1930

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.

This article is published online with Open Access by I0S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA230483

An Easy Rejection Sampling Baseline via Gradient
Refined Proposals

Edward Raff**<4, Mark McLean® and James Holt®

4Laboratory for Physical Sciences
"Booz Allen Hamilton
“Syracuse University
dUniversity of Maryland, Baltimore County

Abstract. Rejection sampling is a common tool for low dimensional
problems (d < 2), often touted as an “easy” way to obtain valid sam-
ples from a distribution f(-) of interest. In practice it is non-trivial
to apply, often requiring considerable mathematical effort to devise
a good proposal distribution ¢(-) and select a supremum C'. More
advanced samplers require additional mathematical derivations, lim-
itations on f(-), or even cross-validation, making them difficult to
apply. We devise a new approximate baseline approach to rejection
sampling that works with less information, requiring only a differen-
tiable f(-) be specified, making it easier to use. We propose a new
approach to rejection sampling by refining a parameterized proposal
distribution with a loss derived from the acceptance threshold. In this
manner we obtain comparable or better acceptance rates on current
benchmarks by up to 7.3, while requiring no extra assumptions or
any derivations to use: only a differentiable f(-) is required. While
approximate, the results are correct with high probability, and in all
tests pass a distributional check. This makes our approach easy to use,
reproduce, and efficacious.

1 Introduction

Given a target distribution f(-) that we wish to draw samples from,
rejection sampling provides one of the most popular strategies. The
approach is often advertised as “easy,” given the simplicity of its
procedure. Given a proposal distribution g(+) that we do know how to
sample from, and a value C such that C' - g(z) > f(x)Vz, rejection
sampling can be described succinctly in three steps:

1. Generate x ~ g(-) and u ~ U(0, 1), where U is the continuous
uniform distribution.

2. Accept z as a valid sample of f(-) if u <

3. If not accepted, go back to step 1.

/(@)
Cg(=z)"

This also makes 1/C directly interpretable as the acceptance rate of
the sampling procedure, and it guarantees independent and identically
distributed (I.L.D.) samples. For this reason rejection sampling is often
used in modeling applications where a physical processes is known,
but produces bespoke distributions of few variables that need to be
sampled [19, 26, 17, 23, 25, 27, 18]. Though algorithmically simple,
this belays the non-trivial amount of work required by a user who
wishes to draw samples. First one must perform considerable work to
devise a distribution g(+) to sample from, find a method to determine
C or find a small upper bound of C'.

0.2 | S R Truh
" MSE: C = 22.2
e ° Our Ratio C = 3.72
0.15 1
O
=5
2
= 0.1+
=2
o
=
a9
0.05 +
O -
T T T T T
—4 —2 0 2 4
Input z

Figure 1: Example of estimating the true distribution f(-) (dotted
blue) using a surrogate g(-) fit from a set of current samples. The
MSE approach used by prior works is shown in orange (dashed).
While MSE looks like a good fit, it does not directly relate to the ratio
f(x)/g(x) that determines the acceptance rate of rejection sampling.
Our approach (solid green) has a 6 x higher acceptance rate over the
MSE based fit used by prior works.

Because of this difficulty, there has been considerable work over
time attempting to perform rejection sampling with greater efficacy.
These newer sampling strategies often suffer from additional con-
straints on the target distribution f(-), or additional work on the user
to do additional derivations. In both cases the application of a re-
jection sampler is non-trivial for a user, and slows progress toward
prototyping, building simulations, and various down-stream tasks like
HMC and Gibbs samplers that may desire to leverage sampling for an
intermediate step.

In this paper, we describe our novel Easy Rejection Sampler (ERS),
where our goal is to make ERS easy for the user of rejection sam-
pling. Rejection sampling is historically only done with differentiable
functions, and so we apply modern automatic differentiation to the
design of ERS. In doing so we build a system that accurately pro-
duces samples without requiring any specification of g(+), C, or any
other values by the user or restrictions on f(-). This is obtained by

E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals 1931

leveraging work in rejection sampling that allows estimating C' while
still producing valid samples with high probability. Since we require
a proposal distribution g(-) that is easy to sample from, flexible, and
parameterized, we use a Gaussian Mixture Model (GMM). We exploit
the differentiable approach and parameterized GMM to develop a “re-
finement” operation that maximizes the acceptance rate by directly
optimizing the ratio f(-)/g(-) instead of Mean Squared Error (MSE)
based measures used by prior works. As Figure 1 shows, this can sig-
nificantly reduce the true value of C' compared to current approaches.
This refinement is run periodically as more samples are collected,
allowing further minimization of C.

The rest of our paper is organized as follows. First we review
work related to our own in section 2, including the two prior types
of general purpose rejection samplers: optimization based and kernel
density based. Next we will detail the design of our ERS approach in
section 3 in three steps, presenting the primary mechanisms of ERS
in the order they are used, with the final mechanism being our novel
refinement based approach to proposal distributions that provides the
key to higher acceptance rates over a wide array of challenging target
distributions. These targets will be described in section 4 along with
our experimental setup, followed by the results showing up to 7.3 x
higher acceptance rates while imposing the fewest restrictions on f(-),
and that our method is also faster by runtime estimates. These results
also demonstrate the first example of obtaining improved rejection
sampling runtime via the use of a GPU.

2 Related Work

Rejection Sampling is still widely used in multiple disciplines, often
due to intrinsically low-dimensional problems or the need to perform
simulations involving customized and hard to characterize integrals.
This includes physics [19, 26], signal processing [21], catastrophe
modeling [17, 23], computational finance [25, 27]. Though these
works generally use off-the-shelf rejection sampling methods or de-
sign bespoke ones, their problems are not all amenable to current
state-of-the-art samplers from machine learning, and often have high
sample rates once a suitable g(-) and C'is determined. Our work will
focus on challenge-problems known to produce low sample rates for
current methods so that a meaningful effect is detectable.

