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Abstract. Object detection is essential to many perception algo-
rithms used in modern robotics applications. Unfortunately, the exist-
ing models share a tendency to assign high confidence scores for out-
of-distribution (OOD) samples. Although OOD detection has been
extensively studied in recent years by the computer vision (CV) com-
munity, most proposed solutions apply only to the image recognition
task. Real-world applications such as perception in autonomous ve-
hicles struggle with far more complex challenges than classification.
In our work, we focus on the prevalent field of object detection, intro-
ducing Neuron Activation PaTteRns for out-of-distribution samples
detection in Object detectioN (NAPTRON). Performed experiments
show that our approach outperforms state-of-the-art methods, with-
out the need to affect in-distribution (ID) performance. By evaluat-
ing the methods in two distinct OOD scenarios and three types of
object detectors we have created the largest open-source benchmark
for OOD object detection.

1 Introduction

OOD detection, as described in a thorough study by Yang et al. [31],
is a problem that arises when machine learning models are applied
to data derived from a distribution that is beyond the one they were
trained on. This results in the model’s poor performance since the
model had not acquired knowledge that would enable correct predic-
tions. This issue is not limited to classification tasks because object
detectors may also encounter OOD samples in two situations: when
the inference image contains unknown object classes or when the
image scenery is significantly different from the training examples.
Practitioners tackle the latter by covering the entire range of sce-
narios. For example, the most popular autonomous driving datasets
include images of environmental, weather, and geographic diversity
[1, 32, 29]. On the other hand, identifying an unknown object may
be possible thanks to algorithms relating to two highly overlapping
research fields - open-set (OS) detection [28, 6] and OOD detection
[15, 16, 7]. Both OS and OOD methods design a way to quantify the
model’s uncertainty regarding encountered data so that high uncer-
tainty scores are assigned to unknown objects while low scores are
to those well-represented in the training data.

Contrary to the image classification problem, we observe a severe
deficiency of OOD detection methods in object detectors. Detectors
process images in a much more complex way than classifiers. Analo-
gously hampered are the evaluation process and posterior analysis of
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predicted uncertainty scores. This issue became a substantial obsta-
cle for researchers to invent novel OOD algorithms for object detec-
tion. Finally, almost every published OS or OOD algorithm assumes
Faster R-CNN as the default architecture, making the proposed solu-
tion architecture-specific, and unfeasible to apply to any other model.
We notice the need for a universal, simple, and yet efficacious OOD
framework, which we address in this work.

In this work, we present NAPTRON - i.e., a neuron activation pat-
tern (NAP) OOD method adapted to object detection. It was proved
that NAP is a highly efficient technique for OOD detection in image
recognition problems [25]. Our algorithm leverages object detectors’
internal feature representation and enables an understanding of train-
ing distribution to estimate the uncertainty of predicted bounding
boxes. ReLU-activated layers, being the foundation of most network
architectures [14, 26, 19, 2], are the natural source of binary patterns,
because they set every neuron (or convolution unit) in either positive
i.e., on- or zeroed i.e., off-state. The NAPs of ReLU networks dis-
play a very convenient property for OOD detection; namely, ReLU-
activated networks generate much fewer nonidentical NAPs than they
are theoretically capable of generating [12, 13]. This finding fuels
the intuition that if one memorized all known patterns, which are not
very numerous, then encountering an unseen pattern during inference
would be a reliable indicator of OOD data.

The main contributions of this paper are:

• We present a theoretically inspired NAPTRON that uses binary
NAPs extracted from hidden layers of object detectors to tell ID
from OOD predictions. This method is both computationally effi-
cient and practically effective for OOD detection, making it sim-
ple to incorporate into existing object detection architectures. 1

• We perform comprehensive experiments involving two datasets
and three network architectures, which prove that the proposed
method outperforms state-of-the-art OOD detectors.

• We introduce a novel OOD detection evaluation protocol that an-
alyzes scores of OOD bounding boxes and allows for a more ob-
jective comparison of the methods.

2 Related Work

2.1 Out-of-Distribution Detection

Heyndrycks et al. [15] proposed a baseline OOD samples detection
method. It only involves setting a threshold on the winning class soft-
max probability (maximum softmax probability, MSP). In object de-

1 https://github.com/safednn-group/naptron
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tection, it is already necessary to set a softmax probability thresh-
old for non-maximum-suppression (NMS) to filter redundant back-
ground predictions. Therefore, setting another one to separate OOD
objects can not be particularly useful in practice. Nevertheless, it still
provides a decent baseline.

