the Plackett-Luce distribu-
tion p(PL)

I
(i ≺ j), i.e. the probability that i precedes j in a sampled

permutation π sampled from the Plackett-Luce distribution over a
set of integers I ⊆ {i, j}, evaluates to wi

wi+wj
.

Proof 2 Due to page limitation we provide the proof in the full ver-
sion of our paper.

4 Incorporating Prior Knowledge

The authors of DiBS and VI-DP-DAG, as well as their extensions,
consider a unitary prior marginal probability for all edges, while
the considered Bayesian frameworks would allow for more flexible
edge-wise priors as we demonstrate in the following. This is im-
portant as a single marginal prior for all edges does not reflect re-
alistic practical scenarios for several reasons. Firstly, conjugate dis-
tributions are very convenient, but special cases. Having observed

3 mij :=
∑

Π∈PD(G) p(Π) p(M
(Π)
ij = 1).

some data X , our initial prior belief p(G) gets updated to a poste-
rior p(G|X) that typically deviates from the initial prior. Secondly,
the same marginal prior over all edges results in a graph prior term
that does not distinguish the contribution of the labeled edges but
rather depends on the number of edges in a graph. By contrast, the
modeled variables are not unlabelled, anonymous entities. Domain
experts typically possess different prior knowledge of the marginal
distributions over different edges. The acyclicity of the graph ren-
ders these marginals dependent. In this section, we address how to
specify valid priors over individual edges in models with acyclicity
via a Gibbs prior like DiBS and with our model DPM-DAG that is
based on DP-DAG.

4.1 Gibbs Prior

Recall from Eq. (3) that for a sufficiently high λ, the Gibbs prior with
the exponential acyclicity constraints allocates a negligible probabil-
ity to cyclic graphs and equal probability to all acyclic ones. There-
fore, we can limit our subsequent analysis to DAGs. To enable priors
for different edge combinations, our basic idea is to divide the class
of all DAGs by binary splits based on the existence of specific edges
and allocate a prior probability to the resulting groups of graphs. In
the following, we explain how to incorporate prior probabilities start-
ing with a prior over a single edge (Example 1). In the full version
of our paper, we then extend our approach to two edges, multiple
combinations of edges and outline how to specify marginals.

Example 1 (Prior over single edge) The prior knowledge of the
marginal probability pij for the existence of a specific edge Gij

can be expressed by including the following term to the exponential
acyclicity factor in Eq. (2):

p(G) ∝ (
rij Gij + rij (1−Gij)

)
,

with rij :=
pij
|Gij | and rij :=

1− pij
|Gij |

. (13)

Intuitively, this splits the set of DAGs, Gacyclic, in two groups.
One group contains all DAGs where the edge Gij is present, i.e.
Gij = {G ∈ Gacyclic |Gij = 1}, the other consists of all DAGs that
do not contain a link between those two nodes at all or the edge in its
reverse direction, i.e. Gij = {G ∈ Gacyclic |Gij = 0}. The proba-
bilities to sample a DAG from Gij and Gij are then pij and 1− pij
respectively. Each distinct graph within a group is assigned a uni-
form portion of the group’s probability, e.g. for Gij:

p(G ∈ Gij) =
rij∑

Gacyclic

rij Gij + rij (1−Gij)
(14)

=
rij

pij + (1− pij)
=

pij
|Gij | , (15)∑

G∈Gij

p(G) = pij . (16)

Directly adding multiple factors does not work, as the edges in a
DAG are not independent. In order to specify the probability for an
edge combination, the modeler has to assign a probability for the
very edge combination and the remaining probability to all devia-
tions from it. To the best of our knowledge, there is no known for-
mula to calculate the cardinally of the sets GC without labeling all
DAGs for a predefined number of nodes.
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Figure 2: Sampling procedure of DPM-DAG. (1) A random permutation vector π is drawn by Eq. (10) using Gumbel-SoftSort samples and then
mapped to its matrix representation Π; (2) a strictly upper-triangular matrixM with all-ones above the diagonal is permuted by multiplication
with ΠT and Π; (3) the resulting random mask M(Π) then constrains the random matrix A (that is also drawn using Gumbel-Softmax
samples) to the adjacency matrix of a DAG G.

4.2 DAG Sampling by Permutation

4.2.1 Prior over permutation

Using the DPM-DAG model, a prior probability over the permuta-
tion π can be formulated over the positive weights wi := exp(ψi) by
fixing their ratios. The Kullback-Leibler divergence in Eq. (11) pro-
vides then an incentive for the model distribution pψ(Π) to match
the specified prior distribution pω(Π).

