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Abstract. This paper seeks to solve Multi-Source Domain Adap-
tation (MSDA), which aims to mitigate data distribution shifts when
transferring knowledge from multiple labeled source domains to an
unlabeled target domain. We propose a novel MSDA framework
based on dictionary learning and optimal transport. We interpret each
domain in MSDA as an empirical distribution. As such, we express
each domain as a Wasserstein barycenter of dictionary atoms, which
are empirical distributions. We propose a novel algorithm, DaDiL,
for learning via mini-batches: (i) atom distributions; (ii) a matrix of
barycentric coordinates. Based on our dictionary, we propose two
novel methods for MSDA: DaDil-R, based on the reconstruction of
labeled samples in the target domain, and DaDiL-E, based on the
ensembling of classifiers learned on atom distributions. We evaluate
our methods in 3 benchmarks: Caltech-Office, Office 31, and CRWU,
where we improved previous state-of-the-art by 3.15%, 2.29%, and
7.71% in classification performance. Finally, we show that interpo-
lations in the Wasserstein hull of learned atoms provide data that can
generalize to the target domain.

1 Introduction

Traditional Machine Learning (ML) works under the assumption that
training and test data follow a single probability distribution. In-
deed, the Empirical Risk Minimization (ERM) framework of [37]
measures generalization regarding an unknown probability distribu-
tion from which training and test data are sampled. Nonetheless, as
[25] remarks, this is seldom the case in realistic applications due to
changes in how the data is acquired. This results in a change in the
data distribution, or distributional shift that motivates the field of Do-
main Adaptation (DA).

DA is an important framework where one assumes labeled data
from a source domain and seeks to adapt models to an unlabeled tar-
get domain. When multiple source domains are available, one has a
Multi-Source DA (MSDA) setting. This problem is more challenging
as one has multiple distributional shifts co-occurring, that is, between
sources and between sources and the target. In this work, we assume
that the domain shifts have regularities that can be learned and lever-
aged for MSDA. In this context, Optimal Transport (OT) is a math-
ematical theory useful for DA, as it allows for the comparison and
matching probability distributions. Previous works employed OT for
the single-source case, as in [6, 5, 9], and MSDA as in [17, 18, 35].

In parallel, Dictionary Learning (DiL) expresses a set of vectors
as weighted combinations of dictionary elements, named atoms. Pre-
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vious works proposed OT for DiL over histogram data, such as [29]
and [32]. Nonetheless, when data is high-dimensional, modeling dis-
tributions as histograms is intractable due the curse of dimensional-
ity, which limits the use of previous DiL works for MSDA.
Contributions. In this paper we propose a novel DiL framework
(section 4), for distributions represented as point clouds. We further
explore (section 4.2) two ways of using DiL for MSDA, by recon-
structing labeled samples in the target domain, and by ensembling
classifiers learned with labeled data from atoms. In addition, we jus-
tify these methods theoretically through results in the literature [25,
Theorem 2], and through novel theoretical results (i.e., theorem 2).
To the best of our knowledge this is the first work to propose a DiL
of point clouds, and to explore the connections between DiL of dis-
tributions and MSDA.
Paper Organization. Section 2 covers the related literature. Sec-
tion 3 covers the necessary background, i.e., DA, OT and DiL con-
cepts. Section 4 presents our framework. Section 5 explores our ex-
periments in MSDA. Section 6 discusses our results. Finally, sec-
tion 7 concludes our paper.

2 Related Work

There are mainly two methodologies in DA. The first, shallow DA,
leverages pre-existing feature extractors and performs adaptation ei-
ther by re-weighting or transforming source domain data to resemble
target domain data. The second, deep DA, uses source and target do-
main data during the training of a Deep Neural Net (DNN), so that
learned features are independent of distributional shift.

