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Abstract. Lung cancer is a leading cause of cancer-related deaths,
and early diagnosis is crucial for its effective treatment. That is why
computer-aided tools have been developed to support particular steps
of CT scan analysis, including lung segmentation, suspicious region
detection, and patient-level diagnosis. However, none of the previ-
ous approaches addressed this process comprehensively. To fill this
gap, we introduce CompLung, a comprehensive tool for lung can-
cer diagnosis that performs all of the above-listed steps in an end-
to-end manner. We have trained the CompLung architecture using
the publicly available LIDC-IDRI dataset extended with lung seg-
mentation masks obtained from our internal radiologists, which we
make publicly available to boost the research on this emerging topic.
Finally, we conduct extensive experiments and demonstrate the su-
perior performance and interpretability of CompLung compared to
existing methods for lung cancer diagnosis.

1 Introduction

Lung cancer is a leading cause of death in men, and early diagnosis
is crucial for its effective treatment [13]. However, analyzing Com-
puted Tomography (CT) scans to detect this disease is a complex
and time-consuming process that requires highly trained radiologists.
Furthermore, biases and disagreements between doctors usually re-
quire consensus, complicating it even more. That is why various
machine learning tools were introduced to address those challenges
[10, 26, 33, 37].
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Figure 1: Overview: We propose a fully automated pipeline for lung
cancer screening. Our CompLung takes as input an unprocessed
computer tomography lung scan. The result is an organ segmenta-
tion mask, patient-level cancer probability and locations of detected
potentially malignant nodules.

The existing approaches are dedicated to automating individual
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Figure 2: Lungs segmentation: In the first stage of CompLung, the
lung area is segmented to create a mask for later stages. It is a two-
stage process. It uses classical image analysis methods (like thresh-
olding and mathematical morphology) to generate initial segmenta-
tion, which is then refined by autoencoder architecture.

stages of diagnosis, such as lung segmentation [15, 19] or nodule

classification [1, 33]. However, considering those stages individually

is unreliable because it does not regard the mistakes made by the
previous steps.

Except for the strong research efforts in single steps of lung can-
cer diagnostics, researchers have introduced a deep learning-based
method for the multistep procedure presented in [37]. This approach
involves detecting suspicious regions and classifying them to deter-
mine if a patient has lung cancer. However, this method has limita-
tions, including the detection of noise outside the lungs as suspicious
regions, which can lead to false positives. Additionally, the model’s
low specificity in detecting suspicious regions may negatively impact
patient-level diagnosis as it aims to detect as many cancer regions as
possible, which may result in a high number of false positive predic-
tions.

To address these limitations, We introduce CompLung, a compre-
hensive tool for lung cancer diagnosis that performs all steps of CT
scan analysis end-to-end (see Figure 1). It starts with lung segmenta-
tion, where the initial mask obtained with classical methods is refined
using U-Net [29]. Then, it detects the suspicious regions using a de-
tector based on Faster R-CNN [28]. Those regions are filtered out by
region classifier. Finally, the remaining patches are treated as aggre-
gated to obtain patient-level prediction using the Multiple-Instance
Learning method [22].

Conducted experiments demonstrate that CompLung overpasses
existing approaches on the LIDC-IDRI dataset while being more
interpretable. Moreover, it demonstrates an ability to reliably per-
form multiple diagnosis steps, distinguishing it from other methods.
Therefore, it can be considered a reliable diagnostic system for lung
cancer diagnosis based on CT scans.

Our contributions can be summarized as follows:

e We propose CompLung, a comprehensive end-to-end diagnostic
system for lung cancer diagnosis based on CT scans.

e We extend the LIDC-IDRI dataset with lung segmentations ob-
tained from internal radiologists and make this extension publicly
available for other researchers (see Section 4).

e CompLung can be considered a reliable diagnostic system due to
its comprehensiveness and high accuracy, achieving over 8% im-
provement in patient-level classification AUC (area under the re-
ceiver operating characteristic curve) score compared to state-of-
the-art methods.

2 Related Works

Due to their medical importance, computer-assisted diagnosis meth-
ods for lung cancer have been developed for years with various levels
of automation [13]. In this section, we first describe existing algo-
rithms for lung organ segmentation. Later we focus on related nodule
detection and patient classification methods.