Example 2 (Prior over precedence of an index over another index)

Recall from Proposition 2 that the probability of selecting index i
before j under the Plackett-Luce (PL) distribution, mij , equals to

wi
wi+wj

and sets the following constraint wi =
mij

1−mij
wj . Note that

this does not yet affect the probability of edges between any other
nodes, since their weights and their probabilities of the entries of A
are not coupled. The probability for the edge in the reverse direction
is upper bounded by mji = 1 − mij , but due to the independence
of Aji and Aij only lower bounded by 0.

Formulating a probability for an additional pairwise order that con-
tains at least one variable whose order is already constrained directly
implies probabilities of precedence of newly linked indices by tran-
sitivity.

Example 3 (Adding a prior over precedences) Given two speci-
fied prior probabilities over precedences, mij and mkl, neither mik

nor mjl are coupled. A prior probability over a total order is ini-
tially only specified independently for the two subsets (i, j) and
(k, l). Adding the prior probability mjk := p(j ≺ k) establishes
a prior probability over the strict total order on (i, j, k, l) and sets a
prior probability for all relations among them. In total, there are four
weights, wi, wj , wk and wl, but before specifying mjk there are only
two pairwise constraints. Taking into account the normalization con-
straint, one degree of freedom remains. This example also highlights
the dependencies of the marginal probabilities. The two marginals
pij and pkl can be chosen independently since they are modeled by
different parameters, namely wi, wj , aij and wk, wl, akl. After stat-
ing the third precedence prior, mjk =

wj

wj+wk
, the probabilities for

all pairwise precedence between the variables in {i, j, k, l} are de-
fined and the marginal prior probabilities of pik, pil, pjk and pjl are
constrained by the probability over the total order.

Following the authors of [17] we apply a categorical prior pω(Π),
where we denote by ω the categorical prior probabilities to distin-
guish them from the ( normalized) weights w̃ derived from the learn-
able log-probabilities ψ:

DKL (pψ(Π) || pω(Π)) =
∑
i

w̃i (log w̃i − logωi) . (17)

While this does not constitute a valid lower bound on the ELBO for
Gumbel-softmax samples [24] and continuous relaxations of the per-
mutation matrix [26], it works well in practice [17] and is a reason-
able approximation since we use hard Gumbel samples in the forward
pass.

4.2.2 Prior over marginal edge distributions

For the DPM-DAG model, Proposition 1 states that the marginal
prior probabilities pij are modeled as the product of the prece-
dence probability mij and the conditional probability aij . Therefore
marginal priors are coupled over the probability on the total order
(see Example 3) and modelers can iteratively specify them without
formulating invalid marginal probabilities that are not sound for a
DAG. Note that the choice of aij does not affect the probability of
edges between any other nodes, since the conditional probabilities
are not shared among different edges, but tied to a specific one, i.e.
here Gij. Denoting the parameters of the Bernoulli prior over the
edges by γ the respective regularization terms from Eq. (11) is

DKL (pφ(G|Π) || pγ(G|Π)) =

=
∑
i≺
Π
j

aij
log aij

log γij
+ (1− aij)

log(1− aij)

log(1− γij)
. (18)

5 Experiments

In this section, we demonstrate empirically that the proposed priors
indeed achieve the desired behavior and can, in the case of encod-
ing knowledge about the correct graph, improve sample efficiency of
learning. We focus on the permutation sampling strategy outlined
in Section 4.2 and adapt the authors’ implementation4 of VI-DP-
DAG [4] accordingly. We retain the authors’ training procedure and

4 https://github.com/sharpenb/Differentiable-DAG-Sampling
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model architecture unless stated otherwise. Since our aim is not to
advance the overall performance but to evaluate our proposed priors,
we do not perform any hyperparameter tuning and use the default
parameters.

5.1 Experimental Setup

Data set. For our evaluation, we use the synthetic data set pro-
vided by the authors of VI-DP-DAG [4]. Each data subset for a ran-
dom graph model with some specified characteristics contains 50
randomly sampled DAGs. For each randomly sampled DAG with the
stated characteristics, 1000 data samples were generated according
to a different SCM with independent zero-mean Gaussian noise vari-
ables ε. The functional dependencies f in the SCM were generated
from a nonlinear Gaussian process with RBF kernels with bandwidth
1. We focus on graphs with 10 nodes generated by the Erdös-Rényi
model with 10 edges per graph in expectation and use the first 20 of
the 50 provided subsets. The samples from each subset are split into
train/validation/test sets according to a 80%/10%/10% ratio, normal-
ized and randomly shuffled afterward.

Models. We use the same model architecture to approximate the
SCMs as proposed in VI-DP-DAG [4]. In particular, for each func-
tion of the SCM, we use a 3-layere MLP with 16 hidden units in
each layer and ReLU activation functions except for the output layer
which does not have an activation function. The input dimension
equals to the number of variables in the data set. The adjacency
matrix of a DAG sampled from our probabilistic model determines
which inputs are masked (set to zero) and which ones can influence
the generation of other variables.