Initially, Helmholtz Energy [21] had been successfully utilized in
OOD detection in image classification. It is a very easy-to-use and
universal way to estimate semantic uncertainty. It does not require
any detector customization or loss handcrafting. Internally, object
detectors perform the classification of proposals resulting in a classi-
fication vector for which one can compute the energy score.

Virtual outlier synthesis (VOS) [7] is the first work focusing on
OOD identification in the object detection task. VOS allows OOD
detection by synthesizing virtual outliers in feature (latent) space,
thereby regularizing the model’s decision boundary during training.
VOS samples the virtual outliers from the low-likelihood region in
the feature space and uses them as input for an unknown-aware train-
ing objective. The contrastive loss function shapes the uncertainty
(Helmholtz energy) space between known data and synthesized out-
lier data. VOS is not architecture-agnostic because the outlier syn-
thesis process occurs in feature space bound to the fully-connected
layers of Faster R-CNN ROI head. The authors of VOS proposed
an evaluation scheme that requires an OOD dataset i.e. a set of im-
ages that do not contain ID categories. Any output bounding box
generated for these images is considered an "OOD object", while
any bounding box generated for images from the ID test dataset is
deemed an "ID object". We find this approach is over-simplified be-
cause model predictions are not evaluated, so any "OOD object" or
"ID object" can actually be a background prediction.

2.2 Open-Set Detection

Gaussian mixture models (GMM) [23] approach also introduces
a change in the default loss function, focusing on classification loss.
The authors add an anchor loss term to facilitate learning a structured
logit space. Next, they fit class-specific GMMs to the logit space with
a validation dataset. For any test sample, uncertainty is estimated as
a log-likelihood of belonging to any one of the known GMMs.

The authors of OpenDet [11] follow the intuition that known-class
objects tend to be clustered to form high-density regions in the la-
tent space, while unknown objects are distributed in low-density re-
gions. Consequently, they propose identifying unknown objects by
separating high- and low-density regions in the latent space using a
contrastive loss. On top of this, they provide another loss function
component responsible for learning predictive uncertainty directly as
a softmax probability without the logit of ground-truth class. The
authors of OpenDet provide the implementation for both Faster R-
CNN and RetinaNet. However, the method does not apply to anchor-
free architectures because IOU-based sampling of proposals for con-
trastive learning is not feasible.

The OWOD [17] approach was developed before OpenDet. Both
ideas share the part of contrastive clustering in latent space. The au-
thors of OWOD also propose an unknown-aware RPN head and the
Helmholtz energy-based unknown identification. They model the en-
ergy distribution of the known and unknown energy values with a set
of shifted Weibull distributions. Similarly to GMM, they fit the dis-
tributions using a validation dataset. Due to the RPN requirement,
Faster R-CNN is the only compatible architecture.

2.3 Other uncertainty estimators in Object Detection

Previous work by Choi et. al. [5] introduced Gaussian YOLOv3. The
authors redesign YOLO’s loss function to model localization uncer-
tainty directly. Each coordinate of a bounding box is represented by a
pair of Gaussian parameters (mean and variance) instead of just one
value. There is no ground truth for the variance of coordinates, but
Gaussian negative-log-likelihood loss conveniently requires ground
truth for the mean only, which allows one to learn variance with-
out providing the ground truth. We managed to extend this approach
to Faster R-CNN and RetinaNet architectures. In FCOS, however, a
"localization centerness" branch is designed to perform a very simi-
lar role as Gaussian localization uncertainty; trying to combine them
both led to poor results.

The popular Monte-Carlo Dropout (MCD) [9] method has al-
ready been adapted to the object detection task [22, 24]. The most
straightforward adaptation technique was proposed in ref. [24], in
which the authors suggested averaging both classification and regres-
sion vectors over the number of Monte-Carlo forward passes for each
proposal separately. The variance of these vectors for each proposal
is the final uncertainty measure.

Faster R-CNN-based Object Localization Network (OLN)
[18] learns to detect objects focusing on localization instead of
foreground-background classification. The authors argued that focus-
ing on learning "objectness cues", for the price of obtaining class-
agnostic outputs is the best way to achieve cross-dataset generaliza-
tion. In practice, their method requires replacing the default classifi-
cation losses in both Faster R-CNN stages with a pair of centerness
and IOU losses.

