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Abstract. Earley Parser is a top-down parser proposed for context-
free grammars and used, for example, in the grammar constraint.
Parsing trees of context-free grammars are very close to task de-
composition trees used in hierarchical planning, specifically when
the actions are totally ordered. This paper suggests using the Earley
Parser to recognize totally ordered hierarchical plans. Given a se-
quence of actions – a prefix of the plan – and a task decomposition
model, the plan recognition problem asks which task decomposes to
a plan containing the given plan prefix. We will show that the Earley
parser significantly increases the speed of plan recognition compared
to the existing bottom-up parsing-based plan recognizer. The Earley
parser’s performance is also on a par with the planning-based plan
recognizer despite not using any planning heuristics.

1 Introduction

Plan recognition is the task of recognizing the goal and the plan of
an agent based on observed agent’s actions. In classical plan recog-
nition, a sequence of observed actions of an agent (a plan prefix)
is given as an input, and the aim is to find the complete plan and
the goal of an agent based on the knowledge of the planning domain
(the preconditions, effects, and costs of actions), candidate goals, and
the initial state.

Plan recognition is relevant to many fields of artificial intelligence.
For instance, plan recognition is related to behavior recognition, such
as recognizing suspicious behavior in public space [12]. In computer
security, plan recognition can be used to predict cybernetic attacks
[10]. Other applications include multi-agent systems [9], where each
agent needs to recognize the goals of other agents, or artificial in-
telligence in computer games [7], which needs to predict the future
actions of human players.

A popular approach to plan recognition is based on compilation to
planning [16]. Two plans are found for each candidate goal: the op-
timal plan and the best plan which uses the observed actions. Based
on the assumption of the agent’s rationality, the goal with the mini-
mal difference of costs of these two plans should be the agent’s true
goal. Another approach is based on landmarks [14]. A landmark of
a goal is a fact that must be true at a point in each plan for this goal.
Instead of compilation to planning, they rank candidate goals based
on the achieved landmarks. Other approaches to classical planning
deal, for example, with on-line plan recognition [19], epistemic plan
recognition [18], or using reinforcement learning [1].

Hierarchical planning [4] deals with problems where tasks form
a hierarchy. Tasks can be decomposed into subtasks until inde-
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composable tasks (actions), which are executable by an agent, are
reached. The resulting sequence of actions is a plan of an agent. Hi-
erarchical planning problems are frequently described by hierarchi-
cal task networks (HTN). In hierarchical plan recognition, the aim
is to find a root task, which decomposes into a plan starting with
the observed plan prefix. Results on complexity of plan recognition
in hierarchical plan libraries were described in [20].

Currently, two approaches to plan recognition appear in HTNs.
The first of these approaches is based on compilation to HTN plan-
ning [8]. The second approach was inspired by parsing of grammars
[2]. The approach of [8] performs better than the approach of [2] on
instances with a high number of missing (unobserved) actions, while
[2] is faster on instances with few missing actions. There are also hi-
erarchical plan recognition approaches working with models weaker
than HTN, some of which are also based on parsing of grammars
(e.g. [5], [6], [11]).

This paper focuses on plan recognition in totally ordered domains,
i.e. domains, where subtasks of each decomposition method are lin-
early ordered. Although total order imposes a certain restriction on
HTN planning, totally ordered domains are very common. For in-
stance, 24 out of 33 domains used in the international planning com-
petition (IPC) 2020 were totally ordered.

We present an approach to HTN plan recognition of totally or-
dered plans based on the Earley parser [3]. This parser has been pro-
posed for context-free grammars and used, for example, in the global
grammar constraint [15]. Thanks to the structural similarity between
parsing trees for context-free grammars and decomposition trees for
hierarchical plans, it is natural to exploit techniques from formal
grammars in hierarchical planning [2]. We will show that HTN plan
recognition based on the Earley parser performs significantly faster
on totally ordered domains than the original parsing-based approach
of [2] and it also outperforms the compilation-based approach [8] on
some domains.