Lung segmentation. The problem of automatic lung segmen-
tation has previously been addressed using conventional methods
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Figure 3: Suspicious patch identification: In the second stage, we
identify lung regions possibly containing the nodules by adapting
3D Faster R-CNN with Deep 3D Dual Path Net. The further stages
consider only those patches.

and deep learning models. [S] uses a region growing supplemented
by a reconstruction procedure based on a rolling ball filter for
smoothing the segmentation borders. [18] combines thresholding
with three-dimensional single-connected components labeling. [16]
applies mathematical morphology operations to refine the threshold-
ing results to produce final lung segmentation masks, while [35] uses
the Otsu segmentation algorithm for this purpose. [31] adapt optimal
thresholding followed by region labeling was also used for lung seg-
mentation. [8] apply minimal graph cutting with Gaussian mixture
models (GMMs), while [24] use fuzzy methods.

More recent methods use deep learning to address this problem.
[34] applies a 2D convolutional network to produce the segmentation
of a 2D scan. Other works use larger models such as Residual U-Nets
[9] and Deeplab v3+ [6] for automated lung segmentation [19, 15].

Our CompLung is a hybrid approach, leveraging the low data re-
quirements of conventional segmentation methods with the robust-
ness and flexibility of deep neural networks.

Nodule detection and patient classification. Standard ap-
proaches to lung cancer diagnosis do not differentiate between
nodule-level and patient-level stages. The patient is considered can-
cer positive if at least one malignant nodule is detected [13]. Conven-
tional methods generally combine several images transforms to per-
form nodule detection and manual feature engineering with a conven-
tional classifier for nodule classification. [25] uses a growing neural
gas algorithm to segment suspicious areas, followed by a set of trans-
forms to remove blood vessels and bronchi. The detected nodules are
then classified by an SVM using shape and texture features. Similar
approaches detect nodules using mass-spring models [5] or multistep
thresholding [16]. [11] propose an alternative solution, which learns
the parameters of conventional image transformations through gra-
dient descent. [1] propose advanced feature engineering, while [23]
adapts the channeler ant model.

Recent works focus on the application of deep neural networks to
this problem. [10] and [37] use Faster R-CNN [28] to detect nod-
ules and eliminate the need for complex and manually tuned con-
ventional pipelines. At the same time, module classification has been
addressed with multiscale convolutional networks [33], Dual Path
Networks [37] or 3D ResNet networks [26]. Moreover, [3] proposes
a hybrid approach combining conventional image transformation and
feature extraction methods with deep neural networks to address
the limited availability of training data. Alternatively, weakly su-
pervised multiple instance learning-based methods have been pro-
posed to solve this problem [32, 26]. Most recent models employ
self-supervision for representation learning to reduce the manually
annotated data needed for training, as the manual labeling process
requires trained radiologists and is expensive [12, 26]. Finally, the
LUNA16 challenge [30] created a well-defined testing benchmark
for algorithms for nodule detection and classification using the pub-
licly available LIDC-IDRI dataset.
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Figure 4: Patch representation learning: In the third stage, suspi-
cious patches are used to train a ResNet-18 model that distinguishes
between malignant or benign/healthy. Values from its penultimate
layer are considered as patch representation.

Despite multiple nodule detection and classification approaches,
end-to-end patient-level assessment methods still need to be in-
cluded. We identify only two modern, deep learning-based works
that address the problem of patient-level classification on the LIDC-
IDRI dataset. The first of them introduces DeepLung [37], a two-
step deep learning algorithm with FASTER R-CNN and 3D-CNN
for detection and classification steps, respectively. The second com-
pares weakly-supervised methods for automated lung cancer classi-
fication [26].

CompLung extends the deep learning-based nodule detection and
classification by adding a patient-level weakly-supervised stage,
which improves overall accuracy.

3 CompLung

In this section, we describe CompLung, a comprehensive tool for
lung cancer diagnosis working end-to-end. In successive steps de-
scribed below, it performs lung segmentation, suspicious region de-
tection, patch representation learning, and patient-level diagnosis
steps end-to-end.

3.1 Lung segmentation

Our lung segmentation is a two-step method (see Figure 2). The first
step uses classical image analysis methods, such as thresholding and
mathematical morphology, to obtain an initial segmentation. Because
such segmentation may not reflect the anatomical shape of the organ,
the second step corrects it using deep learning methods based on
autoencoder architecture. We opted for such a hybrid segmentation
approach due to a relatively small size of the training dataset [2].

In the first step, we segment the body, and within the body, we seg-
ment the lung area, bronchial tree and trachea. The initial lung seg-
mentation is finally obtained by subtracting the mask of the bronchial
tree and trachea from the lung area.