As an alternative baseline focused on objectness for Faster R-
CNN, we attempt to establish a threshold for the RPN objectness
score of a bounding box proposal. This score is later converted into
the final model output. Although the RPN objectness score is not
used in the ROI head, we aim to determine its potential usefulness
for the OOD detection tasks.

3 Problem Setup

Let us denote the set C of ID classes as KID = {1, . . . , C} and
given object detection dataset D = {X, Υ} where X and Υ denote
the input images and labels. The set of labeled images consists of N
samples, X = {x1, . . . , xN} along with the labels associated with
the sets of objects included in each of N images Υ = {Y1, . . . , YN}.
Next, for each image, we have Yi = {y1, . . . , yK} that represents a
set of labels for K object instances. Each instance y = [c, l] consists
of class labels c ∈ KID and locations l = [x, y, w, h], where
x, y, w, and h denote the object’s bounding box center coordinates
and size.

An OOD dataset is defined identically, except for the fact that it
is semantically disparate with the ID dataset, meaning there are no
common classes between ID and OOD datasets - KOOD = {C +
1, . . . }.

Let us also introduce the test dataset Dtest consisting of ID and
OOD objects and an object detector θ : x �→ Y trained on the train
split (Dtrain) of D.

The OOD detection task is performed for θ-predicted ID and
OOD Υ̂θ = {Υ̂ID, Υ̂OOD} samples where ID samples are
true positive predictions Υ̂ID := {ŷi ∈ KID × R

4 : ∃yt ∈
Dtest, IOU(ŷi, yt) > λ, ĉ = ct }. The notation states that true
positive predictions are all pairs of class labels and bounding box
locations that sufficiently overlap with any ground truth test bound-
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ing box of the same class. Analogously, OOD samples are those
predictions, that sufficiently overlap with any ground truth bound-
ing box of unknown class Υ̂OOD := {ŷo ∈ KID × R

4 : ∃yt ∈
Dtest, IOU(ŷo, yt) > λ, ct ∈ KOOD }. The IOU threshold λ is
typically set to 0.5. Now, the goal of an OOD detector is to perform
binary classification of Υ̂θ , which relies on the uncertainty estimator
Φθ : ŷ �→ φ that is intended to assign high scores to OOD samples
and low ones to ID samples. Next, the classification is performed by
comparing a predefined uncertainty threshold with the uncertainty
score associated with each sample.

4 Our approach

4.1 Neuron Activation Patterns

NAPs have been previously used for uncertainty estimation in image
classifiers [4, 25]. Image processing neural networks (NNs) use mul-
tiple layers that transform input samples sequentially into the desired
form. Nonlinear activation functions present in each hidden layer of
a NN significantly contribute to the network’s ability to approximate
complex, multidimensional relationships. Of all activation functions,
ReLU is nowadays the most common choice for CV problems. All
ReLU-activated layers produce matrices of either positive or zeroed
values, which correspond respectively to active and inactive layers’
units. An activation pattern is obtained by assigning a true to posi-
tive units and false to zeros. Thus, for a given network layer, NAP is
a binary interpretation of which neurons or convolution units of the
layer were activated during the processing of an image.

4.2 Uncertainty estimation

Algorithm 1 describes how NAPTRON estimates the uncertainty of
predicted bounding boxes. First, for every training image, we per-
form an object detection inference, simultaneously extracting binary
NAPs corresponding to output bounding boxes. The patterns are ex-
tracted from a pre-selected layer. Then, for every true positive pre-
diction, we store the extracted pattern in a memory structure. Each
object class has a dedicated memory instance. For a given test sample
we perform the inference and NAP extraction again. Next, for each
inferred bounding box, we find the Hamming distance between its
NAP and the nearest pattern out of those stored in the memory struc-
ture corresponding to the predicted label. The Hamming distance to
the nearest known NAP is the NAPTRON uncertainty estimate.

The authors of [25] provided an efficient implementation of find-
ing the minimal Hamming distance to known NAPs, which makes
real-time uncertainty estimation possible. In this implementation, the
Hamming distances between the test NAP and all known NAPs are
computed concurrently. The minimal distance is the output of the
uncertainty estimation algorithm.