2 Background

2.1 HTN plan recognition

Hierarchical planning focuses on planning problems where goals
(tasks) can be hierarchically decomposed into subgoals (subtasks).
Indecomposable (primitive) tasks are called actions. Actions are de-
fined by preconditions and effects. Preconditions of an action are
propositions which must be true in the state, where the action is exe-
cuted, and effects are propositions which will become true in the state
after execution of the action.
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All valid decompositions of tasks into subtasks are described
by decomposition methods (rewriting rules). A method describing
decomposition of an abstract task T into subtasks T1, ..., Tn cor-
responds to a grammar rewriting rule T → T1, ...Tn[C], where
T1, ..., Tn are either abstract or primitive tasks, C are constraints,
and the order of subtasks in the rule can be arbitrary (the ordering
might be imposed by the constraints). In totally ordered domains, the
tasks in every decomposition method are totally (linearly) ordered.

There are three types of constraints:

• t1 ≺ t2 indicates that the last action from the decomposition of
the task t1 must be executed before the first action of the task t2;

• before(T ′, p), where T ′ is a set of tasks and p is a proposition,
indicates that p must hold in the state where the first action of
the first task in the set T ′ is executed; and

• between(T ′, T ′′, p) indicates that p must be true in all states be-
tween the execution of the last action of the tasks in T ′ and the ex-
ecution of the first action of the tasks in T ′′.

A hierarchical task network (HTN) is described by a pair
w = (T,C), where T is a set of tasks and C is a set of con-
straints over tasks. A planning problem can be defined as P =
(P, T,A,M, s0, w0), where P is a set of predicates describing
states, T is a set of abstract tasks, A is a set of actions (primi-
tive tasks), M is a set of decomposition methods, s0 is an initial
state, and w0 is the initial task network. The task of a planner is
to decompose the tasks in the initial network into actions. A solu-
tion to an HTN planning problem is an ordered sequence of actions
π =< a1, ..., ak > corresponding to primitive tasks in a task net-
work w = (Tw, Cw), where Tw does not contain any abstract task,
w is obtained from w0 using methods from M , and π is a valid plan
applicable to state s0 (action preconditions are satisfied) satisfying
all constraints in Cw.

An HTN plan recognition problem is defined as R =
(P, T,A,M, s0, O), where O =< a1, ..., ak > is an observed plan
prefix of length k. The aim of plan recognition is to find an ab-
stract task which decomposes into a sequence of n (k ≤ n) actions
π =< a1, ..., ak, ..., an > such that π is a valid plan applicable to
state s0.

2.1.1 Example

As an example, consider the domain transport, which describes
the process of loading packages to trucks and unloading them at a dif-
ferent location. Figure 1 contains an example plan for the root task

deliver(package1, location1).

The initial state specifies that there is a truck truck1 at the lo-
cation truck1_location and there is package package1 at the lo-
cation package1_location. Additionally, the initial state enumer-
ates the roads between locations. For instance, there is a road be-
tween truck1_location and package1_location and between pack-
age1_location and location1. The objective is to transport package1
to the location location1.

The root task can be decomposed into four abstract subtasks:

get_to(truck1, package1_location),

load(truck1, package1_location, package1),

get_to(truck1, location1)

unload(truck1, location1, package1).

Each of these tasks can be decomposed into a single action. For ex-
ample, the first subtask

get_to(truck1, package1_location)

decomposes into the action

drive(truck1, truck1_location, package1_location).

This action has two preconditions:

at(truck1, truck1_location),

road(truck1_location, package1_location),

which are both satisfied in the initial state. The action has two effects:

not(at(truck1, truck1_location)),

at(truck1, package1_location).

In HTN planning, the root task would be given as an input and
the objective would be to decompose it into actions using the avail-
able decomposition methods such that all constraints of methods and
all preconditions of actions are satisfied. In HTN plan recognition,
the input would contain a prefix of the plan, e.g., the action sequence

drive(truck1, truck1_location, package1_location),

pickup(truck1, package1_location, package1,

capacity0, capacity1),

drive(truck1, package1_location, location1),

(1)

and the objective would be to find the fourth action of the plan and
the root task which can cover all actions in the prefix.

2.2 Parsing-based HTN plan recognition

Parsing-based HTN plan recognition was proposed by [2]. The al-
gorithm iteratively extends the plan prefix by one action in each
iteration and verifies whether the obtained plan is valid. This is
done by composing all abstract tasks using the available methods
in the bottom-up manner, until a task which covers all observations
(all actions in the current plan) is found.

In each iteration, the algorithm increments the plan length and at-
tempts to put all possible actions at the new position at the end of
the plan. Their algorithm considers all actions (in the unobserved
plan suffix) whose preconditions could be satisfied. As a conse-
quence, the runtime of the parsing-based algorithm grows exponen-
tially with the increasing length of the unobserved plan suffix.