The body mask is obtained by applying threshold —191 to each
slice (2D view) of the 3D CT image (HU values for soft tissues are
usually above this threshold [38]). Then, morphological operations
(hole filling and connected component labeling) are applied to find
a single connected component related to the body region. Given the
segmentation of the body region, we take the region with HU val-
ues below —320 as the initial lung area mask. This initial mask has
three defects. First, for thick slices, lungs can be merged with intesti-
nal loops. Second, it contains the bronchial tree and the trachea that
should be segmented and extracted. Third, the left and right lungs
can be merged. The first defect is eliminated by appropriate applica-
tion of mathematical morphology (erosion followed by filtering the
small components and reconstruction of at most two largest compo-
nents). Eliminating the second defect requires the segmentation of
the bronchial tree and the trachea, which starts from finding a slice
in which a characteristic pattern of three clusters is visible (two rel-
atively big clusters corresponding to the cross-sections of the two
lungs and a relatively small cluster in the middle corresponding to
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Figure 5: Patient-level classification: In the fourth (final) stage,
CompLung aggregates representations of the suspicious patches into
a single embedding per patient and passes it to the final fully con-
nected layer to obtain a patient-level classification.

the cross-section of the trachea). Then, a breadth-first search is used
starting from the characteristic slice. The third defect is neutralized
with the watersheds algorithm that starts from markers obtained af-
ter running erosion until two clusters corresponding to the two lungs
are obtained. Lung area mask without those defects is returned as the
initial lung segmentation.

In the second step, the initial lung segmentation is corrected using
convolutional autoencoder architecture trained with special data aug-
mentations that remove lung parts from the reference segmentation.
This way, the model returns more accurate lung segments, even if the
classical methods omit some parts.

3.2 Suspicious region identification

In this stage, we identify lung regions containing suspicious changes
to limit the operating range of the subsequent steps (see Figure 3).
For this purpose, we adopt a nodule candidate detector from [37]
based on 3D Faster R-CNN [28] and Deep 3D DPN network [7]
trained to detect nodules. The network consists of a U-Net-like
encoder-decoder structure and 3D dual path blocks. Segmentation
mask created in the previous step is used to remove background. Be-
cause a full 3D CT image is too large to fit in GPU memory, we apply
a 963 sliding window. After detection, we crop 323 patches centered
on detected nodules for the next stage.

3.3 Patch representation learning

For each patch extracted this way, we want to obtain its representa-
tion for the successive aggregation step (see Figure 4). For this pur-
pose, we train the classifier and then use values from its penultimate
layer (before the last fully-connected layer) as patch representation
(see Figure 4). This classifier is based on ResNet3D-18, a modifica-
tion of the standard 2D ResNet-18 [14] adapted for 3-dimensional
images. It is trained on a regression task, predicting the maximum
malignancy score of any nodule occurring in the processed 32% patch.

3.4 Patient-level classification

In this stage, we aim to provide a patient-level diagnosis (healthy
or requiring further diagnosis) based on the representations of the
suspicious patches obtained in the previous step. For this purpose,
we use Dual-Stream Multiple Instance Learning (DSMIL) [22], as it
demonstrates superior performance compared to other MIL methods.
DSMIL assigns weights to all the representations (assigning higher
weight for more crucial patches) and then use them to calculate the
weighted average, forming a single embedding per patient. This em-
bedding is classified by a fully connected layer, outputting the final
patient-level prediction (see Figure 5). By using embedding aggrega-
tion instead of aggregating predictions of patches, we achieve higher
performance as the final classifier operates on richer representations.
Moreover, thanks to limiting the number of patches only to those
suspicious, we are able to train this model with less GPU memory.
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Figure 6: Lung segmentation: The first column on the left shows
2D patches sampled from 3D CT scans. The second column presents
ground truth masks of lung segmentation prepared by our radiolo-
gists. Next, the results of automated lung segmentation created with
conventional methods are presented. Finally, the results of autoen-
coder refinement are shown. One can observe that the autoencoder
removes artifacts left by conventional methods.

4 Dataset

In our experiments we use a publicly available lung CT scan dataset
described in this section. Additionally, we created a set of segmenta-
tion masks for evaluation, which we publish together with this paper.

LIDC-IDRI. We evaluate the proposed approach on the publicly
available LIDC-IDRI dataset [2], the largest fully annotated lung CT
dataset comprising 1018 scans. We compare our results with the
DeepLung [37], MilLung, and AutoLung [26]. Therefore, we use
a similar experimental setup, 10-fold cross-validation with the ran-
dom split. Each experiment divides the dataset into ten equal sub-
sets, where eight subsets are used as the training set, and the remain-
ing two subsets are used for validation and testing, respectively. The
experiments are conducted using the first five folds, and the average
performance is reported.

Lung segmentation masks. Since the LIDC-IDRI dataset lacks
lung segmentation annotations required to evaluate the automated
segmentation module, they were created in this project. A team of
three radiologists (with 40, 15, and 6 years of experience) individu-
ally prepared segmentations using the Slicer 3D [20]. The final seg-
mentation masks correspond to their consensus and are available at
https://github.com/gmum/lidc-idri-segment. Some are presented as
the ground truth in Figure 6.