There are at least 3 classes of shallow DA methods: (i) importance
re-weighting strategies [34], which give importance to source sam-
ples similar to the target domain, (ii) projection-based methods [21],
which seek a sub-space where distributions share common character-
istics, and (iii) OT-based methods [6], which use OT for matching,
or calculating distances between distributions.

For deep DA, methods penalize encoder parameters that map
source and target distributions to different locations in the latent
space. As a consequence, deep DA is more complex than shallow
DA, since encoder parameters are free. Examples of deep DA meth-
ods include [13], who uses an adversarial loss, and [9, 33], who use
OT as a loss function between distributions of latent representations.

For MSDA, some works generalize previous single-source base-
lines. For instance, [23] proposes a moment-matching strategy across
the different domains. [35] proposes weighting source domains lin-
early, then applying the Joint Distribution Optimal Transport (JDOT)
strategy of [5]. This approach combines notions of importance
weighting and OT-based DA. [17, 18] generalize the approach of [6],
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by first calculating a Wasserstein barycenter of the different source
domains, then transporting the barycenter to the target domain.

In parallel, DiL is a representation learning technique, that was
previously used in DA by [16]. However, classic DiL lacks a proba-
bilistic interpretation. In this context, OT offers a probabilistic fore-
ground for DiL, when data is represented through histograms. This
is done by either using the Sinkhorn divergence [7] as the objective
function [29], or by aggregating atoms in a Wasserstein space [32].
Nonetheless, in the context of DA it is computationally intractable
to bin the feature space, which is commonly high-dimensional. This
issue hinders the applicability of previous DiL approaches for DA.
In contrast, we propose a new OT-inspired DiL framework for point
clouds, which makes it suitable for MSDA.

3 Background

3.1 Domain Adaptation

In ML, learning a classifier consists on estimating h : X → Y ,
among a set of functions H, where X (e.g., Rd) is the feature space
and Y (e.g., {1, · · · , nc}) is the label space. This estimation is done
via risk minimization [36],

h� = argmin
h∈H

RQ(h) = E
x∼Q

[L(h(x), h0(x))], (1)

for a loss function L, a distribution Q, and a ground-truth labeling
function h0. RQ is known as true risk. Since Q and h0 are seldom
known a priori, it is unfeasible to directly minimize equation 1. In
practice, one acquires a dataset, {(x(Q)

i , y
(Q)
i )}ni=1, with x(Q)

i

i.i.d.∼ Q

and y
(Q)
i = h0(x

(Q)
i ) and minimizes the empirical risk,

ĥ = argmin
h∈H

R̂Q(h) =
1

n

n∑
i=1

L(h(x(Q)
i ), y

(Q)
i ).

Henceforth x(Q)
i denotes a feature vector sampled from the marginal

Q(X). Likewise, y(Q)
i denotes its corresponding label. We denote its

corresponding one-hot encoding (hard-labels) or probability vector
(soft-labels) by y

(Q)
i .

As discussed in [27], if training and test data are i.i.d. from Q,
RQ → R̂Q as n → ∞. Nonetheless this assumption is restrictive,
as it disregards the distributional heterogeneity within training data,
and between train and test data, which motivates DA [21]. Follow-
ing [21], a domain D = (X , Q(X)) is a pair of a feature space,
and a feature distribution. In DA, one has different domains, i.e., a
labeled source DS with samples {(x(QS)

i , y
(QS)
i )}nQS

i=1 and a target
DT with samples {x(QT )

j }nQT
j=1 . In practice, one assumes a shared

feature space (e.g., Rd), so that domains differ in their distribution,
QS(X) �= QT (X). This is known in the literature as distributional
shift. The goal of DA is improving performance on the target, given
knowledge from the source domain. We investigate MSDA, that is,
DA between labeled sources {DS�}NS

�=1 and an unlabeled target DT .