4.3 Pattern extraction for bounding boxes

In every state-of-the-art object detector, one can distinguish a detec-
tion backbone part (e.g. ResNet50) that extracts features of an input
image and a detection head that performs classification and regres-
sion of proposal bounding boxes (priors) based on the extracted fea-
tures. Typically, the classification and regression are computed in two
separate subnetworks that work in parallel. The extractNAPS func-
tion extracts binary NAPs of the l-th ReLU-activated layer of the
classification branch in the detection head of object detector θ. For
Faster R-CNN, the ROI-head consists of fully connected (FC) layers.
The operation is straightforward because there is no ambiguity in the

Data: θ, Dtrain, xtest, Layer index l
Result: φtest

for c in KID do

// initialize a data structure for
each class

Mc ← ∅
end

for (x, y) in Dtrain do

Ŷ ← θ(x) ;
NAPSx ← extractNAPS(θ, x, l);
for (ŷ, NAP ) in (Ŷ , NAPSx) do

if ŷ is a true positive prediction then

// Store NAP in the data
structure associated with
predicted class ĉ

Mĉ ← Mĉ ||NAP ;
end

end

end

// test phase

Ŷ ← θ(xtest) ;
NAPStest ← extractNAPS(θ, xtest, l);
for (ŷ, NAP ) in (Ŷ , NAPStest) do

NAPnn ← NearestNeighbour(Mĉ, NAP );
// Uncertainty of ŷ
φ ← HammingDistance(NAP,NAPnn);

end

Algorithm 1: NAPTRON uncertainty estimation

link of hidden layers’ activations to the final output. Assuming P
proposals generated for a single image by the RPN-head, each layer
processes [P, In]-shaped feature maps into [P,Out]-shaped feature
maps, where In is the number of neurons of the previous layer and
Out is the number of neurons of the current layer. Thus, for each
layer and each proposed bounding box, we can easily distinguish an
activation pattern of length Out.

Nevertheless, detection heads of single-stage architectures such as
RetinaNet and FCOS, use convolutional layers instead of FC lay-
ers. Each hidden layer takes as an input [W,H,C]-shaped feature
maps and processes them without changing their dimensions. The fi-
nal layer changes the number of channels of the matrix from C to
K ∗ A, where W and H are the width and height of processed fea-
ture maps, respectively, K is the number of classes, and A is the
number of priors with centers in each of W ∗ H locations of the
feature maps. In our approach, all the A possible bounding boxes
predicted in the (w, h) location are associated with a C-long activa-
tion vector located at (w, h) of the chosen hidden layer’s output. In
other words, any (w, h)-centered output bounding box is attributed
to the activation values located in the same coordinates of the hidden
feature maps.

5 Experiments

We propose an evaluation protocol to examine the effectiveness of
the proposed NAPTRON detector in various aspects. These include
the ability to identify OOD objects, recognize known from unknown
samples, and gradually acquire knowledge about new categories
when labels are available for certain unknown objects.
Datasets. The experiments were conducted in two domain shift sce-
narios. In the first scenario, the detector was trained on the train split
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of the PASCAL VOC [8] dataset consisting of 20 classes. Evaluation
protocol for known and unknown objects was performed on valida-
tion split of the COCO [20] dataset consisting of 80 classes, includ-
ing the 20 known ones. The validation split includes 20631 known
objects and 15704 unknown objects. In the second scenario, the de-
tector was trained on images from the train split of the BDD100k [32]
dataset that consists of only 4 known classes (i.e., "pedestrian", "bi-
cycle", "car" and "traffic sign"). Evaluation protocol was performed
on the full validation split of the BDD100k dataset consisting of all
10 classes, including the 4 known ones. The validation split includes
152025 known objects and 33920 unknown objects.
Architectures. For our experiments, we chose three well-established
object detection architectures: Faster R-CNN (two-stage, anchor-
based) [27], RetinaNet (single-stage, anchor-free) [19], and FCOS
(single-stage, anchor-based) [30]. The selected architectures repre-
sent different properties that enable our findings to be universal
across many state-of-the-art object detection architecture types. All
models were trained with default configuration parameters provided
in the MMDetection [3] framework.

5.1 Parameter sensitivity analysis

The NAPTRON algorithm has a couple of parameters that may af-
fect OOD detection performance quality. We examined in detail the
impact of those parameters, i.e.:

• layer index,
• distance reduction,
• binarization percentile threshold p,
• train samples softmax probability threshold s,
• NMS softmax score threshold.