5 Experimental setup

In this section, we present evaluation regimes and implementation
details used in our experiments.

Nodule malignancy regimes. We use nodule annotations from
LIDC-IDRI to train suspicious region identifiers, patch representa-
tion encoders, and patient-level classifiers. Moreover, we follow the
likelihood of malignancy scale of the dataset, which goes from 0
(highly unlikely) to 5 (highly suspicious) with 3 meaning indetermi-
nate. To account for variations in malignancy scores assigned by the
four doctors who annotated the dataset, we take the average of their
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Figure 7: Suspicious patch identification: The first column on the
left shows 2D slices of 3D CT scans. Nodules annotated by radiol-
ogists are marked in red. Next, CT scans with suspicious locations
detected by Faster RCNN are presented, true positives (cancerous
nodules) in red, and false positives in green. On their sides, magni-
fied slices of extracted 3D patches are shown, with radiologist anno-
tations overlaid in red.

scores for each nodule. Moreover, nodules with average malignancy
scores of 3 are considered neutral and ignored for classification.

In the experiment named “malignancy > 3”, nodules with scores
greater than 3 are classified as positive, and those with scores less
than 3 as negative. In the experiment named “malignancy > 07, all
labeled nodules are classified as positive. At the patient level, a scan
is labeled as positive if it contains at least one nodule classified as
positive.

Implementation. The conventional lung segmentation module
was written using OpenCV [4] and scikit-image [36], and we utilized
the nnU-Net [17] framework for mask refinement. We changed the
nnU-Net base model by eliminating skip connections, resulting in a
traditional convolutional autoencoder to minimize the occurrence of
high-frequency artifacts. We trained this autoencoder to reconstruct
reference segmentations. During the experimentation phase, we used
default hyperparameters of the nnU-Net framework. However, to ad-
dress the common issue of missing cancerous nodules near the seg-
mentation border in conventional segmentation, we incorporated an
additional augmentation technique that randomly removes 2-10 el-
liptical shapes from the images of diameters varying between 2 and
25 voxels.

Patch detection, patch classification, and patient classification
were implemented using PyTorch [27]. The Faster-RCNN model was
trained using the same hyperparameters and augmentations as speci-
fied in [37]. Patch and patient level classifiers are both trained using
Adam [21] optimization algorithm. The patch classifier uses mean-
squared-error loss to predict the maximum malignancy score of any
nodule in the 32 voxel patch and a learning rate of 0.0003. Ran-
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Table 1: Patient-level classification: Results of patient-level classification compared to baseline methods (baseline results taken from [26]).
Our CompLung outperforms all baseline methods in both malignancy > 3 and malignancy > 1 regimes.

REGIME METHOD STEP 1 STEP 2 STEP 3 AUC
. DEEPLUNG FASTER R-CNN 3D DPN 0.83 +£0.04
g MILLUNG CLASSIFICATION 3D RESNETI18 DSMIL 0.77 £ 0.04
<Zc 2D RESNETI18 DSMIL 0.82 4+ 0.02
5 MILLUNG REGRESSION 3D RESNETIS DSMIL 0.83 £0.03
5 AUTOLUNG AUTOENCODER  RANDOM FOREST 0.80 +0.01
= COMPLUNG FASTER R-CNN 3D RESNETI18 DSMIL 0.90+0.04
o DEEPLUNG FASTER R-CNN 3D DPN 0.86 + 0.04
g MILLUNG cLAsSIFIcaTion 3D RESNETIS — DSMIL 0.77 £ 0.09
<Zc 2D RESNET18 DSMIL 0.84 4+ 0.02
5 MILLUNG REGRESSION 3D RESNETIS DSMIL 0.82 4+ 0.06
5 AUTOLUNG AUTOENCODER  RANDOM FOREST 0.71 +0.05
= COMPLUNG FASTER R-CNN 3D RESNETI18 DSMIL 0.93 +0.012

Table 2: Patient-level diagnosis compared to ground-truth obtained from radiologists: Each row corresponds to predictions obtained based
on radiologists’ consensus or particular method. Each column corresponds to a ground-true diagnosis considered either for a single doctor or
for all of them. Each cell corresponds to the accuracy (%) of a method (row) against the ground truth (column). CompLung achieves the highest
accuracy against the radiological consensus over all considered approaches.