3.2 Optimal Transport

OT is a field of mathematics widely used in DA and ML. Henceforth
we focus on computational OT. We refer readers to [19] and [24] for
further background on this topic. Let x(P )

i

i.i.d.∼ P (resp. x(Q)
j

i.i.d.∼
Q). We P and Q empirically using mixtures of Dirac deltas,

P̂ (x) =
1

nP

nP∑
i=1

δ(x− x
(P )
i ). (2)

We refer to P̂ as a point cloud, and X(P ) = [x
(P )
1 , · · · ,x(P )

nP ] ∈
R

nP×d to its support. The Kantorovich formulation of OT seeks an
OT plan, π ∈ R

nP×nQ that preserves mass,

Π(P̂ , Q̂) := {π :
∑
i

πi,j = 1/nQ;
∑
j

πi,j = 1/nP}.

where πi,j denotes how much mass x(P )
i sends to x(Q)

j . In this sense,
the OT problem between P̂ and Q̂ is,

π� = OT(X(P ),X(Q)) = argmin
π∈Π(P̂ ,Q̂)

〈C, π〉F , (3)

where 〈·, ·〉F denotes the Frobenius inner product and Ci,j =

c(x
(P )
i ,x

(Q)
j ) is called ground-cost matrix. This is a linear pro-

gram on the variables πi,j , which has computational complexity
O(n3 log n). Given π, one often wants to map samples from P into
Q, which can be done through the barycentric projection [6],

Tπ(x
(P )
i ) = argmin

x∈Rd

nQ∑
j=1

πi,jc(x,x
(Q)
j ).

When c is the Euclidean distance, the barycentric projection has
closed form,

Tπ(x
(P )
i ) = nP

nQ∑
j=1

πi,jx
(Q)
j , (4)

or Tπ(X
(P )) = nPπX

(Q) in short.
Optimal Transport for Domain Adaptation. In the semminal
works of [6], the authors proposed using OT for DA, under the as-
sumption that there is T : Rd → R

d such that,

T�QS = QT and QS(Y |X) = QT (Y |T (X)), (5)

where T� is the push-forward operator (see e.g., [31]). [6] propose es-
timating T through Tπ in equation 4, which allows mapping samples
from QS to QT .
Wasserstein Barycenters. When the ground-cost is a distance, OT
defines a distance between distributions, Wc(P̂ , Q̂) = 〈C, π�〉F ,
calledWasserstein distance. As such, OT defines barycenters of prob-
ability distributions [2]. Henceforth we denote the K−simplex as
ΔK = {a ∈ R

K
+ :

∑
k ak = 1}.

Definition 1 For distributions P = {Pk}Kk=1 and weights α ∈ ΔK ,
the Wasserstein barycenter is a solution to,

B� = B(α;P) = inf
B

K∑
k=1

αkWc(Pk, B). (6)

Henceforth we call B(·;P) barycentric operator. In this context, the
Wasserstein hull of distributions P is,

M(P) = {B(α;P) : α ∈ ΔK} (7)

When the distributions in P are empirical, solving equation 6 cor-
responds to estimating the support X(B) of B. In this context, [8]
proposed an algorithm known as free-support Wasserstein barycen-
ter for calculating B̂. Let x(B)

i ∼ N (0, Id) be an initialization for
the barycenter’s support. One updates the support of B̂ with,

π(k,it) = OT(X(Pk),X
(B)
it )

X
(B)
it+1 ← θX

(B)
it + (1− θ)

K∑
k=1

αkTπ(k,it)(X
(B)
it )

(8)
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where θ is found at each iteration via line search. In the context of
MSDA, [17] previously defined a barycenter of labeled distributions
by penalizing transport plans π(k,it) that mix classes.
Mini-batch OT. For large scale datasets, computing OT is likely un-
feasible, due its cubic complexity. A workaround, coming from ML,
consists on using mini-batches [10]. For M batches of size nb, this
approach decreases the time complexity to O(Mn3

b log nb).
Remark on Notation. While W2(P̂ , Q̂) is defined between empiri-
cal distributions, in practice it is a function of (X(P ),X(Q)). With an
abuse of notation, the mini-batchWasserstein distance between given
random samples of size nb from P andQ is still noted asW2(P̂ , Q̂),
with the support matrices restricted to a mini-batch.