Layer index. Choosing an optimal layer to extract binary NAPs from
is very difficult when detecting OOD samples in the image classifi-
cation task [25] since modern classifiers consist of a large number
of layers. Detection heads of standard architectures - such as Faster
R-CNN, RetinaNet, and FCOS - have only a few layers (i.e., 2-4),
so choosing the correct one should be much easier. We also try ex-
tracting patterns from the [W,H,C]-shaped feature maps originating
from the feature extracting backbone to the detection head - denoted
Layer 0 in Tables 1, 2, and 3. For RetinaNet and FCOS, extracting
NAPs from Layer 0 requires identical operations as extracting from
other layers, as described in Section 4.3. However, for Faster R-CNN,
we had to flatten the feature maps to match the dimensionality of the
FC layers. To do so, we computed the C-long vector of the means
of every channel and binarized it by zeroing p percent of the lowest
values in the vector.
Distance reduction. The authors of [25] estimate uncertainty by
finding the minimal Hamming distance between the test NAP and
all known NAPs of the predicted class; we check whether computing
the average distance to the known NAPs yields improved results.
Binarization percentile threshold p. Zeroing a certain percentage
of units, which have the lowest magnitude across an activation pat-
tern, was effective in the image classification setup. Our technique
of extracting NAPs from detection heads makes the binarization step
optional, so the default binarization threshold value equals 0.0.
Training samples IOU threshold. To construct the database of
known patterns, one needs to perform object detection on the training
images and choose only those activation patterns that correspond to
the true positive predictions. Typically, a prediction is deemed cor-
rect if it overlaps any object with IOU greater than 0.5. We want to
check if setting a higher IOU threshold (e.g., 0.9), and consequently

choosing only the patterns that correspond very accurately to an ob-
ject might lead to more accurate OOD detection results.
Training samples softmax probability threshold s. The reason
for examining the effect of this parameter is the same as for the
IOU threshold explained above. The default softmax threshold value
equals 0.0, meaning no true positive (TP) sample is discarded.
NMS softmax score threshold. Every OOD detector is sensitive to
this parameter. The impact of the NMS threshold on all OOD meth-
ods’ performance is described and studied in Section 5.3.
Results. The experiments were performed on the first evaluation sce-
nario (PASCAL-VOC → COCO); AUROC is used as the perfor-
mance metric. Note that the values of the first columns of each Table
1, 2, and 3 are identical - all were generated for the default setup of
the parameters (IOU ≥ 0.5, s ≥ 0.0, p = 0.0).

Table 1: Impact of the binarization percentile threshold on AUROC
metric using Faster R-CNN and COCO evaluation protocol.

Layer index Distance reduction p = 0.0 p = 0.45 p = 0.9

Layer 0 minimal dist. 0.7104 0.7083 0.6946
avg. dist. 0.7660 0.7621 0.7426

Layer 1 minimal dist. 0.7302 0.7272 0.7139
avg. dist. 0.7328 0.7288 0.7168

Layer 2 minimal dist. 0.7712 0.7671 0.7500
avg. dist. 0.7733 0.7694 0.7565

Table 2: Impact of the NAP train patterns IOU threshold on AUROC
metric using Faster R-CNN and COCO evaluation protocol.

Layer index Distance reduction IOU ≥ 0.5 IOU ≥ 0.7 IOU ≥ 0.9

Layer 0 minimal dist. 0.7104 0.7106 0.7066
avg. dist. 0.7660 0.7658 0.7522

Layer 1 minimal dist. 0.7302 0.7303 0.7371
avg. dist. 0.7328 0.7328 0.7475

Layer 2 minimal dist. 0.7712 0.7712 0.7665
avg. dist. 0.7733 0.7733 0.7652

Table 3: Impact of the softmax score threshold for training NAPs ex-
traction on AUROC metric using Faster R-CNN and COCO evalua-
tion protocol.

