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Abstract. Although current summarization models can process in-
creasingly long text sequences, they still struggle to capture salient
related information spread across the lengthy size of inputs with few
labeled training instances. Today’s research still relies on standard in-
put truncation without considering graph-based modeling of multiple
semantic units to summarize only crucial facets. This paper proposes
G-SEEK, a graph-based summarization of extracted essential knowl-
edge. By representing the long source with a heterogeneous graph,
our method extracts and provides salient sentences to an abstractive
summarization model to generate the summary. Experimental results
in low-resource scenarios, distinguished by data scarcity, reveal that
G-SEEK consistently improves both the long- and multi-document
summarization performance and accuracy across several datasets.

1 Introduction

The growing availability of unstructured information promotes text
summarization solutions, which aim to generate concise synopses
that convey the exact semantics of the source [69]. Recently, due
to the latest advancements in natural language processing (NLP)—
from information retrieval [13, 50, 51, 52] to entity relationships
acquisition [14, 15], classification [10], and event extraction [16]—
abstractive summarization [4, 12, 31] is receiving more interest, aim-
ing to paraphrase the most meaningful details of documents instead
of just retrieving them (i.e., extractive summarization). In this con-
text, a particularly tough challenge is to process massive sequences,
namely the task of long-input summarization. Two subtasks are long-
and multi-document summarization (LDS and MDS, respectively).
LDS [29] wants to capture and condense salient points scattered
across a lengthy input (e.g., 10K words). In MDS [41], the synthesis
is generated from a pool of sources related to the topic whose con-
catenation assembles a single long input to enable the summarization
task to be addressed as in LDS [68]. Thus, from now on, we refer to
“the long input” as the source of both LDS and MDS tasks.
State-of-the-art (SOTA) solutions for long-input summarization
are built upon transformers [63], which proficiently capture long-
distance relations between words' with the self-attention mechanism.
Nevertheless, such models are denoted by a structural constraint that
proportionally links their memory usage to the input size, making
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! Technically, these are subwords yielded by a subword tokenizer [30].
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Figure 1. Overview of our approach. A long input X' (eachx € X isa
sentence) is converted into a heterogeneous graph: the pink diamonds
represent the keyword nodes /C, the violet circles denote the sentence nodes
S containing keywords, the green circles indicate the context of S, and the
different segments between nodes symbolize edges. The salient sentences
are extracted and given to a generative PLM to produce the summary.

them unduly resource-demanding when processing long texts. Con-
sequently, this problem poses complications in LDS and MDS due to
the long and intricate sources, which is even more noticeable in real-
world low-resource scenarios [45, 48] distinguished by the lack of
labeled instances to supervise model training [70]. In fact, in realis-
tic small and medium organizations, producing the gold summary of
lengthy documents is costly, time-consuming, and may require do-
main knowledge specialists. For this reason, low-resource summa-
rization is an important research topic that deserves more attention
from the NLP community [21].

A promising approach to mitigate these obstacles is to use a se-
mantic graph to represent the long input. Intuitively, by aggregat-
ing all source information, summary-worthy sentences (i.e., essen-
tial knowledge) can be pinpointed and extracted, avoiding standard
input truncation and giving models more high-quality training sam-
ples that enable them to learn faster in data scarcity conditions. Pre-
vious contributions used graph representations for text summariza-
tion [60]. However, their methods are proposed for extractive sum-
marization [7, 26, 65] and short texts [25, 58] or do not take advan-
tage of SOTA generative pre-trained language models (PLMs) [67].