3.3 Dictionary Learning

DiL is a representation learning technique that expresses a collection
of vectors {x�}N�=1, x� ∈ R

d through a set of atoms P = {pk}Kk=1,
pk ∈ R

d and weights A = {α�}N�=1, α� ∈ R
K . Mathematically,

argmin
P,A

1

N

N∑
i=1

L(x�,PTα�) + λAΩA(A) + λPΩP (P),

where L is a suitable loss, ΩA and ΩP are regularizing terms on A
and P respectively. In this sense, OT has previously contributed to
DiL either by defining a meaningful loss function, or novel ways to
aggregating atoms. For instance, [29] proposed using the Sinkhorn
divergence of [7] as a loss function, while [32] proposed using
Wasserstein barycenters for aggregating atoms. These works assume
data in the form of histograms, i.e., x� ∈ Δd. As consequence,
pk ∈ Δd and α� ∈ ΔK .

4 Proposed Framework

In this section, we present our novel framework for MSDA, called
Dataset Dictionary Learning (DaDiL). As our discussion relies on
analogies with DiL theory, we provide in Table 1 a comparison of
DiL concepts in different frameworks. In what follows, section 4.1
presents a novel algorithm for computing Wasserstein barycenters of
labeled distributions, and section 4.2 presents our framework.

Table 1: Overview of analogies between different frameworks of DiL.

Concept Symbol Classic DiL WDL [32] DaDiL (ours)

Data x�, or Q̂� Vectors Histograms Point Clouds
Atom P Vectors Histograms Point Clouds

Representation A Vectors Barycentric Coordinates Barycentric Coordinates
Reconstruction B Vectors Histograms Point Clouds

4.1 Wasserstein Barycenters of Labeled Distributions

We propose a novel algorithm for calculating differentiable Wasser-
stein barycenters of labeled empirical distributions. This algorithm is
at the core of DaDiL (section 4), since we later represent datasets as
barycenters of learned atoms.

In OT, there are at least 2 ways of integrating labels, either by
penalizing OT plans that transport mass between different classes [6,
17], or by defining a metric in the label space [3]. We choose to
integrate labels in the ground-cost,

Ci,j = ‖x(P )
i − x

(Q)
j ‖22 + β‖y(P )

i − y
(Q)
j ‖22, (9)

where y denotes labels one-hot encoding, and β > 0 controls the im-
portance of label discrepancy. While simple, this choice allows us to

motivate the barycentric projection of [6], and the label propagation
of [26] as first-order optimality conditions of Wc(P̂ , Q̂),{

x̂
(P )
i = Tπ(x

(P )
i ) = nP

∑nQ

j=1 πi,jx
(Q)
j ,

ŷ
(P )
i = Tπ(y

(P )
i ) = nP

∑nQ

j=1 πi,jy
(Q)
j .

(10)

Henceforth we denote π = OT
(
(X(P ),Y(P )); (X(Q),Y(Q))

)
. As

a consequence, we can interpolate between two point clouds, since
ŷ
(P )
i corresponds to a soft-label (i.e., probabilities). We use equa-

tions 9 and 10 for proposing a new barycenter strategy between la-
beled point clouds, shown in algorithm 1.