2.2.1 Example

Consider a plan recognition problem from Figure 1, whose input is
the prefix (1). In the first iteration, the algorithm would create all
tasks that can be composed from the actions in the prefix:

get_to(truck1, package1_location),

load(truck1, package1_location, package1)

and
get_to(truck1, location1).

As none of these tasks can cover all actions, the plan needs to be
extended.
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Figure 1. A hierarchical task network of the task deliver(package1, location1).

In the next iteration, the algorithm will try to put all possible ac-
tions at the position 4, e.g.,

drop(truck1, location1, package1, capacity0, capacity1),

drive(truck1, location1, package_location),

drive(truck1, location1, truck_location),

...;

and it will create all tasks that can be composed using the subset of
actions in the prefix and one action in the suffix. Eventually, the root
task will be composed and returned as a solution.

2.3 Earley parser and grammar constraints

Earley parser [3] is an algorithm for parsing context-free grammars.
A context-free grammar (CFG) is a formal grammar with rewriting
rules of the form A → α, where A is a non-terminal symbol and α
is a string of terminal and non-terminal symbols.

The parser can be used to implement a grammar constraint [15].
Global grammar constraints are constraints which restrict values
of variables with respect to rules of a given grammar. They pro-
posed a constraint of the form CFG(G,X1, ..., Xn), where X1...Xn

is a string accepted by the context-free grammar represented by
the set of grammar rewriting rules G. Given domains of the variables
X1, ..., Xn, the authors suggest polynomial algorithms that enforce
the generalized arc consistency. A constraint is generalized arc con-
sistent (GAC) if for each value in each domain there exists a value in
every other domain such that the constraint is satisfied.

The authors propose two algorithms for enforcing GAC on
CFG(G,X1, ..., Xn). The first algorithm is a bottom-up propaga-
tor based on the algorithm CYK [17] and the second one is a top-
down propagator based on the Earley-style propagator [3]. Both of
them have the time complexity O(|G|n3). The space complexity is
O(|G|n2) for CYK-based algorithm and O(|G|n3) for the Earley-
style propagator.

We have decided to use the Earley-style propagator for HTN plan
recognition. Firstly, the Earley parser does not require translation to
the Chomsky normal form with at most two subtasks in the decom-
position. Secondly, in experiments of [15] Earley parser performed
better than CYK when more than about a half of the variables in
the grammar constraint were fixed. As we use the parser for plan
recognition and in our testing instances the observed plan prefix is
usually longer than the unobserved suffix, we assumed that the Ear-
ley propagator should perform better than CYK. Another motivation
for the Earley parser is that top-down parsing includes some form of
planning (to find not-yet observed actions); therefore, it could be bet-
ter suited for plan recognition. Moreover, due to similarity to HTN

planning, the Earley parser can exploit heuristics developed for HTN
planning, which brings opportunities for future improvement of its
efficiency.

3 HTN plan recognition via Earley Parsing

We suggest to improve the performance of parsing-based HTN
recognition of totally ordered plans by using the Earley parser as
a base of the algorithm. We present two novel approaches to HTN
plan recognition based on the Earley parser. Our first approach works
as the original parsing-based approach, but plan suffixes are limited
to those that are accepted by the corresponding CFG, in contrast to
the approach of [2], which tries all suffixes. Our second approach
uses the Earley parser to identify the decomposition trees which are
valid with respect to the CFG. We then use only these decomposition
trees to attempt to compose a root task, in contrast to the approach of
[2], which tries all decomposition trees that can be created by avail-
able methods.

By omitting preconditions and effects of actions and constraints
of methods we get an abstraction of an HTN planning problem to
a context-free grammar. Rules of an HTN planning domain with to-
tally ordered subtasks correspond to rewriting rules of a CFG. How-
ever, our approach can be used only on domains with totally ordered
subtasks as it does not support task interleaving. We currently do not
support domains with empty rules.

Algorithm 1 describes the general idea of plan recognition via
Earley parsing. The algorithm firstly executes the Earley parser on
the observed plan prefix. Then, the algorithm checks whether any
goal task can be composed from the actions in the prefix. If not,
the prefix is extended by one action by setting the domain of an ac-
tion variable at the next position in the plan to all possible actions.
After each extension, the next iteration of Earley parsing is executed
and the algorithm attempts to compute the goal task covering an ex-
tended plan. For each possible root task found by Earley parsing,
we determine whether the root task can be composed with respect to
the definition of the plan recognition problem. Details of the Earley
propagator can be found in [15]. The following text describes how
we used the algorithm for HTN plan recognition.