To fill this gap, we introduce G-SEEK (Figure 1),? a graph-based
summarization of extracted essential knowledge. By representing

2 https://disi-unibo-nlp.github.io/projects/gseek/
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the long source with a heterogeneous graph, G-SEEK extracts and
gives the more relevant sentences to an abstractive summarizer for
synthesis generation, avoiding feeding models only until their max-
imum input size, which prevents them from reading the overpart
of the source, causing quality degradation [44]. Technically, our
graph employs a lightweight PLM to embody different semantic
units (i.e., sentences and keywords) whose relationships are handled
through multiple informative edges; then, a graph attention network
(GAT) [64] is trained to select the salient nodes, soft labeled with
a heuristic. Our solution is proposed explicitly for low-resource en-
vironments with a few dozen labeled training instances for the fol-
lowing motivations: (i) we show that giving more highly correlated
source-target samples helps PLMs generate better summaries in a
data scarcity scenario; (ii) the small number of trainable parameters
of our solution (4M) lets G-SEEK not overfit over a few examples.
Extensive experimentations with multiple public datasets reveal
that G-SEEK enhances the performance of SOTA summarization
models in low-resource settings. Our contributions are as follows:

e We propose G-SEEK, a new low-resource long-input summariza-
tion approach that pinpoints and gives key sentences to generative
PLMs by modeling the lengthy source with a semantic graph.

e We introduce a heterogeneous graph that captures the diversity of
semantic units and their relationships through multiple edges.

e Experimental results in LDS and MDS datasets show that SOTA
abstractive summarization models with G-SEEK improve syntac-
tic and semantic evaluation metrics in a data scarcity scenario.

2 Related Work

Generative Pre-trained Language Models. Recent generative
PLMs have shown strong performance and adaptation to LDS and
MDS tasks. These models are based on the transformer encoder-
decoder architecture [63] characterized by layers of self-attention. To
be precise, quadratic PLMs such as BART [31] and PEGASUS [71]
can process up to 1024 tokens due to the quadratic complexity
w.r.t. the input size. Differently, linear PLMs such as LED [4] and
PRIMERA [68] can read more input (up to 4096 tokens with 24 GB
of GPU memory), making them more suitable for long-input summa-
rization. Although their impressive performance, such linear trans-
formers, like quadratic ones, still rely on input truncation, namely
processing the source until the model’s maximum input size, ignor-
ing potentially relevant summary-worthy details.

Graph-based Summarization. Graphs and graph neural net-
works (GNN5s) have played a thrilling role in MDS [60], adding scal-
ability [27] and better domain modeling [22] to mitigate the flaws of
transformer-based models. Several contributions employ GNNs as
standalone solutions [53], where the summary is the composition of
sentences extracted from the input [9]. Recent solutions are HETER-
SUMGRAPH [65], which leverages a multilevel node representation,
HAHSUM [26], which exploits NER entities, and SGSUM [7], which
extracts subgraphs to generate the summary. On the contrary, GNNs
can be embedded with abstractive summarization models to improve
performance [34]. BASS [67] introduces a unified semantic graph to
represent the group of texts and modifies the transformer architecture
to interact with the graph. SKGSUM [25] exploits nodes of different
levels to guide the summary generation. Finally, HGSUM [33] ex-
tends a linear transformer by incorporating a heterogeneous graph,
training them jointly at the expense of a costly pipeline.

Algorithm 1 Soft Labeling
Input:
X ={x1,...,22}
Y =1y}
Parameters: M
Output: S
1: S« 0
2: for z; € X do
3: s+ 0
4 for y; € Y do
5: s.append(M(zi, y:))
6
7

> Input sentences
> Output sentences
> Similarity metric
> Set of scores

end for
S.append(maz(s))
8: end for
9: return S

Other Approaches. Two-stage methods [17, 32, 38, 39] uti-
lize various strategies to score and rank documents before gener-
ating the summary. Hierarchical solutions combine document rela-
tions to obtain semantic rich representations by leveraging graph-
based techniques [1, 2, 34, 36, 54], multihead grouping and inter-
paragraph attention [28, 39], and maximal marginal relevance [11].
Marginalization-based techniques [20, 23, 47, 49] apply marginaliza-
tion during decoding to produce a single output from many inputs.