While our method does not technically guarantee perfect sampling
from the target distribution f(-), in all statistical tests our samples
match the true distribution in every experiment. Further, approximate
samples have been acceptable by users in practice', and our work
inherits proofs that the samples will be correct with high probability.
While Hamiltonian Monte Carlo (HMC) based sampling also uses
a gradient and can handle much higher dimensions than rejection
sampling, it also is not as ‘turn key‘ and can require non-trivial work
to ensure sample quality. Our study is focused only on rejection
sampling and its standard uses: differentiable functions with d < 3
dimensions [19, 26, 17, 23, 25, 27, 18].

There is a broad family of adaptive rejection sampling methods
first proposed by [12], where the sampling acceptance rate improves
for larger total number of samples n. This seminal work has spawned
many extensions, but which generally require the specification of
g(+) and C (though they may ease the process), and more restrictive
limitations on f(-) [13, 8, 11, 15]. Our work is instead focused on
more general purpose rejection sampling techniques with weak or
limited assumptions on f(-) that require little work to apply to new
problems.

There are two different families of general purpose rejection sam-
pling algorithms available today. The first family can be described
as an optimization & sampling strategy that was first proposed with
the OS* algorithm [18]. Their work introduced the use of rejected
samples to improve the proposal g(-). The latter A* introduced a
gumbel trick to further improve efficacy [20]. However these meth-
ods require additional derivations to be done by the user, requiring a
function ¢(-) and o(+) such that f(z) o< exp(i(z) + o(x)). Our ERS
also intermixes optimization with sampling, but uses gradient based
approaches. In contrast ERS will not require any proposals or bounds
to be specified by the user that OS* and A* require.

Pliable Rejection Sampling (PRS) [10] introduced the second strat-
egy of using a Kernel Density Estimator (KDE) to estimate g(-) from
the samples, a strategy refined by Nearest Neighbour Adaptive Re-
jection Sampling algorithm (NNARS) [1] to produce a near-optimal
sampler under certain assumptions. However, both methods require
bounded support to estimate the KDE and have non-trivial param-
eters to estimate analytically, or via cross-validation. The later is
particularly challenging as it requires pre-existing samples, which
significantly complicates practical usage. In contrast we impose no
constraints on f(-) and require no other items to be specified by the
user, and we use a GMM so that we may modify a reasonable num-
ber of parameters via gradient descent. Though PRS and NNARS
are most similar to ERS in terms of g(-), they optimize a form of
MSE to approximate f(-) where our novel ratio optimization provides
considerably high acceptance rates.

We make note that the considerable requirements to use modern
rejection samplers create reproducibility risks. The latter cited works
often depend on transformations of the sampling distribution in or-
der to convert unbounded support into finite support (i.e, changing
the domain X from [0, co] to [0, 1]) but do not specify what trans-
formation is used, and do not specify many derivations. NNARS
relies on a Holder constant H and associated s € [0, 1] such that
|f(z) — fly)| < H||z — y||2, Yz, y € X, but the H values are no
stated for any experiments®. Similarly, PRS requires a cross-validation
procedure with no further details. This missing information has been
identified by many prior works as a significant barrier to replica-
tion [9, 14, 24, 28, 30, 31, 32]. For these reasons, we use the re-
sults as presented in these prior works, but note an additional ben-
efit of our approach: by requiring no hyper-parameters, transforma-
tions or other constraints to be specified, the ability to reproduce
works leveraging ERS is increased. Further, we provide source code
at https://github.com/NeuromorphicComputationResearchProgram/
EasyRejectionSampling.

3 Method

Our primary goal is to design a mechanism by which a user is not re-
quired to specify anything other than the function f(-), and optionally
adomain X that they wish to draw samples from z ~ f(-) € X This
is a more challenging problem than that addressed by prior methods,
as the user, by specifying both the surrogate function g(-) and the ra-
tio C' = sup,c » %, is imposing a prior knowledge to the sampling
method.

To build our approach, we must define a surrogate function g(-)
and somehow determine the maximal ratio C' during runtime. We
tackle the latter by leveraging the little known method of “Empirical
Supremum” based sampling [7]. Caffo et al. showed that by initial-
izing an estimate of the supremum C; = 1, and then adjusting it

1 e.g., the popular https://paulnorthrop.github.io/revdbayes/ uses an approxi-
mate sampler.

2 Code for the method is available, not the experiments, and we were unable
to replicate their results in our attempt.

https://paulnorthrop.github.io/revdbayes/
https://github.com/NeuromorphicComputationResearchProgram/EasyRejectionSampling
https://github.com/NeuromorphicComputationResearchProgram/EasyRejectionSampling

1932 E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals

to Cip1 = max (C’t, ; E;fii;), that there will be a finite number
of errors when the support X is discrete, with a similar result for
unbounded support. However, [7] still required the specification of
g(+). We note that the Empirical Supremum was found to converge
in under 100 iterations. We leverage this by performing a minimum
of 500 samples per iteration, using the maximum across all samples
before deciding an accept/reject decision. In practice we find that this
results in convergence within 0.001 in one iteration, resulting in no
difference between using C and the true C for our experiments.

Understanding that we will safely estimate C' as the sampling
runs allows us to specify the overall strategy of our approach. The
description is subdivided into three critical design choices. Together,
they will form our “Easy Rejection Sampling” approach.