Earley propagator is based on dynamic programming. A state rep-
resents a partially processed rewriting rule which covers a continuous
subsequence of a plan. A state is defined by a rule, a separator sym-
bol separating processed and unprocessed tasks on the right side of
the rule and the index of the iteration in which the state was created
(related to the index of the first action covered by the state). Consider
a state

s = (T1 → T2...Tr • Ts...Tt, j).
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Algorithm 1 HTN plan recognition via Earley parsing
Function: RecognizePlan
Input: a sequence of observed actions a1, ..., ak

Output: a goal task covering all observed actions
Variables: R – decomposition rules, A – available actions, domain
– list of domains for all positions in a plan, queue – pending states,
C[] – processed states

for i = 0, 1, ..., k do

domain(Xi) = {ai}
end for

initialize queue with starting states of all abstract tasks
for i = 0, 1, ..., k do

execute iteration i of Earley parser (fill C[i])
end for

for i = k + 1, k + 2, ... do

for all state in C[i− 1] do

if some goal task can be computed from state then

return goal
end if

end for

domain(Xi) = A
execute iteration i of Earley parser

end for

The symbol • separates the subtasks that were already processed
(left from •) from the rest (right from •). This state represents
a method which decomposes the task T1 to the subtasks T2, ..., Tt. Ts

is the first subtask which has not been decomposed yet and the num-
ber j is the index of the first action covered by this state.

At iteration i, the parser stores the processed states in the set
C[i]. Pending (unprocessed) states are stored in a queue. Initially,
the queue is filled with starting states of the form

(I → •T, 0)
for each task T , where I is a dummy starting (goal) task. At iteration
0, the parser processes the starting states. To find a plan of length n,
the parser has to execute n + 1 iterations.

There are three procedures for state processing depending on
the state type: completer, scanner, and predictor. A completed state
is processed by the completer. Consider a state

(T1 → T2...Tm•, j),
which represents a completely decomposed task T1. Processing this
state at iteration i corresponds to processing a rule which covers ac-
tions between indexes j and i. We can use the decomposition tree
represented by this state to decompose T1 in the rules where T1 is
not decomposed yet and all tasks preceding T1 on the right side of
the rule are decomposed into a subsequence of a plan ending right
before the index j. Therefore, for each state

(T0 → ... • T1..., l)

from the set C[j], we push to the queue a new state

(T0 → ...T1 • ..., l),
which will cover actions between indexes l and i.

Scanner processes the states whose first unprocessed subtask is
an action. Consider a state

(T1 → T2... • Tm..., j),

where Tm is an action. If the state is processed at iteration i, its de-
composed subtasks cover actions between indexes j and i. Therefore,
Tm must be an action which is available at index i + 1 in a plan. If
domain(Xi+1) contains the action Tm, the parser adds a new state

(T1 → T2...Tm • ..., j)

to C[i+ 1] and prepares it to be processed in the next iteration.
Grounding of tasks and rules can be postponed until this step. Dur-

ing initialization, we fill the queue with uninstantiated rules. We set
the domains as follows: if i is an index from the observed prefix,
domain(Xi) contains only the fully instantiated action ai. Other-
wise, domain(Xi) is a set of all available actions (uninstantiated).
Values of variables of instantiated actions are propagated upwards to
the rules and the values from the rules are then propagated down-
wards to the actions in plan suffix.

Finally, the predictor processes uncompleted states where the next
task to be processed is an abstract task. Consider a state

(T1 → T2... • Tm..., j),

where Tm is an abstract task, being processed at iteration i. The pre-
dictor generates all possible decompositions of Tm, which will cover
actions from index i. The predictor pushes to the queue the state

(Tm → •To...Tp, i)

for each decomposition method with root task Tm.
If C[n] contains a state

(I → T•, 0), (2)

then decomposition of the dummy task I covers actions from the ar-
tificial starting index 0 to n, which is the last index in the suffix.
Therefore, T is a root task which can be decomposed to a plan of
length n with the given prefix and we may attempt to obtain the de-
sired goal task by grounding T .