Although the effectiveness of all these different methods is similar,
generative PLMs are still the SOTA approaches for long-input sum-
marization due to (i) fast domain adaptation with few training data
and (ii) more scalability and efficiency in computational resources.

3 Method

In this section, we describe our novel graph-based summarization of
extracted essential knowledge (G-SEEK) in detail. In a nutshell, G-
SEEK comprises a document-to-graph module (blended with a GAT)
and a pre-trained abstractive summarization model to generate a sum-
mary by focusing only on the essential input sentences. Section 3.1
explains the necessity of labeling the relevance of input sentences
(i.e., soft labeling). Section 3.2 details the passages needed to con-
struct the graph from the long input using semantic and structural
information. Section 3.3 illustrates the GAT module devised to learn
the relationships between graph nodes. Finally, Section 3.4 sums up
the overall summarization pipeline of our proposed approach.

3.1 Soft Labeling

Recent advances in NLP have highlighted the need to identify
summary-worthy sentences in the source to address the problem of
processing large amounts of information [3, 42]. Intuitively, each
sentence can be labeled as relevant or not for the target summary
to train a model to recognize such salient sentences. Regardless,
because of the lack of a ground-truth relevancy label, we need to
heuristically mark the salience of the input sentences w.r.t. the gold
summary, namely performing a soft labeling strategy. Concretely, let
X = {x1,...,2z} and Y = {y1,...,yy} be the long input and
the corresponding summary, respectively, where each x; € X and
y; € ) is a sentence. For each z;, we produce a relevancy score
€ [0, 1] by computing the similarity between each y; (and then taking
the best value), using a greedy algorithm (Algorithm 1). We test dif-
ferent evaluation metrics (i.e., BLEU [56] and ROUGE [37]) as sim-
ilarity functions on MULTI-LEXSUM (SHORT) [62], using 100 sam-
ples for training and validation sets. We employ PRIMERA [68] as
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Figure 2. The pipeline adopted by G-SEEK to produce a semantic heterogeneous graph from a long input. The document is given to KEYBERT, which
creates a set of unique keywords. Then (i) the sentences containing at least one keyword, (ii) their context (sentences immediately next or before), (iii) and
keywords are turned into embeddings using DISTILROBERTA, becoming the new graph nodes linked with different meaningful edges.

the backbone summarization model, which is a transformer with lin-
ear complexity in the input length pre-trained with an MDS-specific
objective. Technically, after assigning a summary-relevance score to
each x; € X, we give PRIMERA only the sentences (in the order of
occurrence in the source) with the highest scores until the maximum
input size of the model (i.e., 4096 tokens). Table 1 indicates that the
best metric for soft labeling is ROUGE-2 F1, so we use such a met-
ric to label the relevancy of sentences. We denote that Table 1 reports
the results by applying the soft labeling also on the validation set to
investigate upper-bound performances (i.e., we simulate an oracle by
accessing the ground-truth target summaries).

Table 1. The MDS results on MULTI-LEXSUM (SHORT). We give
PRIMERA different inputs obtained by using diverse metrics as similarity
functions for soft labeling.

Metric R-lfl R-Zfl R-Lf1
BLEU 43.62 19.18 28.58
R1-F1 44.06 19.33 29.32
R1-P 40.97 16.96 26.51
R2-F1 4529 20.20 30.19
R2-P 43.32 19.20 29.14
RL-F1 43.18 19.34 28.30
RL-P 43.90 19.14 29.15

3.2 Document-to-Graph

The document-to-graph module aims to create a semantic heteroge-
neous graph with the following steps (Figure 2):

o Keyword Extraction: we first remove the English stop words and
general domain-specific terms that occur in more than 40% of the
input (in each MDS document). Then we employ KEYBERT [18,
43], a lightweight method compared to more resource-demanding
solutions [55], to select up to k keywords. For MDS, we extract
k keywords for each document in the cluster and combine these
keyword lists into a unique set, dropping duplicates.