Model training. Training is performed w.r.t. the DPM-DAG loss
that replaces the regularization term (ii) of the DP-DAG loss in
Eq. (9) by Eq. (11). We employ two Adam optimizers [18]: one
with a learning rate of 10−3 for the parameters of the MLPs (θ)
and one with a learning rate of 10−2 for the parameters of the DAG
(ψ and φ). We train for a maximum number of 500 epochs and ap-
ply early stopping with a patience of 10 based on the improvement
of the validation loss of our adjusted variational loss evaluated after
every second epoch While in the training of VI-DP-DAG a permu-
tation is sampled approximately from the PL distribution with learn-
able permutation weights w, for early stopping on the validation set
and for the final evaluation of the test set, the Maximum Posterior
Probability (MAP) estimate of the permutation is evaluated instead
to ensure comparability to [4]. The mode of the PL distribution is the
permutation that results from deterministically sorting the weights in
decreasing order. We neither apply any pre-processing, such as pre-
liminary neighbor search, nor post-processing pruning steps, nor any
additional sparsity regularization.

Evaluation metrics. For the evaluation of our approach, we re-
port the Area Under the Receiver Operator Characteristic (AUROC)
and the Area Under the Curve of Precision-Recall (AUCPR). Higher
scores for both are preferred. In contrast to the Structural Hamming
Distance (SHD), both metrics are independent of the choice of a
threshold parameter and therefore are more suitable for the Bayesian
setting. To evaluate the predictive performance, the AUCPR should
be preferred over the AUROC, since for sparse graphs the prediction
of only very few edges leads is beneficial w.r.t. the true and false
positive rate of the AUROC [13].
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Figure 3: Influence of the prior over the order of the nodes
pω(Π) on AUROC and AUCPR, both evaluated using the MAP
over the order. The prior over the conditional edges is fixed to
pγ(Aij) = 0.5 ∀i �= j. Means and standard errors are calculated
over 20 random Erdös-Rényi graphs with 10 nodes and 10 edges
in expectation.

5.2 Experimental Results

In the Bayesian setting, the influence of the prior on the posterior
typically diminishes with the number of samples that are used for the
Bayesian updates. To validate our parametrization qualitatively, we
train our parameterized DPM-DAG model for different sample sizes
N ∈ {20, 40, 60, 120, 200, 400, 800}.

Prior over the permutation. In the first experiment, we demon-
strate the effect of the prior on the order of the variables. We com-
pare three different settings. In the favorable setting, we compute for
each DAG in the training set a total order of its nodes and assign
to the weights in the categorical prior distribution over the permuta-
tion the values [100, 81, 64, 49, 36, 25, 16, 9, 4, 1] accordingly. Re-
call from Ex. 2 that under this prior, the probability of selecting the
first node before the sixth equals 4

5
. In the adverse setting, we re-

verse the total order calculated for the favorable setting and assign
the same weights, e.g. the probability of selecting the first node be-
fore the sixth then equals 36

37
. In the uninformative setting, we assign

uniform weights to each node, such that every order is equally likely
under the prior. For all three settings, we employ an uninformative
prior over the conditional edges, i.e. ∀i �= j : pγ(Aij = 1) = 0.5.
We emphasize that DAGs may only have a partial order and the com-
puted order may not be unique. This is even more likely for sparse
DAGs but does not weaken our qualitative analysis. Our results de-
picted in Fig. 3 demonstrate empirically that for all three settings, the
curves for the AUROC and AUCPR start to converge towards high
values with increasing sample size. The consistency of the different
priors is guaranteed by the scaling of the reconstruction loss (ii) for
a single sample with the sample size N . For up to 400 samples our
experiment shows a strong effect of the prior on the performance of
both metrics and motivates the specification of a prior over the order
of variables. This finding is in line with the theoretical insight that a
provided order of the nodes reduces the search space drastically.

Prior over the conditional edge probabilities. We investigate the
influence of the prior on the conditional edges by applying the infor-
mative prior on the permutation and test three different settings. In
the favorable setting, we set the conditional prior probability of an
edge p(Aij) to 0.7, if the edge appears in the true graph, and to 0.3
otherwise. In the adverse setting, we reverse this procedure and pro-
vide misguiding information in our prior over the conditional edges.
For the intermediate regime, we provide the uninformative setting, in
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Figure 4: Influence of the prior over the conditional edges pγ(A) on
AUROC and AUCPR evaluated using the MAP over the order. The
prior over the order of the nodes is fixed to pω(i ≺ j) = 0.5 ∀i �= j.
Means and standard errors are calculated over 20 random Erdös-
Rényi graphs with 10 nodes and 10 edges in expectation.

which we assign a prior conditional probability of 0.5 to all nodes.
For even up to 800 samples in the training set our experimental re-
sults in Fig. 4 exhibit again a strong dependence on the prior. While
the onset of convergence cannot be observed, consistency is again
still guaranteed to hold.