3.1 Computing a goal

After running an iteration of Earley parsing for a plan length n, we at-
tempt to find a possible goal task covering all observations by extract-
ing possible solutions from root tasks that were found by a parser.
For each root state (state of the form (2)) from the set C[n], we test
if there is any grounding of the uninstantiated variables in any de-
composition tree of task T found by the Earley parser such that all
rules that were used to compose T satisfy the constraints of the HTN
planning domain. For each subtask in each processed state, we keep
a list of all states that can be used to complete the subtask. Starting
in a root state, we traverse the resulting graph using the depth-first
search to obtain a suitable grounding of all variables in the rule.

Leaf nodes of the graph correspond to actions. If the action be-
longs to the observed prefix, there is only one possible grounding.
Otherwise, the node returns all groundings of the variables that have
not been grounded by the parser.

Each internal node corresponds to one rule. For each possible
grounding of its subtasks (using any completing rule for each sub-
task), we check whether the rule satisfies all constraints of the cor-
responding HTN rule; i.e., we check whether all ordering, before,
and between constraints of the rule are satisfied for the selected sub-
tasks. Detailed algorithm of constraint checking can be found in [2].
If the complete decomposition tree of the rule of any root state can
be constructed, the plan recognition problem is solved.
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3.2 Example

Consider again the plan recognition problem from the previous sec-
tion. The algorithm starts by enqueueing the starting states for all
uninstantiated abstract tasks:

(I → •get_to(?, ?), 0),

(I → •load(?, ?, ?), 0),
(I → •unload(?, ?, ?), 0),
(I → •deliver(?, ?), 0). (3)

Iteration 0: At iteration 0, the starting states will be expanded by
predictor and five new states will be created

(get_to(?, ?) → •drive(?, ?, ?), 0), (4)

(load(?, ?, ?) → •pickup(?, ?, ?, ?, ?), 0),
(unload(?, ?, ?) → •drop(?, ?, ?, ?, ?), 0),

(deliver(?, ?) → •get_to(?, ?),
load(?, ?, ?),

get_to(?, ?),

unload(?, ?, ?), 0),

(5)

(deliver(?, ?) → •load(?, ?, ?),
get_to(?, ?),

unload(?, ?, ?), 0)

(the last two states correspond to two methods that both decompose
the task deliver). All states processed at iteration 0 will be added to
the set C[0].
The state (4) is processed by the scanner creating the state

(get_to(truck1, package1_location) →
drive(truck1, truck1_location, package1_location)•, 0). (6)

As domain(X1) contains the action drive(truck1, truck1_location,
package1_location), the new state is finished. The resulting state will
then be added to the set C[1] and it will be processed at iteration 1.

Iteration 1: At iteration 1, the completer will create a new state
from states (5) and (6):

(deliver(?, ?) → get_to(truck1, package1_location),

•load(truck1, package1_location, ?),

get_to(truck1, ?),

unload(truck1, ?, ?), 0).

(7)

The predictor will expand (7) to

(load(truck1, package1_location, ?) →
•pickup(truck1, package1_location, ?, ?, ?), 1)

(8)

The state (8) will be processed by the scanner creating a new state
in C[2]:

(load(truck1, package1_location, package1) →
pickup(truck1, package1_location, package1,

capacity0, capacity1)•, 1)
(9)

Iteration 2: The completer will produce a new state based on
the states (9) and (7):

(deliver(package1, ?) →
get_to(truck1, package1_location),

load(truck1, package1_location, package1),

•get_to(truck1, ?),
unload(truck1, ?, package1), 0).

(10)

The predictor will expand the state (10) to

(get_to(truck1, ?) →
•drive(truck1, ?, ?), 2) (11)

The scanner will create a new state based on (11):

(get_to(truck1, location1) →
drive(truck1, package1_location, location1)•, 2). (12)

Iteration 3: Using the states (12) and (10), the completer creates
the state

(deliver(package1, location1) →
get_to(truck1, package1_location),

load(truck1, package1_location, package1),

get_to(truck1, location1),

•unload(truck1, location1, package1), 0).

(13)

The state (13) will be expanded (by predictor) to the state:

(unload(truck1, location1, package1) →
•drop(truck1, location1, package1, ?, ?), 3).