e Sentence Filtering: we split the input into sentences and se-
lect those with at least one keyword. Additionally, we pick n

sentences appearing before and after the selected one as con-
text. For MDS, we define {[z1,...,z%],...,[z},...,22]} as the
cluster of sources z. Let zi and z. be two sentences with key-
words. We then select [T} _,,, .., Tp iy Th s, Toyn], Where
< Tp_pye ey Thpy > —{xp} is the context of zy.

e Sentence & Keyword Embedding: we produce the embedding
of all keywords and key sentences using DISTILROBERTA [61],
a frozen distilled PLM characterized by a few parameters (82M)
that let our solution be efficient in terms of GPU memory com-
putation and occupation. Specifically, this model is already pre-
trained to create sentence embeddings by using a self-supervised
contrastive learning objective.> About creating sentence embed-
dings, the model yields one representation for each token within a
sentence. Then, following [59], we average the token embeddings
using mean pooling, generating the final vector e; .

e Graph Creation: all keyword (KE) and sentence embeddings
(SE) become the nodes of our graph. Inspired by [67], we use KE
as supernodes, which means that all sentences that hold a keyword
have a bidirectional Keyword Edge (blue lines in Figure 2) with the
keyword node instead of among them. Then, we add bidirectional
Positional Edges (red lines in Figure 2) between two SE if they
appear consecutively in the source. Finally, similarly to [7, 34],
we add Semantic Edges (green lines in Figure 2) between e; and
e; if their cosine similarity is greater than a threshold ¢. The graph
has as many nodes as the number of sentences and keywords.

3.3 Graph Attention Network

We operate a GAT to learn the relationships between the nodes in the
graph (structural information) along with the information in their
nodes (semantic information). By considering the edges connecting
the nodes, a GAT can learn to propagate information across sen-
tences, better understanding each sentence’s context and meaning. In
addition, GAT's can efficiently handle enormous and complex graphs.
In this study, we used the GAT to identify the most critical sentences
by assigning an unbounded positive relevancy score to each node.
Technically, this module has the following layers:

3 Model: https://huggingface.co/sentence-transformers/all-distilroberta-v1.
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Table 2. Statistics of the evaluation datasets including size, number of source documents per instance, number of total words in source and target texts, and
source-target coverage, density, and compression ratio of words [19]. Except for the number of samples, all reported values are averaged across all instances.

Source Target Source — Target
Dataset Samples Docs Words Sents Words Sents Coverage Density Compress
MDS (MULTI-LEXSUM)
TINY 1603  10.7 119072.6  5962.5 24.7 14 0.92 2.27 5449.6
SHORT _ _ _ _ _ 3138 103 ~ 993782 50170 = 1302 _ 51 _ 096 ~_ 333 8407
LoNG 4534 8.8 755432 38142 6465  28.8 0.94 4.07 97.4
LDS
GOVREPORT 19,463 1 8765.0 298.7  556.3 18.1 0.94 9.08 17.9

e Reprojection Layer consists of two linear feed-forward layers
(FFL) that learn how to reproject (z”) the node embeddings x in
the vector space. Mechanically, it expands the dimension d, of the
input embeddings n (R™*"%®) of a factor called the Boom Factor
(BF), inspired by the transformer architecture [63].

2’ = FFL, (FFL,(z, d; - BF), d;) 1

where o and +y are learnable parameters of different linear layers.

o GAT Layer [64] exploits structural information to enrich node
semantics. The output Z is generated by interpolating all rows of
«’ weighed by a score a (R™*768) 4

Ti; = a(Wzj, Wzj) (€3]

e Scoring Layer comprises two linear layers to reduce the size of
each node (Z) to a unique real number (s) used as the relevancy
score of the sentence associated with the node (R™).

s = FFLs (FFLy(Z, d5 - BF), 1) 3)

To supervise the GAT model, we take advantage of the soft la-
bels (1) explained in Section 3.1. Technically, we train the model to
produce scores (s) that minimize the following loss:

Linse = (5 - l)2 (4)

3.4  Summarization Pipeline

Once the input is turned into a graph and the GAT module assigns a
score to each sentence, we extract the most relevant and use a gen-
erative PLM to generate the output summary. Technically, according
to their relevancy scores, we select the most salient sentences and
create an input text for the model containing fewer tokens than its
maximum input size. As a result, the new input comprises sentences
in the order of occurrence in the raw textual source.