Comparison with DP-DAG as baseline. Lastly, we compare in
Fig. 5 three settings where some correct information about the true
underlying graph is specified in the DAG prior to DP-DAG with
β = 0.01 and a global edge prior pγ(Aij) = 0.01, but other-
wise identical parameters. The setting in which favorable informa-
tion about the order of the nodes as well as the conditional edges
is included in the prior performs best in terms of AUROC as well
as AUCPR. Note that these best curves both slightly decrease with
increasing number of training samples N , since the reconstruction
term in our loss grows in relation to the KL-regularization term with
N and dominates the training loss on the right side of the plot. The
uncertainty arising from the finite training data set then explains the
deviation from the higher value before. The second setting consists of
the favorable prior over the conditional edge, pγ(Aij) = 0.7 paired
with an uninformative prior over the permutation, pω(Π). The third
setting pairs the favorable prior over the permutation with an unin-
formative one over the conditional edges. We observe that all three
settings of DPM-DAG clearly outperform DP-DAG w.r.t. sample-
efficiency, although we do not induce any additional sparsity regular-
ization and DP-DAG optimizes the hyperparameter β and pγ(Aij).
we can empirically observe that DP-DAG still acts as assigning a
global prior to every single edge since our DPM-DAG model with
an uninformative prior over the order and over the conditional edges
performs very similar.

6 Related Work

Priors for Bayesian CSL. To the best of our knowledge, the liter-
ature on priors for Bayesian CSL focuses on modular priors that are
decomposable [7]. It can be divided into priors over the number of
parents [9, 7], priors penalizing deviations from a specific edge pat-
tern [15, 10], or priors over the expected number of edges stemming
from random graph models [14, 21]. We consider the original formu-
lation of VI-DP-DAG [4] rather as a CSL algorithm with a sparsity
constraint than a Bayesian one since the authors do not provide any
further probabilistic reasoning about the underlying true graph and
treat the prior as a single hyperparamter that they tune during train-
ing.
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Figure 5: Comparison of three favorable settings in which the prior
comprises information about the underlying true graph and one un-
informative setting with DP-DAG as the baseline. A favorable prior
either refers to a favorable order of the variables, a conditional edge
probability pγ(Aij) = 0.7 for any true edge, or both. The uninfor-
mative setting consists of an uninformative order and pγ(Aij) = 0.5
Means and standard errors are calculated over 20 random Erdös-
Rényi graphs with 10 nodes and 10 edges in expectation.

Different parametrization. Alternatively to the generative model
in Eq. (10), the authors of BCD-Nets [5] propose to initially generate
unlabelled data X̃ according to an upper-triangular matrix U with
random binary entries and map it to the observed data samples X by
multiplication with a permutation matrix Π that is learned using U
and X̃. While it seems more natural to model only a triangular matrix
U instead of a full adjacency matrix A and hence fewer SCM param-
eters Θ, it constrains specifying a prior distribution over the DAGG.
This becomes evident since the E = D(D−1)/2 elements of p(U)
are now unlabelled and each of them contributes to the probability
of a single edge, p(Gij), under a different permutation. By contrast,
our parametrization allows us to specify marginal distributions over
edges in a more transparent and concise manner.

7 Conclusion.

In this paper, we outlined how to incorporate probabilistic beliefs
about individual edges in Bayesian structure learning for DAGs and
how to incorporate them into the two currently dominating mod-
els for deep-learning-based Bayesian CSL, DiBS [21] and VI-DP-
DAG [4]. Our adaption of the Gibbs prior formulation demonstrates
that is possible to incorporate edge-wise priors. Nevertheless, this re-
quires knowledge of the cardinality of the group of DAGs that feature
a specific edge pattern which might be prohibitive in practical appli-
cations. Therefore, we advocate our model, DPM-DAG, i.e. mod-
eling DAGs probabilistically by sampling a permutation π first and
using it to mask a full adjacency matrix A to express edge-specific
priors in Bayesian structure learning. In our experiments, we empiri-
cally verified that our proposed probabilistic priors speed up learning
in comparison to VI-DP-DAG [4] in terms of sample efficiency when
the probabilistic belief contains correct information about the under-
lying graph. In future work, we aim to investigate the expressivity
and scalability of DPM-DAG and to apply it in interactive settings in
combinations with interventions.
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