DoctorR1 DOCTOR2 DOCTOR3 DOCTOR4 AVERAGE CONSENSUS
CONSENSUS 81.88% 79.95% 77.78% 61.32% 77.23% 100.00%
DEEPLUNG 72.73% 72.36% 72.10% 65.12% 70.57% 80.65%
MILLUNG 74.13% 74.52% 70.92% 62.02% 70.45% 78.32%
AUTOLUNG 54.79% 54.79% 55.48% 44.52% 52.40% 73.20%
COMPLUNG 76.43% 70.09% 69.67% 63.00% 72.28% 82.14%

dom flips in all 3D and random affine transform with scale 0.9 — 1.1
and up to 10 degrees of rotation are used as augmentation. Training
examples are randomly sampled with class balancing.

For the patient-level DSMIL classifier, we use standard cross-
entropy loss. Grid search is applied to find the best hyperparameters,
picking the learning rate from [1-107% 2. 1074,1-107%,5- 1077],
weight decay from [5 - 10731 - 1071 - 10™°], a dropout from
[0,0.1,0.2], and the number of add-on nonlinear layers for DSMIL
between [0, 1].

All models used in this project can be trained and evaluated using
a single NVIDIA V100 GPU. An end-to-end inference pass takes
around 20 minutes per batch using our experimental implementation.

Baselines. We compare our CompLung to other state-of-the-
art lung cancer screening methods. The first baseline method is
DeepLung [37], a dual-stage detector-classifier method trained in a
fully-supervised regime. Next, we compare to MilLung [26], a data-
efficient multiple instance learning-based patient-level classification
approach. Finally, we consider AutoLung [26], a weakly-supervised
method built upon anomaly detection using an autoencoder trained
to reconstruct healthy lung scans and a random forest classifier for
detecting anomalies in the autoencoder generated representations.

6 Results

In the experiments, we first compare our CompLung to comparable
methods in patient-level diagnosis tasks. Then, we analyze the per-

formance of each step of CompLung pipeline and provide qualitative
examples of their work.

6.1 Patient screening

The main goal of CompLung is patient-level diagnosis. We evalu-
ate its performance in this task and compare it against state-of-the-
art baseline methods. In Table 1, we present AUC score evaluation,
where baseline scores are taken from [26]. CompLung achieves supe-
rior performance compared to all three state-of-the-art baseline meth-
ods for both malignancy > 3 and malignancy > O regimes, scoring
over 8% better AUC score than the second-best DeepLung (0.90 to
0.83 for malignancy > 3 and 0.93 to 0.86 for malignancy > 0). This
improvement indicates the diagnostic effectiveness of our method.

Following [37] and [26] we present a comparison between al-
gorithms and experienced doctors'. In Table 2 accuracy results for
malignancy > 3 regimes are shown. The baseline scores are taken
from [26]. The accuracy is calculated only on patients from the
test set with nodules annotated by four radiologists. The average
agreement between particular doctors and a consensus (average over
scores of four radiologists) is provided. One can observe that our
CompLung outperforms, on average, all baseline methods and one
of the doctors.

I Radiologists annotations are taken from https:/github.com/wentaozhu/
DeepLung/blob/master/nodcls/annotationdetclssgm_doctor.csv
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Figure 8: Patient-level classification: ROC curves for patient-level
classification in the malignancy > 3 scenario. Area under curve
(AUC) scores for each fold are presented in the plot legend. The
mean ROC curve and +1 standard deviation margin are marked on
the plot with blue and gray respectively.
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Figure 9: Lung segmentation: Box plots of the dice coefficient for
left and right lung segmentations before and after refinement. The use
of the autoencoder refinement stage significantly improves the dice
score. The resultant refined segmentation map is almost identical to
the ground truth annotations.

Additionally, we provide Receiver Operating Characteristic
(ROC) curves for each cross-validation test fold in malignancy > 3
regimes, shown in Figure 8. Considering the small size of each test
set (around 90 items), we conclude that our method performs well
for each test fold.

6.2 Pipeline analysis

In this section, we show the evaluation results of each step of Com-
pLung pipeline.

Lung segmentation results. In this experiment, we demonstrate
that our automated lung segmentation process can separate lung
regions precisely enough for further processing. We compare the
coarse segmentation maps computed only using conventional meth-
ods and refined maps processed with an autoencoder to reference seg-
mentations created by radiologists. In Figure 9, we present box plots
of dice coefficient scores for left and right lung segmentation be-
fore and after refinement. The average dice score for both lungs after
refinement is 0.99. Therefore, we conclude that automated lung seg-
mentations are almost identical to the reference annotations created
by radiologists. In comparison, a pure U-Net segmentation model
we trained achieved a DICE score of only 0.95. We hypothesises this
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Figure 10: Sensitivity of detecting suspicious patches: Plot a)
presents the recall of suspicious patch detection aggregated by the
maximum malignancy of nodules provided by radiologists. Plot b)
shows the number of all annotations matching the given malignancy
score in the test set. Note that we do not average the malignancy
score across doctors in this study but rather take the maximum value.
We observe that nodules annotated with high malignancy scores are
detected with high recall even though they are underrepresented in
the training set.
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Figure 11: Patch classification accuracy: Plot a) presents the accu-
racy of nodule level classification for malignancy > 3 regime, ag-
gregated by the average malignancy score of the given nodule. Plot
b) shows the number of all test patches matching the given malig-
nancy score. The red line denotes the classification threshold. One
can observe that the patch classifier generates more false negatives
than false positives due to class imbalance.