We train the summarizer using the standard cross-entropy loss,
which requires the model to predict the next token w; of the target )
given X’ and the previous target tokens w1.;—1, as follows:

R4
Lo = 7210gp7(wi\w1:¢—1,x) S

=1

where 7 indicates the model parameters and p is the predicted prob-
ability over the vocabulary.

Note: G-SEEK is not jointly trained with the summarization model,
resulting in a non-overwhelming training process. Thus, the pipeline
of our overall solution is designed to work with a few labeled sam-
ples.

4 Please refer to the original paper [64] for further information.

4 Experiments

We focus our investigation on low-resource summarization, a real-
world scenario distinguished by the scarcity of data due to the high
cost of labeling. Following previous work [8, 44], we take the first
100/10/100 samples from all datasets’ training, validation, and test
sets without performing additional data pre-processing.

Table 3. The number of trainable parameters of generative PLMs and their
maximum input size. Each URL starts with “https://huggingface.co/.”
G-SEEK uses the max input length of the downstream model but provides
salient sentences instead of truncating the exceeding ones.

URL #Params Input
Models
BART-B facebook/bart-base 140M 1024
BART-L facebook/bart-large 400M 1024
PEGASUS-L  google/pegasus-large 568M 1024
LED-L allenai/led-large-16384 459M 4096
PRIMERA-L  allenai/PRIMERA 44T 4096
G-SEEK - 4AM -

4.1 Experimental Setup

Datasets. We contemplate the MULTI-LEXSUM dataset [62] as
the evaluation benchmark for MDS, which gathers real-world fed-
eral civil rights lawsuits with expert-authored summaries. The main
challenge of MULTI-LEXSUM is the long size of the source docu-
ments and the different granularity of the summaries (i.e., tiny, short,
and long). Due to this multi-target nature, we overall experiment with
three distinct dataset renditions as testbeds. Regarding LDS, we con-
sider GOVREPORT [24], comprising 19K U.S. government reports.
Table 2 provides key measurements of the datasets.’

Baselines. We compare with cutting-edge abstractive summariza-
tion models. BART [31] is a transformer with a quadratic memory
and time complexity in the input length; we use the base and large
checkpoints. PEGASUS [71] is a quadratic transformer pre-trained
with a summarization-specific objective to predict gap sentences as
a pseudo summary; we utilize the large checkpoint. LED [4] is a
transformer with a linear memory complexity thanks to a sparse at-
tention mechanism; we employ the large checkpoint. PRIMERA [68]
is a linear transformer with the same architecture as LED but with an

5 All datasets are publicly available in Hugging Face: https://huggingface.co/
datasets/allenai/multi_lexsum (MULTI-LEXSUM) and https://huggingface.
co/datasets/ccdv/govreport-summarization (GOVREPORT).
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Table 4. Evaluation F1 scores on the benchmarked MULTI-LEXSUM (TINY, SHORT, LONG) and GOVREPORT datasets. B and L denote base and large,
respectively. The best score for each model is in bold. T means statistically significant results of G-SEEK (p-value < 0.05 with student t-test).