1. We will use a batched iterated sampling procedure to alter the
candidate distribution g(-) via a Gaussian Mixture Model after
successive rounds of sampling.

2. We will specify a simple gradient based strategy for selecting an
initial candidate distribution g(-) with few evaluations of f(z).

3. We develop an approach to refining the distribution g(-) to max-
imize acceptance rate, where prior work has instead focused on
maximizing the overall similarity of the distributions.

‘We note that the third refinement step, where we develop a loss
function that targets the ratio f(-)/g(-) directly, is critical to the
success of our method. It is placed at the end due to readability, and
it is the last step of each iteration. This is necessary as we use both
accepted and rejected samples to inform the refinement, so running
the refinement regularly can further improve the results by reducing
C further.

Careful design allows us to perform significantly better than the
theoretically optimal (in only a min-max sense®) NNARS algorithm
while simultaneously requiring fewer constraints and no extra infor-
mation from the user. This shows that the constant factors in NNARS
are non-trivial, and full understanding of the limits of adaptive re-
jection sampling is not yet known. Our method further inherits the
correctness results from [7], and additional empirical tests show no
detectable difference in our sample quality from the true distribution.

Each of the following sub-sections match our stated design choices,
and will detail the relevant approach with the justification for why
the approach was taken. We note that, as a matter of engineering, the
below procedures currently include hard-coded hyper parameters that
we do not tune. Their purpose is simple and intuitive (e.g., increase
a value by some small amount so we are not comparing to a worst
case), and do not require complex math like the Holder constant used
by NNARS. In extended testing we found that these coefficients did
not have a meaningful impact on the results.

Our implementation is done in JAX [6] and works on log(f(-))
and log(g(+)) in order to be numerically stable. Our description will
remain at the f(-) and g(-) level for clarity.

3.1 Easy Rejection Sampling Algorithm

The overall procedure of our approach can be succinctly described as
fitting a GMM to the current data as the proposal distribution g(x),
sampling, and then re-fitting the proposal g(x) at various intervals.

3 Their proof is with respect only to families of the Holder density, in worst-
case situations. This does not inform a limit on the rejection rate for non-
worst-case densities within that family, let alone those beyond it. For exam-
ple, densities with infinite support already are outside the scope of these
proofs. This is not to diminish the value of their theoretical contributions,
but to elaborate that significant room for improvement is still possible.

Our use of vectorized operations makes the multiple fittings of g(x)
computationally reasonable, and when factoring out differences in
acceptance rate is > 2 X faster on CPU, and shows the first speedup
for a rejection sampler on a GPU at 4.

Our approach is shown in pseudo-code in Algorithm 1, where A
and R contain the set of currently accepted and rejected samples, with
their evaluations against f(-) cached for posterity. The K current
mean, covariance, and weights of the GMM are p1,... x,21,... K,
and w respectively; the subscript 1, ..., K will be dropped if the
value of K is not changing. Our two primary operations are fitting a
GMM (initialized with k-means++ [2, 29]), and a “refine” step that
we discuss in subsection 3.3.

Algorithm 1 Easy Rejection Sampling

Require: Target function to sample f(-), limited to a domain X. A
target number of samples to draw 1T’
I p,.. Kk, 21, K, Ww < INITIALIZE(f, X) > g(z) is short for
K wi - Na (s, 24), see Algorithm 2. Note: K is the number
of initial means determined by the Initialize function.

20 A+ > Accepted samples

3R] > Rejected samples

4: C' <= —00, Clow + 00

5: refine <— False

6: while |A| < T'do

7: XIes(BE+D.T () b Draw n - log(K + 1) candidate
samples

8: C + max; (ggi;;) > Batch supremum

9: refine «+ C' > CV C > Ciow

10: C « max(C,0)

11: Clow + min(Cley - 1.05,C)

12: u; ~U(0,1)

13: Acceptto A all u; < %, all rejectedto R~ > f(x;) is
cached for all samples o

14: 0,3, — 1,3, w

15: if Last GMM call was more than |A|/1.5 acceptances ago or
log(]A]) > 2 - K then

> Empirical supremum

16: Bi k21 kW it GMMto AU R with K/ =
min(log, (|Al),|A|/(d - 15)) clusters

17: refine <— True

18: if refine then

19: u, X, w < REFINE(u, X, w, A, R) > Refine initial and
GMM, taking the best (lowest), see Algorithm 3

20: C + max; (%), Ve, € AUR

21: if C < C then

22: C+C > We keep current refinement

23: else

24: w3, w < 1,5, > We reject current refinement,
and revert to previous model.

25: refine < False

We sample n = 500 items at a time, and increase the value multi-
plicatively with the log of the number of components K in the mixture
to ensure sampling is computationally effective. We note on line 4
that we initialize the empirical supremum C to —oo instead of 1, be-
cause it allows our approach to work with both unnormalized f(-)
and unnormalized g(-). The former reduces the complexity of the
implementation, especially for intractable normalization terms that
would require estimation. The latter helps with bounded support X,
avoiding more costly and complex evaluations of g(-). This is possi-

E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals 1933

ble because C' is simply determining the maximum observed ratio,
and so any missing normalizing terms in either function roll into C
multiplicatively i.e, % - L3021 — = o))

Lines 7-13 perform the rejection sampling, where C' is the batch
supremum, which in most all cases converges (or closely approaches
convergence) in a single iteration. We also keep track of Cioy, a
running estimate of the lowest batch supremum seen inflated by 5%
per round. If the current batch supremum is above C',,,, we flag the
model for refinement. While violating Cj,,, does not change the em-
pirical supremum C, it is an indicator that we may have acquired
new—relatively harder—samples that will benefit the refinement opti-
mization later. A refinement is also done if the bound C occurs, but
this is rare and usually occurs due to samples occurring out in the tail
of the distribution (e.g., f(z)/g(x) could be larger for an x such that
max(f (), g(x)) S 1/n).