Algorithm 1 Free-Support Wasserstein Barycenter of Labeled Dis-
tributions

Require: {X(Pk),Y(Pk)}Kk=1, α ∈ ΔK , τ > 0, Nitb.
1: for i = 1, · · · , nB do

2: x
(B)
i ∼ N (0, Id), y

(B)
i = randint(nc)

3: end for

4: while |Jit − Jit−1| ≥ τ and it ≤ Nitb do

5: for k = 1, · · ·K do

6: π(k,it) = OT
(
(X(Pk),Y(Pk)); (X

(B)
it ,Y

(B)
it )

)
7: end for

8: Jit =
∑K

k=1 αk〈π(k,it),C(k)〉F
9: X

(B)
it+1 =

∑K
k=1 αkTπ(k,it)(X

(B)
it )

10: Y
(B)
it+1 =

∑K
k=1 αkTπ(k,it)(Y

(B)
it )

11: end while

Ensure: Labeled barycenter support (X(B),Y(B)).

Differentiation. For calculating derivatives of x(B)
i and y

(B)
i w.r.t.

x
(Pk)
l , y(Pk)

l , and α, we use the Envelope theorem of [1]. In other
words, we do not propagate derivatives through the iterations of al-
gorithm 1. We provide further details in our appendix.
Computational Complexity. Let P̂k have n points in its support, for
k = 1, · · · ,K. The complexity of algorithm 1 is dominated by line
6, which has complexity O(n3 log n). Hence, the overall computa-
tional complexity is O(NitbKn3 log n).

4.2 Dataset Dictionary Learning for MSDA

In this section, we introduce our novel framework, called DaDiL,
and explore how to use it for MSDA. Let Q = {Q̂S�}NS

�=1 ∪ {Q̂T }
correspond to NS labeled sources and an unlabeled target. Let A =
[α1, · · · , αNS , αNS+1], and P = {P̂k}Kk=1. The P̂k’s are an empir-
ical approximation of the point clouds that interpolate distributional
shift. Following our notation, αT := αNS+1. For N = NS + 1,
DaDiL consists on minimizing,

(P�,A�) = argmin
P,A∈(ΔK)N

1

N

N∑
�=1

L(Q̂�,B(α�;P)), (11)

where L is a loss between distributions. Since the target domain is
not labeled, we define,

L(Q̂�, B̂�) =

{
Wc(Q̂�, B̂�), if Q̂� is labeled,
W2(Q̂�, B̂�), otherwise,

i.e., when no labels in Q̂� are available, we minimize the standard
2-Wasserstein distance. Optimizing 11 over entire datasets might be
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intractable due the complexity of OT. We thus employ mini-batch
OT [10]. In addition, we need to enforce the constraints y(Pk)

l ∈ Δnc

and α� ∈ ΔK . In the first case we do a change of variables, and
optimize the logits p ∈ R

nc s.t. y = softmax(p). In the second
case, we project α� into the simplex orthogonally,

projΔK
(α�) = argmin

α∈ΔK

‖α− α�‖2.

The overall optimization algorithm is shown in algorithm 2.

Algorithm 2 DaDiL learning loop.

Require: Q = {Q̂�}N�=1, number of iterations Niter , of atoms K,
of batches M , batch size nb, learning rate η.

1: Initialize x(Pk)
j ∼ N (0, Id), a� ∼ N (0, IK).

2: for it = 1 · · · , Niter do
3: for batch = 1, · · · ,M do
4: for 
 = 1, · · · , (NS + 1) do

5: Sample {x(Q�)
1 , · · · ,x(Q�)

nb }.
6: if Q̂� is labeled then

7: Sample {y(Q�)
1 , · · · ,y(Q�)

nb }.
8: end if
9: for k = 1, · · · ,K do

10: sample {(x(Pk)
1 ,p

(Pk)
1 ), · · · , (x(Pk)

nb ,p
(Pk)
nb )},

11: change variables y(Pk)
j = softmax(p(Pk)

j )
12: end for
13: calculate X(B�),Y(B�) = B(α�;P)
14: end for
15: L = (1/N)

∑N
�=1 L(Q̂�, B̂�)

16: x
(Pk)
j ← x

(Pk)
j − η∂L/∂x(Pk)

j

17: p
(Pk)
j ← p

(Pk)
j − η∂L/∂p(Pk)

j

18: α� ← projΔK
(α� − η∂L/∂α�).