Layer index Distance reduction s ≥ 0.0 s ≥ 0.3 s ≥ 0.6 s ≥ 0.9

Layer 0 minimal dist. 0.7104 0.7105 0.7113 0.7158
avg. dist. 0.7660 0.7659 0.7651 0.7623

Layer 1 minimal dist. 0.7302 0.7295 0.7272 0.7242
avg. dist. 0.7328 0.7319 0.7309 0.7283

Layer 2 minimal dist. 0.7712 0.7692 0.7657 0.7576
avg. dist. 0.7733 0.7716 0.7702 0.7666

Results in Tables 1, 2, and 3 suggest that tuning training samples’
IOU and softmax threshold parameters is not worthwhile. Maintain-
ing the standard 0.5 IOU threshold, the lowest (0.0) softmax thresh-
old - thus letting as many training samples as possible be stored in the
known patterns database - allows an obtaining of the optimal results.
Moreover, shifts in these parameters do not introduce significant per-
formance variation. As for the binarization percentile threshold, ab-
staining from binarization seems to be the best choice. We find that
the higher the threshold, the worse the results we obtained.

On the other hand, introducing the averaging Hamming distance
(instead of the previously proposed finding of the distance to the clos-
est binary pattern) brings a slight improvement - especially if Layer 0
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is chosen. The choice of the layer is the most important parameter to
tune. We recommend extracting patterns from the penultimate layer
of the detection head.

5.2 OOD detection

In the next experiment, we compared the performance of the pro-
posed algorithm with the state-of-the-art OOD object detectors:

• confidence score from Faster R-CNN (Standard)
• objectness score from Region Proposal Network in Faster R-CNN

(RPN)
• Energy [21]
• Virtual Outlier Synthesis (VOS) [7]
• Gaussian Mixture Models (GMM) [23]
• OpenDet [11]
• Open World Object Detection (OWOD) [17]
• Gaussian YOLOv3 (Gasussian) [5]
• Monte-Carlo Dropout (MCD) [24]
• Object Localization Network (OLN) [18]

All methods were compared using the officially published code of
each algorithm with recommended configuration parameters, except
the MCD method, which we implemented ourselves. It is important
to notice that some of the methods were only designed for certain
DNN architectures (e.g., Faster R-CNN); and we applied the methods
only for the dedicated models.
Metrics. We measure OOD detection performance using two met-
rics: (1) the false positive rate at the true positive rate of 95% -
FPR@95TPR and (2) the area under the receiver operating character-
istic curve (AUROC). The metrics are computed separately for each
class and then averaged.
Performance comparison. Table 4 shows the performance of
the proposed algorithm and other methods. As can be observed,
NAPTRON achieves the best FPR@95TPR for every evaluation sce-
nario, detector architecture pair considered in this work, and the best
AUROC for 3 out of 6 evaluation cases. No other method yields such
consistently good results. VOS had been designed specifically for the
Faster R-CNN architecture and detects OOD samples roughly just as
well as NAPTRON. However, these methods could not be compared
using other architectures since there is no straightforward way to ap-
ply VOS for anything but Faster R-CNN. We suspect that even if it
could be applied to the single-stage architectures, it would perform
similarly to Energy because both methods rely on the energy score.

Additionally, the results showed that the open-sets methods
(OpenDet, GMM, and OWOD) are not the most effective OOD de-
tectors. They fail to outperform the baseline detector (Standard) con-
sistently. GMM manages to do so in 3 or 4 (depending on the metric)
out of 6 cases, OpenDet in 1 out of 4, and OWOD in 1 or 2 out of 2.

The rest of the methods perform very poorly in our challenging
experimental setup. Gaussian, OLN, RPN, and MCD are unable to
beat the baseline detector (Standard).
NMS sensitivity. For the above experiments, we set a low NMS
threshold (0.01) so that all the possible predicted objects are ac-
counted for when computing the metrics. However, since varying
NMS softmax confidence threshold makes a significant difference
in regular object detection performance, we investigate the impact of
the NMS threshold on OOD detection performance. Selected NMS
sensitivity plots of all considered OOD methods are presented in Fig.
1, 2 and 3. We included 4 out of 12 plots generated for each architec-
ture, dataset scenario, and metric combination.

Figure 1: Faster R-CNN-based OOD detectors NMS sensitivity eval-
uated on COCO. Metric - FPR@95TPR.

Figure 2: FCOS-based OOD detectors NMS sensitivity evaluated on
COCO. Metric - AUROC.

Figure 3: Faster R-CNN-based OOD detectors NMS sensitivity eval-
uated on BDD100k. Metric - AUROC.