A potential GMM is fit whenever the number of accepted samples
has increased by 50%, to avoid excessive training of GMMs. We do
not require fitting an accurate distribution, but rather one that can be
refined to a maximal acceptance rate, and do not require finding the
“optimal” number of mixtures. As such we use the standard expec-
tation maximization approach with diagonal covariance, and simply
make the number of mixtures in the new GMM grow logarithmically
with the accepted sample size. The diagonal covariance is used be-
cause it is faster to sample from by a significant margin, especially
when a compact support X is given where samples can be drawn in
O(1) time, as the general case for an arbitrary covariance is highly
non-trivial [5]. We use Ay to denote the normal distribution truncated
to the domain of X', which is user specified (e.g., a function in the
domain [0, co]).

Why not full rank covariance? Using a full-rank X is problematic
when we have compact support X (i.e., € [0, c0]) because there is
no closed form method of sampling from the truncated distribution
Nx, which thus requires its own sampling scheme to drawn from [33].
This is extremely expensive, and we found that the Gaussian clusters
that occur at the edge of the support X" are very challenging to sample
from and would increase run-time by 10, 000 just due to the cost of
sampling from the resulting g(-). Thus diagonal X is preferred due to
exact and fast sampling from it’s truncated distribution.

A key optimization is that the GMM is fit to both accepted and
rejected samples, by weighting each data point x; by its true evalua-
tion f(x;). This is essentially free, as we cache all calls to f(-), and
requires at most doubling the memory use. Heuristically, we multi-
ply the weight of accepted samples by a factor of 10 to reflect their
greater importance to the underlying distribution, which allows our
method to still work even when initial sampling rates are low. These
factors all occur in lines 15-17.

Finally, we perform the refinement on lines 18-24. This is a non-
convex problem, and so does not always succeed. If a GMM was
attempted on lines 15-17, both the current model and the candidate
GMM will be refined. We can compute the empirical supremum
using the cached f(-) values again, to determine if the refinement has
provided a new distribution g(-) that is better than prior solutions.

We can formally show the proofs of [7] still apply, using their
notation:

Theorem 3.1. Algorithm 1, given a fixed g(-), and a sequence of i
samples draw thus far, converges to the same or better (fewer false
samples) solution as [7], and thus retains O(i~*) convergence rate
of correctness.

F(Xiz)

P}’OOf Let 7; = min{j eN ‘ Uij < =

W} define the se-

quence of samples drawn from g(-) that define the index of the
i’th sample X; 7 sampled by Empirical Rejection Sampling, and
7; the result from using the true supremum C. If samples are se-
lected B at a time by Algorithm 1, then the sampled index 7% =
min {j EN|U; < 1(Xi5) } By definition C; <

Ci+(Bfi mod B)g(Xij

@H, and so a simple recurrence shows that @ < 6i+(B—i mod B)-
Thus it must be the case that TiB < 7;. Since 7; controls the accep-
tance of samples and forms the proof of correctness for [7], then
Algorithm 1 also satisfies the proof for a fixed g(-). O

The proof that you can alter g(-) is of the same form by “restarting”
the sequence when g(+) changes, and using the previous X; ; values to
pick an initial C} that is valid (true by definition, as its the maximum
ratio of f(-)/g(-) observed so far), and beginning a new convergence
of rate O(i ") at the warm-started solution C} .

This proves that our Algorithm 1 will converge to a solution
of reasonable quality, it does not guarantee that no erroneous
samples will occur. The probability of this can be described,
but not easily quantified, as the likelihood the ¢’th sample x;

being drawn incorrectly is the situation that c{g(?f) < u <
f(=i)

= , which simplifies to answering the probability
Cit(B—i mod B)9(Ti)

that P (C <

Cit(B—i moa B)f (i)
F(xi)=Ciy(B—i mod B)9(Ti)u;

). This is hard to quan-

tify due to the joint dependence on a future iteration’s estimate of C
(because we get samples in batches), the curvature of f(-) and g(+),
and the uniform random value of ;. We instead use the final value of
C to check that empirically, we do not appear to have falsely accepted
any samples. All of our experiments passed this test.

3.2 Initial Proposal Distribution

Now that we have specified the overall iterative strategy of our rejec-
tion sampler, we specify how the initial distribution g(-) is chosen.
Congruent with standard practice, we aim for our initial proposal to
be wider than the underlying distribution f(-), and let subsequent iter-
ations of our algorithm narrow the proposal once samples have been
obtained. Note that we count all f(-) evaluations in this stage against
the total number of calls for computing sample acceptance rate, so it
is important that we find a reasonable choice with a limited number
of f(-) evaluations.

The procedure is outlined in Algorithm 2, and contains three pri-
mary steps: 1) handling finite support, 2) apparently unimodal distri-
butions, 3) multi-modal distributions.

First, if the distribution was indicated to have a bounded support,
we simply set g to have the center of the min/max bounds, and set
the covariance to be wide enough to cover the entire space. This
occurs on lines 3-7, and handles the finite support case. On lines 8-9
we have potentially infinite locations for the distribution, and so use
random sampling to find a location that has a non-zero probability.
This provides greater flexibility for our approach.

Once an initial point is selected, on lines 10-13 we sample a small
number of points in the space around the initial point, and then use
Stochastic Gradient Descent (SGD) to maximize the value of f(-).
Because we are trying to empirically find some number of modes of
7 (), we use fast converging FISTA [3] to quickly reach local maxima
as implented in jaxopt [4]. These modes are used to determine whether
or not the distribution is multi-modal.