MuLTI-LEXSUM (TINY) MULTI-LEXSUM (SHORT) MuLTI-LEXSUM (LONG) GOVREPORT
Model R-1 R-2 R-L R BS R-1 R-2 R-L R BS R-1 R-2 R-L R BS R-1 R-2 R-L R BS
Quadratic
BART-B 18.49 6.39 16.10 13.62 72.70 39.20 17.52 35.20 30.37 79.41 41.22 15.53 39.12 31.53 78.72 47.26 13.58 44.27 34.24 80.61
w/ G-SEEK  20.85f 5.82 17.141 14.54f 74.207 40.45} 15.34 35.31 30.01  79.841 42.28f 16.367 40.087 32467 79.62t 47.651 14.961 44.38 34.91F 81.18}
BART-L 22.37 7.91 19.74 16.61 76.17 4145 18.74 35.81 31.70 79.89 41.41 16.47 38.98 31.88 79.13 48.46 14.03 44.83 34.94 80.82

B GoSEL K216 | g/ g2 0-3 g7\ gl O 7T 7 g 727 >/ S g U0 g, TS, 97 g 715 {1 08 ({53671 g8 1 g > 16 1712+ S!S 05/ 377 g 8178

PEGASUS-L 1500 320 1207 1009 7027 3829 1631 3263 2883 7858 4019 1613 3782 31.02° 7830  47.2 1407 4482 3455 8051
w/G-SEEK  19.841 5.13t 1628t 1370t 73.12t 3878t 1632 3326 29.18f 79.11f 4238 17.04f 39.88f 32.68f 79.53f 50.55f 17.06f 48.01f 37.67f 81.30f

Linear
LED-L 2286 798 18.86 1650 7620  40.09 1750  35.15  30.63  79.51 4526 2001 4266 3552 8131 53.86 19.53 4928  39.96  82.65
/LG, SER KSR 1539 (g ) B2 0;5 5 gt 7-55 Mg g i0:05 gy G SRgggo 5.3 (e 0-57 Ry 80-56 | S 5~ gy LS8 JSgi10.0 3 [ s 5.2 By S VOO 55-63 g2 105 1 =0 67 210/ 8 277

PRIMERA-L 2537 813 2084  18.02 7645 4020 1488 3488 2963  80.31 4531  21.06 4244 3585 8134 5420 1937 5020 4028 7975
w/G-SEEK 2576t 759 2136t 1813  77.26t 4399t 18.67t 37.55f 33.02t 8132t 4592f 1961 4259 3555 8136 57.13t 2120 53.64f 42.87t 80.37t

MDS-specific pretraining objective to generate pseudo summaries,
which are text spans automatically extracted based on the entity
salience; we use the large checkpoint. Technically, in MDS, we use
the standard approach of concatenating documents from the same
cluster to form a single long textual input (we add the special to-
ken <doc-sep> to separate documents [68]). Note: we denote the
base and large versions by B and L, respectively. Table 3 reports the
number of parameters and maximum input size of the models.

Metrics. We embrace the conventional ROUGE-{1,2,L} F1 [37]
and BERTScore F1 (BS) [72] to calculate the syntactic and seman-
tic overlap, respectively, between the inferred and ground truth sum-
maries. Moreover, we tally R = ave(r1,72,70) /1452 [46] to also con-
sider an aggregated judgment, where o2 is the variance of the average
ROUGE scores that penalizes generations with heterogeneous results
across dimensions. All metrics € [0, 1] (%); the higher, the better.

Table 5. Results of different graph settings on the validation set of
MULTI-LEXSUM (SHORT) evaluated with precision, recall, and f-measure.

P R F1 P R F1
Keywords Consecutive Sentences
4 2212 7643 3431 1 2326 62.64 3392
5 2329 7881 35.95 2 2212 7643 3431
6 2298 7542 3522 3 2324 76.00 35.60
7 2265 7726 3503 4 2315 7885 3579
8 2257 77.12 3492 5 23.06 7742 3554

beams and n-gram repetition blocks for n>5, utilizing the follow-
ing (min-max) summary length: MULTI-LEXSUM’s TINY (10-50),
SHORT (50-150), LONG (350-750), and GOVREPORT (500-1000).