All the figures confirm that the quality of all the OOD methods is
sensitive to underlying object detectors’ NMS threshold variations.
However, the ranking of OOD detectors does not change much for
different NMS values since most of the methods’ curves share a com-
mon trend. Typically, performance metrics reach their upper limit
around 0.5 and decline sharply when the softmax probability thresh-
old is between 0.8 and 0.99. These sharp shifts of metrics’ levels
for high thresholds occur because object detectors hardly ever pre-
dict OOD objects with such a high probability, so OOD metrics are
being computed for scarce data. This issue does not matter much in
practice because, in real-world applications of object detectors, the
NMS threshold is usually set somewhere between 0.5 and 0.8 - thus
filtering most of the FPs and letting through most of the TPs.

5.3 Object detection

Many of the state-of-the-art OOD detection methods require alter-
ing default components of models to obtain improved uncertainty
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Table 4: Comparison of OOD detectors’ performance

Network Method FPR@95TPR ↓ AUROC↑ FPR@95TPR↓ AUROC↑
VOC → COCO BDD100k→ BDD100k

Faster R-CNN

Energy 0.6762 0.8058 0.7987 0.7165
Gaussian 0.8899 0.7103 0.8458 0.6320
GMM 0.7441 0.7881 0.8420 0.6742
MCD 0.8267 0.6848 0.9111 0.5778
NAPTRON 0.5677 0.7786 0.7603 0.6990
OLN 0.9023 0.5994 0.9532 0.5979
OpenDet 0.8783 0.6965 0.9004 0.5663
OWOD 0.7547 0.6858 0.8232 0.6757
RPN 0.8784 0.6761 0.8894 0.6220
Standard 0.8426 0.7459 0.8358 0.6554
VOS 0.6551 0.8217 0.7839 0.7249

RetinaNet

Energy 0.7994 0.6865 0.9081 0.5438
Gaussian 0.7984 0.7456 0.8906 0.5882
GMM 0.8044 0.7340 0.9081 0.5925
MCD 0.8947 0.5023 0.9482 0.5143
NAPTRON 0.6063 0.7750 0.8738 0.6468
OpenDet 0.6198 0.7717 0.9584 0.5075
Standard 0.7917 0.7426 0.8787 0.6041

FCOS

Energy 0.8148 0.6762 0.8778 0.5528
GMM 0.6985 0.7276 0.8295 0.7067
MCD 0.7721 0.5783 0.9330 0.5095
NAPTRON 0.5984 0.7773 0.7791 0.6978
Standard 0.7721 0.7256 0.8615 0.6334

scores. It is expected that these alterations should not impose any
damage on regular object detection quality. Therefore, we performed
additional experiments to evaluate the influence of the customization
of standard object detectors. In other words, how modification of the
original architecture affects the performance of the object detector.

Object detector performance heavily depends on a predefined,
application-dependent confidence score threshold. The authors of
[10] observed that decreasing the NMS confidence score threshold
and consequently massively increasing the number of false positive
detections increases mAP. This phenomenon undermines the validity
of using mAP as the primary quality metric. Therefore, as a way to
gauge the impact of the OOD methods on object detection quality,
we conduct a visual collation of TPR vs FP curves (see Figures 4
and 5). All the plots were horizontally limited to 100 000 FPs.

Drawing conclusions about the performance can hardly be com-
pleted merely by looking at the curves, so we compute the area un-
der each curve (AUC), limiting the FP number to 2N where N is the
number of all known ground truth objects in the test dataset. Next,
we compare each method’s AUC with the standard detector’s AUC
- Table 5 shows the results. Positive ΔAUC values signify a higher
(better) curve, while negative ΔAUC indicates inferior performance.

OLN is class-agnostic (unlike all other models) and, for that
reason, is subject to a more relaxed evaluation regime. The class-
agnostic true positive prediction required to the correct localization
of an object, without the need for accurate label assignment.

Figure 4: Faster R-CNN-based detectors evaluated on COCO.

Figures 4 and 5 and Table 5 show that altering the default config-

Figure 5: RetinaNet-based detectors evaluated on BDD100k.

Table 5: Object detection quality - area under the curve compared to
baseline.