1934 E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals

Algorithm 2 Initialization of first proposal distribution g(xz) =
K wi - N i, %)
procedure INITIALIZE(f, X)

I:
2 z<+ 0

3: if X is compact then
4

5

1 <—CENTER(X)
: ¥1 +RANGE(X)/3
space with 3 &

> Place g(x) at the center.
> Set radius to cover the whole

6: w + [1] > Uni-modal
7: return (i1, X1, w
8: while f(z) = 0do > Maybe discontinuous?
9: x ~N(0,1I)

10: fori € [1,d+ 3] do

11: modes; < x+ ~ Nx(0,1)

12: modeSq+4 < T

13: Run SGD on modes to minimize Y, — f(modes;)

14: if Covariance of modes... < € then > We need to estimate a

covariance

15: 1 % Zf modes;

16: foric [1,d-2+ 10] do

17: spread; z+ ~ Nx(0,1)

18: Run SGA on 3, log (f(z) — spread; — 5)*

19: 31 <—CoV(spread)

20: w + [1]

21: return fq, 21, w

22: else > Estimate multi-modal coverage

23: Select K values p1,p2,...,ux from modes via k-

farthest selection, stopping when ||ux — pr+1|2 < €

24: Set X < I - (max;,. ||pu; — p=ll2/K), Viell, K]

25: w+ I/K

26: return p. 3., w

We check for unimodality by checking the covariance of the found
modes, and if smaller than some ¢, that means all points are on top of
each other and thus the distribution appears unimodal (if that was an
erroneous decision, it will eventually be corrected by the sampling and
GMM refits). To estimate a covariance matrix, we again use SGD to
find points that have a different in log probability of —5 lower, which
is many orders of magnitude smaller. The covariance is estimated
from these points, which—being overly far from the mode of the
distribution—will have heavier tails than f(-) and thus allow good
sampling coverage.

If the covariance is non-zero, we begin selecting the 2 farthest
pairwise points, and iteratively looking at the next point that is farthest
from the current set until the distance becomes < ¢, indicating that
we are not selecting any new modes. This gives us a set of K modes,
and we use the maximum pairwise distance divided by the number
of modes as the covariance for all modes. This again provides an
overestimate of the true covariance and thus helps ensure coverage.

Combined, these give us a strategy for selecting the initial dis-
tribution g(-) that will quickly identify empirical maximum ratios
f(-)/g(-), and allow fast convergence of our methods.

3.3 Refinement

The final, and most significant improvement of our method is the
refinement operation, where we alter the GMM to improve the accep-
tance rate of samples drawn. Our key insight is that the kernel density
estimates used by NNARS and PRS are attempting to minimize losses

of the form [, |f(z) — g(«)|” dz. This is intuitive: the closer f(-)
and g(+) are, the higher the acceptance rate will be. Yet, this is not
what the core rejection sampling procedure addresses. Instead we can
seek to refine the initial proposal model g(-) to minimize sup ¢ 1)

9(2)
in a direct fashion, such that we should expect high acceptance rates.

Algorithm 3 Refinement of p1,... x,¥1,... k, w using accepted and
rejected samples A and R

1: procedure /(p, 3, w, A, R)

2 ay = log(f(mi)/g(wi)),
3: return (SOFTMAX(a), o)

Ve, € A

4: while Max iterations not reached do

5: Alter p, 3, and W using %, g—é, and % via automatic
differentiation

6: if Current solution is < than C then

7: return p, 3, w

8: return original p, 3, w

Our approach to doing so is simple and detailed in Algorithm 3. We
use the existing samples to compute the log ratio «; = log(f(x:)) —
log(g(x:)), giving us a vector of empirical results. While we could se-
lect the maximal «; to use as the loss to minimize, this is undesirable,
as many «; may be large and the optimization will take longer (espe-
cially when many mixture components K exist, using the maximum
will generally influence only one of K components). Instead we use
the approximate maximum computed by SOFTMAX () " o, which
allows a better behaved gradient to impact multiple components K
in proportion to their log-ratios. Optimizing SOFTMAX () " «x still
directly tackles the sampling ratio f(-)/g(+), and so results in higher
acceptance rates via lower C' values. Crucially this requires no fur-
ther calls to f(-) because it is performed only on the current samples
(accepted and rejected) which have already cached f(-) values.

This approach may be seen as an adaption of the strategy used for
gumbel softmax sampling trick of [16], but instead of reparameter-
izing a target function we are creating a biased approximation that
is advantageous in practice. In our context, the “correct” target func-
tion is to replace line 3 of algorithm 3 with maxy; a;. This uses the
maximal value (of %), but also means that Vj # 4, the gradient
through «; is exactly equal to O (i.e., the max operation returns a non-
zero gradient only to the index that was selected). This is problematic
when the ratio M is multimodal, because only one mode of g(-) will
get a meaningful gradient because only one point a; contributed to
the final loss calculation (via ;). By using the softmax each mode
of % we get a gradient proportional to its scale, and so progress
over the whole domain is made instead of just one location. Thus we
replace the target function of interest with a biased approximation
(i.e., Softmax(a)Ta # max; «;) because it results in better learning
behavior. In comparison, [16] need a well-defined gradient through a
stochastic function, and so require the softmax for their approach to
define that gradient that is unbiased. But we both use the softmax to
get a well-behaved gradient.

Because this is a non-convex optimization problem, we use the
AdaBelief[34] optimizer with an initial learning rate of 0.1, and per-
form 800 total gradient update steps per refinement call. We check the
quality of the solution at 100, 200, 400, and 800 steps and select the
best (lowest maximum ratio). Efficacy could be improved by check-
ing at every iteration, but is not advantageous from a computational
perspective due to the interpreter overheads of Python.