4.2  Overall Results

We train and evaluate all models on the benchmark datasets with and
without G-SEEK to highlight our contribution. Table 4 reports the
performance of the systems in MDS and LDS. In particular, G-SEEK
consistently improves model performance across datasets and met-
rics, showing an ameliorative contribution of our method that gives
only salient information to generative PLMs.

Table 6. The results of the GAT module on the validation set of
MULTI-LEXSUM (SHORT) under different settings with 30 training epochs.
The final GAT is the best setting and checkpoint after 75 epochs.

P R F1

Boom Factor P R F1
1 3134 3843 3452 Cosine Similarity
2 3212 3917 3529 0.80 32.02 39.01 35.17
3 31.69 3880 34.88 0.82 32.10 39.18 35.28
4 3152 3854 34.68 0.84 32.10 39.17 3528

0.86 3249 39.55 35.67

GAT Layers
| 3538 4231 38.54 0.88 3196 39.01 35.13
2 3213 39.18 3531 Final GAT
3 2834 3513 3137 38.37 4549 41.63
4 2945 3637 3255

Implementation Details. We fine-tune the models based on the
PyTorch [57] implementations of the HuggingFace library [66], set-
ting the seed to 42 for reproducibility. All experiments are run on an
internal workstation with a Nvidia RTX 3090 GPU of 24 GB mem-
ory, 64 GB of RAM, and an Intel(R) Core(TM) i9-10900X CPU
@3.70GHz processor. Regarding the GAT module of G-SEEK, the
training lasted 75 epochs with a learning rate of Se-5, using AdamW
as the optimizer with 81 = 0.9 and 82 = 0.99.% About the sum-
marization task, all models are trained for 5 epochs with a learn-
ing rate of 3e-5, using mixed precision and gradient checkpointing
to preserve memory. For decoding, we operate beam search with 5

6 The maximum input length depends on the architecture of the models’ en-
coder, whereas the output size hinges on the dataset.

7 We use the summary-level R-L, where each summary is split into sentences.

8 Since all evaluation corpora are legal datasets, we trained the GAT module
once on MULTI-LEXSUM (SHORT) using soft labels (Section 3.1).

4.3 Graph — Experiments

We investigate different graph settings. In particular, we focus on the
Sentence Filtering module, examining the precision and recall of all
labeled sentences among the selected salient ones. Table 5 reports the
results, experimenting over the validation set of MULTI-LEXSUM
(SHORT) with the following facets:

o Keywords. We study the maximum number of keywords extracted
by KEYBERT for each document in the cluster, establishing that
5 achieves the best results.

e Context. We examine a different number of consecutive se-
quences selected as the context of the salient sentence, discovering
that 4 leads to better results.

With our hardware, the average time to create the graph for a single
long input of ~ 100K words is about 34 seconds. We denote that the
current implementation does not adopt a specific optimization.
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4.4 GAT — Experiments

We experiment with our GAT module under various settings in the
validation set of MULTI-LEXSUM (SHORT). Specifically, we train
the GAT for 30 epochs and evaluate by picking the top 100 sentences
according to the assigned score. We use these 100 items to compute
precision, recall, and f-measure. Table 6 reports the results, where we
test the following:

e Boom Factor. We explore the contribution of the Boom Factor in
the Reprojection Layer, finding that 2 is the best value.

e Layers. We employ various layers, surprisingly uncovering that 1
is the best option. Therefore, the small pool of training examples
favors a lightweight solution with few trainable parameters.

e Cosine Similarity. We investigate the threshold to create Seman-
tic Edges between nodes, deciding that 0.86 is the best choice.

Table 6 further shows the results of an optimal GAT trained for
100 epochs. We then select the best model checkpoint, which is after
75 epochs. The average time for each epoch is about 60 s.

Note: after numerous experiments, we tested the module by altering
each hyperparameter while keeping the other two constants, using
their best values (highlighted in bold in Table 6).