Architecture Method ΔAUC ΔAUC

VOC → COCO BDD100k → BDD100k

Faster R-CNN

Gaussian -0.0214 -0.0041
GMM -0.0180 -0.0015
MCD -0.0044 0.0001
OLN -0.1524 -0.1584
OpenDet 0.0073 -0.0002
OWOD -0.0054 0.0024
VOS -0.0098 0.0007

RetinaNet
Gaussian 0.0024 -0.0315
GMM -0.0631 -0.0341
MCD -0.0128 -0.0038
OpenDet -0.0168 0.0019

FCOS GMM 0.0089 -0.0111
MCD 0.0075 -0.0032

urations of object detectors usually harms their performance. Except
for the FCOS PASCAL-VOC → COCO that provides relatively poor
results, standard detectors are the most effective. Despite more re-
laxed rules, OLN fails to reach the performance levels of other de-
tectors. GMM’s anchor loss proves to be detrimental, especially for
RetinaNet architecture. Gaussian negative log-likelihood loss bears
a negative effect on object detectors too. For a fixed number of FPs,
Gaussian Faster R-CNN generates hundreds of TPs less than the stan-
dard Faster R-CNN. RetinaNet OpenDet obtains significantly worse
precision in the PASCAL-VOC → COCO scenario, but in the re-
maining scenarios works very well. The AUC of VOS, OWOD, and
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MC-Dropout detectors is, on average, lower than the baseline, but the
differences are smaller than for other methods.

5.4 Visual evaluation

Ideally, an OOD detector provides an independent uncertainty score,
yet complementary to the objects detector softmax score. By design,
the softmax score is solely responsible for distinguishing background
from foreground objects, and the uncertainty score separates known
objects from unknown ones.

The relationship between both the scores is nontrivial and simple
statistic coefficients, such as the Pearson correlation coefficient, do
not explain it sufficiently. Therefore, we provide visual 2D character-
istics for the best-performing OOD detectors. A perfect characteristic
would depict a cloud of blue points (OOD objects) vertically separa-
ble from a cloud of green points (TPs), and a cloud of red points (FPs)
horizontally separable from the TPs. Figure 6 shows the NAPTRON
uncertainty and softmax score relationship. We can observe that the
blue OOD triangles are placed, in general, higher than the green TPs,
especially for the most certain samples on the right side of the plot.

Overconfident OOD and FPs are the users’ nightmare but our ap-
proach enables us to filter at least some of them. Examples of the
samples identified as OOD by the proposed NAPTRON are in Fig-
ures 7 and 8. For all the examined algorithms, both scores are imper-
fect. In many cases, FPs have a high softmax score, whereas TPs have
a lower score. Analogously, a low uncertainty score may be attributed
to an OOD object. We observe that every type of uncertainty score is
correlated with the softmax confidence score of an underlying object
detector. This outcome is intuitive because we expect the TPs to have
low uncertainty and high softmax probability. Thankfully, object de-
tectors tend to assign lower probabilities to OOD objects, and OOD
detectors assign higher uncertainty to FPs even though they are not
explicitly meant to do so. These circumstances provide an opportu-
nity to use softmax probability and one or more types of uncertainty
scores combined in a manner that would boost both regular object
detection and OOD detection performance. Finding an optimal way
to combine multiple scores would require another set of experiments;
this is beyond the scope of this work.

Figure 6: Faster R-CNN NAPTRON bounding box uncertainty score
vs softmax confidence. Class ’bottle’.

6 Conclusion

In this work, we introduce the NAPTRON algorithm to estimate the
uncertainty of predicted bounding boxes, based on the analysis of bi-
nary activation patterns. Our method enables the identification of the
outlying test samples by computing the Hamming distance between

aseline, but the

ertainty score,
ore. By design,
ng background
parates known

ial and simple
coefficient, do
l 2D character

Figure 7: 1. OOD prediction - traffic sign → train 2. FP prediction
background (building) → bottle.

(a) FP prediction background (quad) → cow

(b) 1. OOD prediction - skateboard → bicycle 2. FP predic-
tion background (skatepark) → boat.

Figure 8: Example of overconfident OOD and FP predictions with
high NAP uncertainty. Each bounding box is attributed with softmax
confidence and NAP uncertainty, respectively.

the sample’s binary NAP and the most similar training NAP. Not only
is our approach simple and intuitive but also outperforms all existing
state-of-the-art OOD detectors. NAPTRON does not affect the un-
derlying object detector’s training or inference processes, which is
another vital asset since we experimentally showed that altering de-
fault setups tends to lower object detection quality. Our experiments
are conducted for three different architectures representing all com-
mon kinds of object detectors, which proves the universality of our
approach.
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