E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals 1935

4 Experiments and Results

Having defined our approach, we first specify our experiments, fol-
lowed by results showing that ERS is competitive with or significantly
better than prior methods while simultaneously requiring less infor-
mation from the user. We will use several standard benchmarks used
for rejection sampling problems that each exercise a different kind
of challenge for which a sampler may suffer low acceptance rates.
The primary measure of interest is the acceptance rate, which indi-
cates what percentage of samples g(-) are accepted divided by the
total number of evaluations of f(-). This means the gradient descent
operations used in subsection 3.2 reduce the total rate of ESR. The
gradient evaluations in subsection 3.3 do not count because the values
of f(x;) are cached during the initial sample acceptance/rejection
evaluation, so no additional evaluations of f(-) are needed. Consistent
with prior work, we use n = 10° target accepted samples and 10 runs
to compute the mean and standard deviation of results. In all cases we
report the NNARS, PRS, A*, and OS* results from prior works as we
were unable to replicate their success.

Three primary and challenging problems are used as the target
function f(-). The first is the “peakiness” problem proposed by [20]
in Equation 1, where a controls how “peaky” the distribution is and
the domain X € (0,00). As a — oo the peakiness gets higher,
making sampling more difficult.

—x

e
(14)

The next problem tests the impact of scaling the dimension size
of the problem and is given for a general d-dimensional distribution
in Equation 2 as proposed by [10]. Here the support is compact with
X € [0,1]. We note that this distribution is highly multi-modal,
making it especially challenging. Most rejection sampling focuses on
one-dimensional problems due to the difficulty of specifying a useful
g(-) and C.

flx) x 1

d
. ™
f(z) 1;[1 (1 + sin (4m1 _ 2)))
The last test we consider is the “clutter” problem first posed by
[22], and is given in Equation 3. Here 6 indicates a set of centers that
are selected from 10 points spaced uniformly in the range of [—5, —3]
and [2, 4]. This creates a distribution with two very strong peaks that
are separated by a far distance, and has been a challenging sampling
distribution for over two decades [22].

flz) ﬁ?‘ ((2#)7‘1/26*("’*902/2)

i=1

+ (1= 7) ((2m) e =00 210071) -)

For all tests where d < 2 we ran a two-sample Kol-
mogorov—Smirnov (KS) test comparing ERS’s samples with those of
Ax as implemented in the original code, or with the true distribution.
In no case was a difference in ERS’s samples and the target distribu-
tion detected. Because the KS test is not well defined for d > 2, in
these situations we used a two-sample Carmer test, which also found
no significant difference.

We note that reproducibility of NNARS and PRS is limited. For
NNARS and PRS Equation 1 results are given, though the distribution
is not compact — and no transformation [0, co] — [0, 1] is specified.
Similarly for PRS results on the clutter task Equation 3 are given,

and were obtained by artificially clipping the distribution to a range
that contained all samples*. Both methods have hyper-parameters that
are not specified and would be altered by a chosen transformation,
further complicating our replication of their results. Since NNARS
presents the state-of-the-art results, we use their reported results as
our comparison numbers though we are unable to reproduce them.

4.1 Empirical Acceptance Rates

Results will be presented in the same order as the problems were
specified. Results also present a “Simple Rejection Sampling” (SRS)
baseline of manually specifying g(-) and C as reported by prior work.

T T T T T
e ——ERS--- NNARS | |
l‘ PRS -eeeeee Slmple
X A* 0s*
0.8 £\ 1
s
L 2
Zo06[Y |
o \
2 i
= i
g 04f by .
< ., %
v,
02 8
0 - .
| | | | |

Peakyness a

Figure 2: Results on the peakiness problem of Equation 1, where a = 1
indicates minimal peakiness and easier samping, and @ = 20 is higher
peakiness and more challenging to sample from. NNARS and PRS
only perform better for a = 1, where all approaches perform well.
Our ERS suffers only a 1% point drop in mean acceptance rate as a
increases at each step, where all other approaches degrade quickly.

Thus we start with the peakiness problem, which has historically
favored the optimization & sampling approaches of OS* and A*. Our
results with standard deviation are shown in Figure 2. While ERS has
a lower acceptance rate for the easiest case of @ = 1, ERS is almost
uninhibited by increased peakiness as a — 20, which quickly turns
into a large and dramatic advantage of 56.7 percentage points. This
makes ERS the most robust to the challenge by a large margin, and
we argue superior to PRS and NNARS that, while better for a = 1,
quickly drop in efficacy down to an acceptance rate of 2% and 0.2%
respectively.

We wish to point out that ERS works on Equation 1 directly, where
NNARS and PRS must have applied an unknown transformation o
convert Equation 1 to one with finite support. We suspect that, given
the same transformation, ERS is likely to have comparable or better
acceptance rate in the a = 1 case.

‘We next consider the dimension scaling problem, which historically
favors KDE based approaches. The results are shown in Figure 3.

4 This was indicated by the author when asked over email, though they do
not remember the clipping value. We appreciate their responsiveness and
valuable information that helped us determine replicability.

1936 E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals

1r S _
—— ERS - - - NNARS
...... PRS -eeeeeee Slmple
08F N\ A* os* ||
2 06 .
~
3]
g
& 04 .
3]
<
0.2+ i
O |- |
| | | | | | |

Dimensions

Figure 3: Results for Equation 2 as the number of dimensions d in-
creases. In this case ERS provides superior acceptance rates for low
dimensionality, but suffers from the curse of dimensional similarly to
prior KDE based methods — its results becoming statistically indis-
tinguishable as d = 7 is reached.