was caused by a relatively small size of the training dataset. Figure 6
shows the example masks generated in this step.

Suspicious patches identification results. Moreover, we analyze
the performance of the suspicious patch identification stage in detect-
ing nodules annotated by radiologists. We calculate the percentage of
nodules (regardless of annotated malignancy score) detected as sus-
picious areas, i.e. the recall rate. The results aggregated by annotation
malignancy score are presented in Figure 10a. As a reference, Fig-
ure 10b shows the total number of annotations by malignancy score.
Overall, almost all nodules are detected, and nodules with a high ma-
lignancy score (over 3) are picked the most often. The examples of
suspicious locations and patches extracted from them are shown in
Figure 7.

Patch classification results. Next, we evaluate patch classification
accuracy based on the extracted suspicious patches. The accuracy of
patch-level classification in the malignancy > 3 regime aggregated
by the patch malignancy is shown in Figure 11a. As a reference, Fig-
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Figure 12: Patch classification vs. patient classification: Visualiza-
tion of patch classification and patient classification for two sampled
CT scans. The first column for each patient presents five extracted
suspicious patches ordered by the DSMIL attention scores. Radiolo-
gist’s annotations are overlaid in red. The second column shows the
average scores assigned by four radiologists to each patch. The third
column shows the result of the patch-level classifier, and the fourth
one corresponds to the attention score of the DSMIL aggregation.
The two final columns present the patient-level prediction and the
ground truth label. Observe that using DSMIL improves accuracy
compared to using the maximum patch scores as the patient score
because, in the case of Patient B, the max patch score incorrectly
indicates a positive diagnosis. In contrast, the final patient score ob-
tained by DSMIL is correctly negative.

ure 11b shows the total number of extracted patches by malignancy
score. We observe that patch-level classification correctly removes
most false positive patches extracted by the previous stage but fails
to recognize some true cancerous nodules. Note that the final patient-
level classifier does not use this score but a latent representation of
each patch. Example patch level evaluation is presented in the left
part of Figure 12.

Patient classification results. Finally, we analyze the patient-level
classification accuracy based on latent representations acquired in the
previous step. The accuracy at the patient-level in the malignancy >
3 regime aggregated by the maximum malignancy of any nodule on
the scan is shown in Figure 13a. Figure 13b shows the number of pa-
tients by malignancy score as a reference. One can observe that the
accuracy is high for all malignancy scores above 3 and those below 1,
while it is lower for scores just below 3. However, it is expected be-
cause CompLung is designed for patient screening. Therefore, false
positive results are preferred to false negative ones. Sample patient-
level diagnosis is presented in the right part of Figure 12.

PATIENT-LEVEL ACCURACY
BY MALIGNANCY SCORE
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Figure 13: Patient classification accuracy: Plot a) presents the accu-
racy of patient-level classification for malignancy > 3 regime, aggre-
gated by the maximum malignancy score of any nodule in the patient
CT scan as calculated based on the consensus of all radiologists. Plot
b) shows the number of all scans matching the given malignancy
score in the test set. The red line denotes the malignancy threshold.
We observe that scans with nodules just under the threshold are more
prone to misclassification, while malignant cases are classified well.

7 Conclusions

In this paper, we proposed CompLung, a comprehensive end-to-end
tool for lung cancer diagnosis that performs all steps of CT scan
analysis. The system integrates state-of-the-art techniques, includ-
ing U-Net and Faster R-CNN, to refine lung segmentation and detect
suspicious regions. Our contributions also include the extension of
the LIDC-IDRI dataset with lung segmentations obtained from our
radiologists, which we make publicly available for other researchers.
The results of the experiments unequivocally demonstrate that
CompLung surpasses existing approaches on the LIDC-IDRI dataset
while offering superior interpretability. Consequently, by compre-
hensively and precisely addressing the challenges of lung cancer di-
agnosis, CompLung can positively impact patient outcomes and re-
lieve healthcare professionals of some of their burdens. A potential
avenue in improving the tool would be training a foundation model
for generic CT scan understanding and fine-tuning on LIDC-IDRI,
which would help to offset the relatively small size of the dataset.