4.5 Analysis on Input Quality

Table 7 shows a qualitative example in MULTI-LEXSUM (SHORT)
of our G-SEEK approach with respect to the input to give to sum-
marization models. Table 8 reveals the higher source-target corre-
lation using G-SEEK that creates an input composed of more key
sentences. Specifically, we compare our method to the standard in-
put truncation approach on the GOVREPORT’s test set by computing
ROUGE, BERTScore (also providing precision and recall scores),
and unique keyword occurrence (dubbed UKO) between the inputs
to give to models and their corresponding gold summaries. About
UKO, we count the % of unique keywords (i.e., all words that are
not stopwords) in the target that also appear in the source.

5 Conclusion

We propose G-SEEK, a novel graph-based method to extract and pro-
vide essential knowledge from massive textual information to ab-
stractive summarization models for synthesis generation. G-SEEK
represents a long input with a heterogeneous graph and models its
semantics through different units (i.e., sentences and keywords) to
pinpoint only the salient sentences. Experimental results in a data
scarcity scenario over multiple public LDS and MDS datasets show
that G-SEEK significantly improves the performance of syntactic and
semantic metrics of state-of-the-art summarization systems. Further-
more, we show the contribution of G-SEEK to yield more correlated
source-target pairs that enable generative PLMs to learn faster with
few labeled training instances.

Future works should explore lightweight end-to-end pipelines (to
train the GAT with the generative PLM jointly) and the contribution
of the number of salient sentences to the final summary generation.
Furthermore, as presented for communication networks [5, 6, 40],
tracking and propagating knowledge refinements in sentences could
be crucial when modeling long texts with graphs.

Table 7. A random qualitative input example of G-SEEK against a
truncation-based approach on MULTI-LEXSUM (SHORT).

Golden Summary

Pursuant to the Civil Rights of Institutionalized Persons Act ("CRIPA"),
42 US.C. § 1997, the Civil Rights Division of the U.S. Department
of Justice ("DOJ") conducted an investigation of conditions at the

Mercer County Geriatric Center ("MCGC"), a public nursing home
facility in New Jersey , evidently operated by Mercer County.
The investigation led the DOJ to find that certain conditions at MCGC
violated residents federal rights. The parties settled and the case is now
closed.

Truncation-based Input

[... Text...]

The Attorney General files this complaint on behalf of the United
States of America pursuant to the Civil Rights of Institutionalized Per-
sons Act, 42 US.C. § 1997, to enjoin the named Defendants from

depriving residents housed in the Mercer County Geriatric Center
(MCGOC) of rights, privileges, or immunities secured and protected by

the Constitution and laws of the United States.
[... Text...]

G-SEEK Input

Administrator ECROYD is sued in his official capacity.
11. Mercer County receives federal Medicare and Medicaid funds

for care provided at MCGC. 15.Defendants and MCGC are pub-
lic entit(ies)" under the ADA and implementing regulations.
18.Defendant MERCER COUNTY is the entity charged by the
laws of the State of New Jersey with authority to operate the

MCGGC and is responsible for the living conditions and health and safety
of persons living in MCGC . 8. Through their acts and omissions,

Defendants have failed to provide "care for its residents in such mat-
ter and in such an environment as will promote maintenance
or enhancement of the quality of life of each resident, and
have further failed to provide "the necessary care and services to attain
or maintain the highest practicable physical, mental, and psychosocial
well.

[... Text...]

If that resident was a candidate for services at home or in another commu-
nity setting, this failure to accommodate a disability effectively resulted
in the lengthy and improper segregation of the resident from society .

Table 8. The correlation between source-target pairs on the test set of the
GOVREPORT dataset.

Approach R-1y7 R-2y; R-Lj BS, BS, BS;; UKO
TRUNCATION 3147 11.73 30.28 69.47 7224  70.81 67
G-SEEK 3342 12.88 3319 7393 7586 74.87 71
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