Here we see a somewhat inverted behavior, where ERS dominates
for d < 4, but becomes statistically equivalent to PRS and NNARS
as the dimension increases. Thus we conclude that ERS has equal or
better performance in all cases for this problem.

The dimension scaling and peakiness results combined are partic-
ularly significant in that ERS performs overall best for both tasks,
where previously performance favored only one between two differ-
ent styles of adaptive rejection samplers. That we perform well across
both tasks directly speaks to the original design goal: an easy to use
sampler that can be an initial solution applied to problems and ob-
tain effective results. In particular, we imagine that running ERS for
even larger n can be an effective way of determining how challenging
a problem may be to devise a better rejection sampler for, since it
performs well with no tuning.

Last we consider the Table 1: Clutter problem Equation 3 ac-
clutter problem, with ceptance rate results for 1 and 2D data, in-
results presented in Ta- cluding standard deviation (o) of results.
ble 1. Here we see that

ERS has a 5.6% point ERS PRS A* SRS
advantage over A* in ID 950 795 894 17.6
the d = 1 case, and o 07 02 08 0.1

a larger 36.33% advan- 2D 924 510 561 <00

tage in the d = 2 case.
Though ERS’s advan-
tage comes at a mild increase in the variance of the results, the large
gap in acceptance rate more than makes up for the variance.

o 1.0 0.4 05 <00

4.2 Runtime Considerations

Our implementation uses JAX, making it easy to add acceleration as
well as use current Python tools. This is relevant because ERS is the
only vectorizable algorithm under consideration. Multiple samples
and computations are collected concurrently, allowing the potential
for acceleration. All models were benchmarked in a Google Colab

instance, which provided a Tesla V100 GPU and a TPU. We consider
only the A* and OS* for runtime comparisons at baseline since the
author’s code is available and implements the Clutter problem. This
way we are directly comparing against the original implementation
details.

The results can be found in Table 2,
where we see that ERS is the fastest in
terms of runtime. The acceptance rate
difference does not explain the differ-
ence in runtimes. Scaling the A* run-
time by the difference in acceptance

Table 2: Runtime of ERS
compared to the faster
A* and OS* algorithms
on the Clutter problem.
All times reported in sec-

ds.
rates would give a speed of 2,476.4 sec- ones
onds to produce 10° samples, which is Method. Clutter
still 2.16x slower than ERS for d = 1.
Adding a GPU increases the speed ad- ERS: CPU 11485
vantage to 3.9x. We note that the TPU ERS: GPU 634.2
appears to be slightly slower than CPU, ERS: TPU 1398.6
A* 2631.5

and is likely due to the design of TPUs
to work on larger batches of data at one
time for larger neural networks.

We note that the GPU has very low
utilization in our testing, in part because 10° d = 1 samples is only
6.4 MB of data to be processed, which is not enough to fully leverage
the compute capacity of these devices. As such we would anticipate
even larger speedups for problems that required larger sample sizes,
and efficacious GPU/TPU utilization for rejection sampling is an
avenue for further research.

OS* 3348.4

4.3 Ablating Hard-Constants

While our approach has a number of “magic numbers”, each is set
with a simple intuition e.g., only run the GMM when 50% more items
have been sampled because there must be enough new data to get a
different result. We ablate these by modifying each constant with 4
values in the range of 50% smaller to 100% larger than specified. We
then run ESR for all combinations of these constants on the peakyness
task with @ = 20 as it has the most variance of any of our tests. We
use the same seed for the generated samples because we want to see
what the impact of these constants are, and so all runs getting the
same generated sequence of samples allows us to isolate that factor.
In doing so we observe a minimum acceptance rate of 75.5% and a
maximum of 75.9%, indicating only a 0.4% variation due to the hard
constants.

5 Conclusion

Our approach of refining a parameterized proposal distribution g(-)
represents a new approach to defining general purpose rejection sam-
plers. It requires fewer parameters, functions, and derivations to be
specified—requiring only the target function f(-) to be specified,
while simultaneously returning up to 7x higher acceptance rates and
4 x lower runtime even after accounting for the difference in accep-
tance rates. While we do not resolve the limitations of rejection sam-
pling to higher dimensional data, our method enables a strong and
effective baseline.

References

[1] Juliette Achddou, Joseph Lam-Weil, Alexandra Carpentier, and Gilles
Blanchard, ‘A minimax near-optimal algorithm for adaptive rejection
sampling’, in Proceedings of the 30th International Conference on Al-
gorithmic Learning Theory, eds., Aurélien Garivier and Satyen Kale,

[2]

(3]

(4]

[3]

(6]

(7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

E. Raff et al. / An Easy Rejection Sampling Baseline via Gradient Refined Proposals

volume 98 of Proceedings of Machine Learning Research, pp. 94-126.
PMLR, (2019).

David Arthur and Sergei Vassilvitskii, ‘k-means++: The Advantages of
Careful Seeding’, in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, volume 8, pp. 1027-1035, (2007).
Amir Beck and Marc Teboulle, ‘Mirror descent and nonlinear projected
subgradient methods for convex optimization’, Operations Research
Letters, 31(3), 167-175, (2003).

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan
Hoyer, Felipe Llinares-Lopez, Fabian Pedregosa, and Jean-Philippe Vert,
‘Efficient and Modular Implicit Differentiation’, arXiv, 1-25, (2021).

Z 1 Botev, ‘The normal law under linear restrictions: simulation and
estimation via minimax tilting’, Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 79(1), 125-148, (1 2017).