From the uninstantiated actions drive(?, ?, ?), pickup(?, ?, ?, ?, ?),
drop(?, ?, ?, ?, ?) from the set domain(X4), this state matches
for example an action instantiation drop(truck1, location1, package1,
capacity0, capacity1) (or any other instantiation by possible values
of type capacity – all these instantiations will be created in this step).
Therefore, the scanner creates the state

(unload(truck1, location1, package1) →
drop(truck1, location1, package1,

capacity0, capacity1)•, 3).
(14)

Iteration 4: Based on the states (14) and (13), the completer will
create the state

(deliver(package1, location1) →
get_to(truck1, package1_location),

load(truck1, package1_location, package1),

get_to(truck1, location1),

unload(truck1, location1, package1)•, 0).

(15)

Finally, the completer will use the states (15) and (3) to create
the state

(I → deliver(package1, location1)•, 0). (16)

The last state will be added to C[4].
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Table 1. Number of problems solved by the original parsing-based
recognizer, parsing-based recognizer using Earley propagator to prune
actions in the suffix, our recognizer based on Earley parsing and the

recognizer from the system Panda.

domain parsing-based with pruning Earley Panda
monroe 0 165 247 342
satellite 98 129 141 141
transport 13 23 266 43

blocksworld 1 2 49 68

Table 2. Maximum suffix length of plans found by the original
parsing-based recognizer, parsing-based recognizer using Earley propagator
to prune actions in the suffix, our recognizer based on Earley parsing and the

recognizer from the system Panda.

domain parsing-based with pruning Earley Panda
monroe – 10 10 21
satellite 2 2 3 3
transport 2 3 3 4

blocksworld 1 1 5 5

A goal task can be extracted from the state (16). In order to obtain
the root task, we have to verify that it can be composed from four
subtasks:

get_to(truck1, package1_location),

load(truck1, package1_location, package1),

get_to(truck1, location1),

unload(truck1, location1, package1),

and that these subtasks can be composed respectively from actions:

drive(truck1, truck1_location, package1_location),

pickup(truck1, package1_location, package1,

capacity0, capacity1),

drive(truck1, package1_location, location1)

drop(truck1, location1, package1,

capacity0, capacity1),

i.e., we check whether all constraints of the method that decomposes
the root task to the subtasks are satisfied. Then, we recursively check
the same for all methods used in decomposition trees of the subtasks.
If all constraints in the decomposition tree are satisfied, the task

deliver(package1, location1)

is a solution to this plan recognition problem.

4 Empirical evaluation

We have empirically compared the performance of four HTN plan
recognizers: the original parsing-based recognizer [2], a modified
parsing-based recognizer, which uses the Earley parser only to prune
actions from the plan suffix [13], our recognizer based entirely on
Earley parsing, and the compilation-based recognizer from the plan-
ning system Panda [8] (with the default settings).

For experiments, we used the domains1 and plans2 from IPC 2020.
We used totally ordered domains monroe (fully observable), trans-
port, blocksworld, and satellite. The experiments were run on a com-
puter with the Intel Core i7-11370H @ 3.30GHz processor and

1 https://github.com/panda-planner-dev/ipc2020-domains
2 https://github.com/panda-planner-dev/ipc-2020-plans

16 GB of RAM. Maximum allowed runtime was set to 15 minutes for
one problem. For each plan we generated all prefixes that could be
created by deleting at least 1 and at most 1/3 of trailing actions, i.e.,
we created approximately n/3 prefixes from a single plan of length
n. From the domain blocksworld, we used the first 200 problems as
none of the recognizers was able to solve more than the first few
problems. From the domain transport, we used only the first 266
problems as the other recognizers except for the recognizer based
on Earley parser were able to solve only the first few problems in
the given time limit.

The results show that the recognizer based on the Earley parser
was more efficient than the other parsing-based approaches. Table
1 compares how many problems were solved by each recognizer
in each domain. In all four tested domains, the proposed recog-
nizer based on Earley parsing solved significantly more problems
in the given time limit than the parsing-based plan recognition ap-
proach with action pruning, which was already more efficient than
the original parsing-based approach. The difference is most visible
in the domain transport, where the new recognizer solved more than
10-times more instances than the other parsing-based recognizers.
Figures 2, 3, 4 and 5 show how the number of solved problems in-
creased with increasing runtime. The new recognizer is significantly
faster than the other parsing-based recognizers. Table 2 compares the
maximum lengths of suffixes of plans found by each recognizer. In
the domain monroe, our recognizer found plans with unobserved suf-
fixes of length up to 10.