19: end for
20: end for
Ensure: Dictionary P� and weights A�.

Intuition. We learn how to express each distribution Q̂� ∈ Q as
a barycenter of free distributions P = {P̂k}Kk=1, parametrized by
their support i.e., (X(Pk),Y(Pk)). In other words, we learn P s.t. Q
is contained in the Wasserstein hull of atoms, M(P).
Implementation. We implement algorithms 1 and 2 using Py-
torch [22] and Python Optimal Transport (POT) [12], for automatic
differentiation and OT details respectively. As previous works [17,
35], DaDiL is applied to the latent space of an encoder, pre-trained
on source domain data, as shown in figure 1.
Computational Complexity. In algorithm 2, the complexity of
line 13 dominates over other lines. As we discussed in sec-
tion 4.1, the complexity of calculating B(α�;P) depends on the
size of distributions support. Since we do computations using mini-
batches, this corresponds to O(Nitbn

3
b log nb). This is repeated

for Niter × M × (NS + 1), which implies a complexity of
O(NiterMNSNitbn

3
b log nb).

Multi-Source Domain Adaptation. We recast the hypothesis in
eq. 5 for MSDA. We assume the existence ofK > 1 unknown distri-
butions, P1, · · · , PK for which Q� can be approximated as their in-
terpolation in Wasserstein space, i.e. Q� = T�B�, and Q�(Y |X) =
B�(Y |T (X)), for B� = B(α�;P) and a possibly non-linear trans-
formation T . If Wc(Q�, B�) ≈ 0 we can assume T (x) = x.

We start by learning (P,A), as illustrated in figure 2. Then, we
propose 2 ways of using our dictionary for MSDA. Our first strat-
egy, called DaDiL-R, consists on computing B̂T = B(αT ;P), i.e.,

P̂3P̂1

P̂2

W2(Q̂T ; B̂T )

Q̂T
B̂T = B(αT ;P)

Wc(Q̂3; B̂3)

φ

Latent Space of φ

B(·; {P̂1, P̂2, P̂3]})

α1 α2 α3 αT

Encoder
Network

Ta
rg
et

So
ur
ce

3
So

ur
ce

2
So

ur
ce

1

Figure 1: Conceptual illustration of DaDiL. Each domain is denoted
by a blue or orange circle, corresponding to whether it is labeled
or not. DaDiL reconstructs domains as Wasserstein barycenters, de-
noted by squares, of atoms, denoted by triangles. The target domain
(orange circle) is unlabeled, but we are able to represent it through a
labeled distribution through a Wasserstein barycenter.
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Figure 2: From left to right: set of datasets Q =
{Q̂S1 , · · · , Q̂S3 , Q̂T }, where Q̂T is the unlabeled target do-
main; atoms P = {P̂1, P̂2, P̂3}; barycentric weights A.

the distribution inM(P) closest to Q̂T . Since each P̂k has a labeled
support, algorithm 1 yields matrices X(BT ) and Y(BT ) correspond-
ing to the support of B̂T . Then,

ĥR = argmin
h∈H

R̂BT (h) =
1

n

n∑
i=1

L(h(x(BT )
i ), y

(BT )
i )

We theoretically justify it using Theorem 2 of [25],

Theorem 1 (Due to [25]) Let X(P ) ∈ R
nP×d and X(Q) ∈ R

nQ×d

be i.i.d. samples from P and Q. Then, for any d′ > d and ξ′ <
√
2

there exists some constant n0 depending on d′ s.t. for δ ∈ (0, 1) and
min(nP , nQ) ≥ n0max(δ−(d+2), 1) with probability at least 1 − δ
for all h,

RQ(h) ≤ RP (h) +W2(P̂ , Q̂) + ζ + λ,

where,

ζ =
√

2(log 1/δ)/ξ′
(√

1/nP +
√

1/nQ

)
,

λ = minh∈HRQ(h) +RP (h).