Acknowledgements

Acknowledge support of National Center for Research and Develop-
ment (NCBR, Poland) under grant no. POIR.01.01.01-00-1666/20.
We gratefully acknowledge Polish high-performance computing in-
frastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for provid-
ing computer facilities and support within computational grant no.
PLG/2021/014764 and PLG/2023/016441.

References

[1] Hugo JWL Aerts, Emmanuel Rios Velazquez, Ralph TH Leijenaar,
et al., ‘Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach’, Nature communications, 5(1), 1-9,
(2014).

[2] Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, et al., ‘The
lung image database consortium (lidc) and image database resource
initiative (idri): a completed reference database of lung nodules on ct
scans’, Medical physics, 38(2), 915-931, (2011).

[3] A Asuntha and Andy Srinivasan, ‘Deep learning for lung cancer de-
tection and classification’, Multimedia Tools and Applications, 79(11),
7731-7762, (2020).

[4] G. Bradski, ‘The OpenCV Library’, Dr. Dobb’s Journal of Software
Tools, (2000).



1842

(3]

(6]

(71
(8]

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Pardyl et al. / CompLung: Comprehensive Computer-Aided Diagnosis of Lung Cancer

Donato Cascio, Rosario Magro, Francesco Fauci, Marius Iacomi, and
Giuseppe Raso, ‘Automatic detection of lung nodules in ct datasets
based on stable 3d mass—spring models’, Computers in biology and
medicine, 42(11), 1098-1109, (2012).

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
and Hartwig Adam, ‘Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation’, in ECCV, (2018).

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan,
and Jiashi Feng, ‘Dual path networks’, NeurIPS, 30, (2017).
Shuangfeng Dai, Ke Lu, Jiyang Dong, Yifei Zhang, and Yong Chen, ‘A
novel approach of lung segmentation on chest ct images using graph
cuts’, Neurocomputing, 168, 799-807, (2015).

Foivos I Diakogiannis, Frangois Waldner, Peter Caccetta, and Chen Wu,
‘Resunet-a: A deep learning framework for semantic segmentation of
remotely sensed data’, ISPRS Journal of Photogrammetry and Remote
Sensing, 162, 94114, (2020).

Jia Ding, Aoxue Li, Zhigiang Hu, and Liwei Wang, ‘Accurate pul-
monary nodule detection in computed tomography images using deep
convolutional neural networks’, in MICCAI, pp. 559-567. Springer,
(2017).

Amal A Farag, Hossam E Abd El Munim, James H Graham, and Aly A
Farag, ‘A novel approach for lung nodules segmentation in chest ct us-
ing level sets’, IEEE Transactions on Image Processing, 22(12), 5202—
5213, (2013).

Fatemeh Haghighi, Mohammad Reza Hosseinzadeh Taher, Zongwei
Zhou, Michael B Gotway, and Jianming Liang, ‘Learning semantics-
enriched representation via self-discovery, self-classification, and self-
restoration’, in MICCAI, pp. 137-147. Springer, (2020).

Anmitava Halder, Debangshu Dey, and Anup K Sadhu, ‘Lung nodule de-
tection from feature engineering to deep learning in thoracic ct images:
a comprehensive review’, Journal of digital imaging, 33(3), 655-677,
(2020).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in CVPR, pp. 770-778, (2016).
Johannes Hofmanninger, Forian Prayer, Jeanny Pan, Sebastian Rohrich,
Helmut Prosch, and Georg Langs, ‘Automatic lung segmentation in rou-
tine imaging is primarily a data diversity problem, not a methodology
problem’, European Radiology Experimental, 4(1), 1-13, (2020).
Saleem Igbal, Khalid Igbal, Fahim Arif, Arslan Shaukat, Aasia
Khanum, et al., ‘Potential lung nodules identification for characteriza-
tion by variable multistep threshold and shape indices from ct images’,
Computational and mathematical methods in medicine, 2014, (2014).
Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen,
and Klaus H Maier-Hein, ‘nnu-net: a self-configuring method for
deep learning-based biomedical image segmentation’, Nature methods,
18(2), 203-211, (2021).

Hoon-seok Jang, Wook-Jin Choi, and Tae-Sun Choi, ‘Optimal fuzzy
rule based pulmonary nodule detection’, Adv Sci Technol Lett, 29, 75—
8, (2013).

Anita Khanna, Narendra D Londhe, S Gupta, and Ashish Semwal, ‘A
deep residual u-net convolutional neural network for automated lung
segmentation in computed tomography images’, Biocybernetics and
Biomedical Engineering, 40(3), 1314-1327, (2020).