Table 1 shows that our recognizer was outperformed by Panda
on the domains monroe and blocksworld. In the domain transport
(see Figure 4), our recognizer solved considerably more problems
than Panda. Both recognizers solved the same number of problems
in the domain satellite; however, Figure 3 shows that our recognizer
solved the problems significantly faster than Panda. Moreover, Fig-
ures 2 and 5 show that even though Panda eventually solved more
problems in the given time limit, our recognizer solved smaller prob-
lems much faster. The recognizer from the system Panda works with
grounded problems, which requires a certain overhead. On the other
hand, Panda is less affected by the length of unobserved suffix (see
Table 2).

Generally, the compilation-based approach (Panda) is slower than
Earley parser on simple instances (shorter unobserved suffixes) as
Panda requires an expensive overhead due to grounding. Therefore,
it is less efficient in the domain satellite, which consists of the sim-
plest problems. The domain monroe defines a rich hierarchy of ob-
ject types, and it contains many different methods with arguments
of different types. We assume that the compilation-based approach
benefits from grounding there. Goal tasks in the domain transport
correspond to sequences of tasks of type "deliver package x to loca-
tion y". The description of the domain is quite simple, it contains few
methods and types. We suspect that in this case grounding is not very
efficient and the compilation-based approach deals with very large
problem descriptions. The domain blocksworld defines only one type
of object (a block) and the goals describe which blocks should be put
on other blocks. It seems that these problems are very hard for all rec-
ognizers as there are too many possibilities. The compilation-based
approach performs better, but the difference in absolute numbers of
solved problems is not very significant.

Panda uses an HTN planner, which uses grounding and heuristics
to speed up planning, while our recognizer works with uninstantiated
tasks and rules, which are grounded on demand when a solution is
being extracted, and does not use any heuristics. Therefore, perfor-
mance of our recognizer might be improved by more sophisticated
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Figure 2. Number of problems in the domain monroe solved by
the original parsing-based recognizer, parsing-based recognizer using Earley

propagator to prune actions in the suffix, our recognizer based on Earley
parsing and the recognizer from the system Panda (horizontal axis is

logarithmic).

grounding of actions and by modifying the parsing algorithm using
heuristic selection of states.

5 Conclusion

This paper proposes a novel approach to HTN plan recognition of to-
tally ordered plans based entirely on the Earley parser. We extended
the parser to work with decomposition methods having subtasks with
attributes and to check additional constraints that the HTN methods
may use. The parser is called incrementally in a wrapper implement-
ing the HTN plan recognition algorithm. Actions missing in the suf-
fix are added greedily. Still, as the Earley parser uses a top-down
approach, this is less of an issue than in the original parsing-based
HTN plan recognizer (demonstrated by using the Earley parser to
prune actions in the original recognizer). The empirical evaluation
shows that the new HTN plan recognizer significantly outperforms
other parsing-based recognizers, both in the number of solved prob-
lems and in runtime. Moreover, the new recognizer can also recog-
nize plans with longer missing suffixes. On some domains, the new
recognizer also outperforms the compilation-based approach [8].

Future work may go in several directions. First, the efficiency of
the parser can be further improved by applying more sophisticated
techniques for grounding actions and decomposition methods or by
doing grounding before parsing, or by introducing heuristics into
the parser. Another research direction may consider incomplete or
wrong information in the plan prefix. Our current approach expects
that the observed prefix is a complete prefix of the actual plan. How-
ever, the observers might be unable to observe all actions in the pre-
fix, or they may observe some actions incorrectly. Finally, the pars-
ing techniques exploiting algorithms for context-free grammars are
currently restricted to totally ordered domains, where plans for tasks
cannot interleave. An open question is whether such parsers can be
extended to support the partial order of subtasks in decomposition
rules.
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Figure 3. Number of problems in the domain satellite solved by
the original parsing-based recognizer, parsing-based recognizer using Earley

propagator to prune actions in the suffix, our recognizer based on Earley
parsing and the recognizer from the system Panda (horizontal axis is

logarithmic).

Figure 4. Number of problems in the domain transport solved by
the original parsing-based recognizer, parsing-based recognizer using Earley

propagator to prune actions in the suffix, our recognizer based on Earley
parsing and the recognizer from the system Panda (both axes are

logarithmic).

Figure 5. Number of problems in the domain blocksworld solved by
the original parsing-based recognizer, parsing-based recognizer using Earley

propagator to prune actions in the suffix, our recognizer based on Earley
parsing and the recognizer from the system Panda (horizontal axis is

logarithmic).
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