Additional discussion on this result is provided in our appendix. We
apply this result for the residual shift W2(Q̂T , B̂T ),

RQT (h) ≤ RBT (h) +W2(Q̂T , B̂T ) + ζ + λ. (12)

E. Montesuma et al. / Multi-Source Domain Adaptation Through Dataset Dictionary Learning in Wasserstein Space1742



As discussed in [25], 3 factors play a role in the success of DA,
namely, W2(P̂ , Q̂), RBT (h), and λ. The first term is the recon-
struction error, and is directly minimized in algorithm 2. The second
term is the risk of h in BT , which is minimized when learning the
classifier ĥR = argmin R̂BT (h). This term depends on the separa-
bility of classes in B̂T , which is enforced by considering labels in
the ground-cost (eqn. 9). The last term is the joint risk λ of a clas-
sifier learned with data from QT and BT . This term is difficult to
bound, as no labels in Q̂T are available, but, under the hypothesis
QT (Y |X) = BT (Y |T (X)), this term is low. This was similarly
assumed by [6, 25]. DaDiL-R is illustrated in figure 3.

P̂3P̂1

P̂2

Q̂T
B̂T

Latent Space of φ

0 5

−5

0

5

ĥR = argmin
h∈H

R̂BT
(h)

Figure 3: Conceptual outline of DaDiL-Reconstruction. Labeled sam-
ples in the target domain are acquired through aWasserstein barycen-
ter B̂T = B(αT ;P), which is close to Q̂T in Wasserstein sense.

Our second strategy, called DaDiL-E, is based on ensembling.
Since each of our atoms is labeled, i.e., each x

(Pk)
i has an as-

sociated y
(Pk)
i , we may learn a set of K classifiers, ĥk =

argminh∈HR̂Pk (h), one for each atom. Naturally, one may use
α ∈ ΔK for weighting predictions of atom classifiers. We weight
the ĥk’s using αT , which is theoretically justified in theorem 2,

ĥE(x
(QT )
j ) =

K∑
k=1

αT,kĥk(x
(QT )
j ),

Theorem 2 Let {X(Pk)}Kk=1, X(Pk) ∈ R
nk×d and X(QT ) ∈

R
nT×d be i.i.d. samples from Pk and QT . Let ĥk be the minimizer of

RPk and Rα(h) =
∑K

k=1 αkRPk (h). Under the same conditions
of theorem 1, and for δ ∈ (0, 1), with probability at least 1 − δ, the
following holds,

RQT (ĥα) ≤ Rα(ĥα) + W2(B(α;P), Q̂T ) + γ + λ+ ζ,

γ =

K∑
k=1

αkW2(P̂k,B(α;P)),

ζ =

K∑
k=1

αk

√
2 log 1/δ/ξ′

(√
1/nk +

√
1/nT

)
,

λ =

K∑
k=1

αk

(
minh∈HRPk (h) +RQT (h)

)
.

We provide the proof of this result and additional discussion in
our appendix. This bound depends on different terms. First, γ is,
for a given α, minimal, as B(α;P) is the minimizer of B̂ �→∑

k αkW2(P̂k, B̂). λ corresponds to the complexity of domain
adaptation, and in general cannot be directly controlled due the un-
availability of labels in Q̂T . Finally, ξ corresponds to the sample

complexity of estimating W2(Pk, QT ) via finite samples. Note that
αT minimizes the terms in the r.h.s., as, by design, it minimizes the
term α �→ W2(B(α;P), Q̂T ). DaDiL-E is illustrated in figure 4.
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Figure 4: Conceptual outline of our DaDiL-Ensembling technique,
where a classifier is defined on target domain data by ensembling
classifiers learned on atom elements.