Ron Kikinis, Steve D Pieper, and Kirby G Vosburgh, ‘3d slicer: a plat-
form for subject-specific image analysis, visualization, and clinical sup-
port’, in Intraoperative imaging and image-guided therapy, 277-289,
Springer, (2013).

Diederik P Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, arXiv preprint arXiv:1412.6980, (2014).

Bin Li, Yin Li, and Kevin W Eliceiri, ‘Dual-stream multiple in-
stance learning network for whole slide image classification with self-
supervised contrastive learning’, in CVPR, pp. 14318-14328, (2021).
E Lopez Torres, Elisa Fiorina, Francesco Pennazio, et al., ‘Large scale
validation of the m51 lung cad on heterogeneous ct datasets’, Medical
physics, 42(4), 1477-1489, (2015).

T Manikandan and N Bharathi, ‘Lung cancer detection using fuzzy
auto-seed cluster means morphological segmentation and svm classi-
fier’, Journal of medical systems, 40, 1-9, (2016).

Stelmo Magalhdes Barros Netto, Aristéfanes Corréa Silva,
Rodolfo Acatauassi Nunes, and Marcelo Gattass, ‘Automatic
segmentation of lung nodules with growing neural gas and support vec-
tor machine’, Computers in biology and medicine, 42(11), 1110-1121,
(2012).

Adam Pardyl, Dawid Rymarczyk, Zbistaw Tabor, and Bartosz

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Zielinski, ‘Automating patient-level lung cancer diagnosis in different
data regimes’, in JCONIP. Springer International Publishing, (2022).
Adam Paszke, Sam Gross, Francisco Massa, et al., ‘Pytorch: An im-
perative style, high-performance deep learning library’, NeurIPS, 32,
(2019).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, ‘Faster r-cnn:
Towards real-time object detection with region proposal networks’,
NeurlPS, 28, (2015).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, ‘U-net: Convo-
lutional networks for biomedical image segmentation’, in MICCAI, pp.
234-241. Springer, (2015).

Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas De Bel,
et al., “Validation, comparison, and combination of algorithms for au-
tomatic detection of pulmonary nodules in computed tomography im-
ages: the lunal6 challenge’, Medical image analysis, 42, 1-13, (2017).
Furqan Shaukat, Gulistan Raja, Ali Gooya, and Alejandro F Frangi,
‘Fully automatic detection of lung nodules in ct images using a hybrid
feature set’, Medical physics, 44(7), 3615-3629, (2017).

Wei Shen, Mu Zhou, Feng Yang, Di Dong, Caiyun Yang, Yali Zang,
and Jie Tian, ‘Learning from experts: Developing transferable deep fea-
tures for patient-level lung cancer prediction’, in MICCAIL, pp. 124-131.
Springer, (2016).

Wei Shen, Mu Zhou, Feng Yang, Caiyun Yang, and Jie Tian, ‘Multi-
scale convolutional neural networks for lung nodule classification’, in
IPMI, pp. 588-599. Springer, (2015).

Johnatan Carvalho Souza, Jodao Otavio Bandeira Diniz, Jonnison Lima
Ferreira, et al., ‘An automatic method for lung segmentation and recon-
struction in chest x-ray using deep neural networks’, Computer methods
and programs in biomedicine, 177, 285-296, (2019).

Joel Chia Ming Than, Norliza Mohd Noor, Omar Mohd Rijal, Ashari
Yunus, and Rosminah Md Kassim, ‘Lung segmentation for hrct thorax
images using radon transform and accumulating pixel width’, in 20/4
IEEE Region 10 Symposium, pp. 157-161. IEEE, (2014).

Stéfan van der Walt, Johannes L. Schonberger, Juan Nunez-Iglesias,
et al., ‘scikit-image: image processing in python’, PeerJ, 2, 453, (jun
2014).

Wentao Zhu, Chaochun Liu, Wei Fan, and Xiaohui Xie, ‘Deeplung:
Deep 3d dual path nets for automated pulmonary nodule detection and
classification’, in WACV, pp. 673-681. IEEE, (2018).

Shabana R Ziyad, Venkatachalam Radha, and Thavavel Vayyapuri,
‘Overview of computer aided detection and computer aided diagnosis
systems for lung nodule detection in computed tomography’, Current
Medical Imaging, 16(1), 16-26, (2020).



	Introduction
	Related Works
	CompLung
	Lung segmentation
	Suspicious region identification
	Patch representation learning
	Patient-level classification

	Dataset
	Experimental setup
	Results
	Patient screening
	Pipeline analysis

	Conclusions