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

Brian S. Caffo, James G. Booth, and A. C. Davison, ‘Empirical Supre-
mum Rejection Sampling’, Biometrika, 89(4), 745-754, (2002).
George Casella, Christian P. Robert, and Martin T. Wells, ‘Generalized
Accept-Reject sampling schemes’, 342-347, (2004).

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and
Noah A. Smith, ‘Show Your Work: Improved Reporting of Experimental
Results’, in Proceedings of EMNLP, number 2, pp. 2185-2194, (2019).
Akram Erraqabi, Michal Valko, Alexandra Carpentier, and Odalric-
Ambrym Maillard, ‘Pliable Rejection Sampling’, in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, p. 2121-2129. JMLR.org, (2016).

M. Evans and T. Swartz, ‘Random Variable Generation Using Concavity
Properties of Transformed Densities’, Journal of Computational and
Graphical Statistics, 7(4), 514, (12 1998).

Alan Genz, ‘Numerical Computation of Multivariate Normal Probabili-
ties’, Journal of Computational and Graphical Statistics, 1(2), 141, (6
1992).

Dilan Goriir and Yee Whye Teh, ‘Concave-Convex Adaptive Rejection
Sampling’, Journal of Computational and Graphical Statistics, 20(3),
670-691, (1 2011).

Odd Erik Gundersen and Sigbjgrn Kjensmo, ‘State of the Art: Repro-
ducibility in Artificial Intelligence’, Proceedings of the 32nd AAAI Con-
ference on Artificial Intelligence (AAAI-18), 1644—-1651, (2018).
Wolfgang Hormann, ‘A rejection technique for sampling from T -
concave distributions’, ACM Transactions on Mathematical Software,
21(2), 182-193, (6 1995).

Eric Jang, Shixiang Gu, and Ben Poole, ‘Categorical reparameteriza-
tion with gumbel-softmax’, in International Conference on Learning
Represenations, (Aug 2017).

Stephen Jewson, Clair Barnes, Stephen Cusack, and Enrica Bellone,
‘Adjusting catastrophe model ensembles using importance sampling,
with application to damage estimation for varying levels of hurricane
activity’, Meteorological Applications, 27(1), 1839, (2020). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/met.1839.

A T Jul, Marc Dymetman, Guillaume Bouchard, Simon Carter, and
De Maupertuis, ‘The OS* algorithm: a Joint approach to Exact Opti-
mization and Sampling’, arXiv, 1-21, (2012).

Noureddine Kermiche. Total Rejection Sampling and the Reduction of
the Wave Function, July 2022.

Chris J Maddison, Daniel Tarlow, and Tom Minka, ‘A* Sampling’, in Ad-
vances in Neural Information Processing Systems, eds., Z Ghahramani,
M Welling, C Cortes, N Lawrence, and K Q Weinberger, volume 27.
Curran Associates, Inc., (2014).

Luca Martino and Joaquin Miguez, ‘Generalized rejection sampling
schemes and applications in signal processing’, Signal Processing,
90(11), 2981-2995, (November 2010).

Tom Minka, ‘Expectation oropagation for approximate Bayesian infer-
ence’, in Uncertainty in Artificial Intelligence, (2001).

Kirsten Mitchell-Wallace, Matthew Jones, John Hillier, and Matthew
Foote, Natural Catastrophe Risk Management and Modelling: A Practi-
tioner’s Guide | Wiley, May 2017.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim, ‘A Metric Learning
Reality Check’, in ECCV, (2020).

Nguyet Nguyen and Giray Okten. The acceptance-rejection method for
low-discrepancy sequences, March 2014. arXiv:1403.5599 [g-fin].
Maris Ozols, Martin Roetteler, and Jérémie Roland, ‘Quantum re-

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

1937

jection sampling’, in Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, pp. 290-308, (January 2012).
arXiv:1103.2774 [quant-ph].

Spassimir H. Paskov and Joseph F. Traub. Faster Valuation of Financial
Derivatives, August 1998.

Edward Raff, ‘A Step Toward Quantifying Independently Reproducible
Machine Learning Research’, in NeurIPS, (2019).

Edward Raff, ‘Exact acceleration of k-means++ and k-means||’, in Pro-
ceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, p. 2928-2935, (2021).

Edward Raff, ‘Research Reproducibility as a Survival Analysis’, in The
Thirty-Fifth AAAI Conference on Artificial Intelligence, (2021).
Edward Raff, ‘Does the market of citations reward reproducible work?’,
in Proceedings of the 2023 ACM Conference on Reproducibility and
Replicability, ACM REP °23, p. 89-96, New York, NY, USA, (2023).
Association for Computing Machinery.

Edward Raff and Andrew L. Farris, ‘A siren song of open source repro-
ducibility, examples from machine learning’, in Proceedings of the 2023
ACM Conference on Reproducibility and Replicability, ACM REP ’23,
p. 115-120, New York, NY, USA, (2023). Association for Computing
Machinery.

Stefan Wilhelm and B G Manjunath, ‘tmvtnorm : A Package for the
Truncated Multivariate Normal Distribution Generation of random num-
bers computation of marginal densities’, The R Journal, 2(1), 25-29,
(2010).

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha
Dvornek, Xenophon Papademetris, and James Duncan, ‘AdaBelief Op-
timizer: Adapting Stepsizes by the Belief in Observed Gradients’, Ad-
vances in Neural Information Processing Systems, 33, (2020).

	Introduction
	Related Work
	Method
	Easy Rejection Sampling Algorithm
	Initial Proposal Distribution
	Refinement

	Experiments and Results
	Empirical Acceptance Rates
	Runtime Considerations
	Ablating Hard-Constants

	Conclusion