5 Experiments

5.1 Multi-Source Domain Adaptation

Experimental Setup. All experiments were run on a computer with a
Ubuntu 22.04 OS, a 12th Gen Intel(R) CoreTM i9-12900H CPU with
64 GB of RAM, and with a NVIDIA RTX A100 GPU with 4GB of
VRAM. We explore the following hyper-parameters,

• Number of samples n is searched among {50, 100, 200} × nc.
• Number of atoms K is searched among {3, 4, · · · , 8}.
• Batch size nb is searched among {5, 10, 20} × nc. We further

sample balanced batches from the sources.

The complexity of our model is controlled through n andK. We pro-
vide further analysis on the robustness w.r.t. hyper-parameter choice,
as well as the full set of chosen hyper-parameters in our appendix.
For other algorithms from the State-of-the-Art (SOTA), we use the
best hyper-parameter settings reported by their respective authors.
Caltech-Office 10 is a benchmark consisting on the intersection of
the Caltech 256 dataset of [14] and the Office 31 dataset of [30].
It has 4 domains: Amazon (A), dSLR (D), Webcam (W) and Cal-
tech (C). In this benchmark we compare DaDiL with other shallow
DA algorithms, such as: (i) Subspace Alignment (SA) of [11]; (ii)
Transfer Component Analysis (TCA) of [20]; (iii) Optimal Trans-
port Domain Adaptation (OTDA) of [6]; (iv) Wasserstein Barycenter
Transport (WBT) of [17, 18]; (v) Weighted JDOT (WJDOT) of [35].
(i) and (ii) are standard algorithms in DA, (iii) is the single-source OT
baseline, and (iv, v) are the SOTA for shallow MSDA. The baseline
corresponds to training a single-layer Perceptron with the concatena-
tion of source domain data.

Our results is presented in table 2. DaDiL improve over previous
OT-based MSDA baselines, i.e. WJDOT and WBT, being especially
better on the Webcam and Caltech domains. Overall, we improve
previous SOTA by 3.15 in terms of average DA performance.
Ablation Study. We investigate the effectiveness of DiL in compar-
ison with other barycenter-based approaches. As follows, we com-
pare the performance on the Caltech-Office 10 benchmark of 4 meth-
ods: (i) Wasserstein Barycenter (WB); (ii) WBT; (iii) Wasserstein
Barycentric Coordinates Regression (WBR)-R and WBR-E, which
can be understood as the adaptation of the framework of [4] for point
clouds. The R and E methods are analogous to DaDiL when the
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Table 2: Classification accuracy (in %) of DA methods. Each column
represents a target domain for which we report mean ± standard de-
viation over 5 folds. ∗ and † denote results from [17] and [35].

Method A D W C Avg

Baseline 90.55 ± 1.36 96.83 ± 1.33 88.36 ± 1.33 82.95 ± 1.26 89.67

SA 88.61 ± 1.72 92.08 ± 3.82 79.33 ± 3.67 73.00 ± 2.31 83.26
TCA� 86.83 ± 4.71 89.32 ± 1.33 97.51 ± 1.18 80.79 ± 2.65 88.61
OTDA 88.26 ± 1.36 90.41 ± 3.86 88.09 ± 3.80 83.02 ± 1.67 87.44

WJDOT† 94.23 ± 0.90 100.00 ± 0.00 89.33 ± 2.91 85.93 ± 2.07 92.37
WBT�

reg 92.74 ± 0.45 95.87 ± 1.43 96.57 ± 1.76 85.01 ± 0.84 92.55
DaDiL-R 94.06 ± 1.82 98.75 ± 1.71 98.98 ± 1.51 88.97 ± 1.06 95.19
DaDiL-E 94.16 ± 1.58 100.00 ± 0.00 99.32 ± 0.93 89.15 ± 1.68 95.66

atoms are initialized and fixed as the source domains. We provide
further details of this adaptation in our appendix.

Table 3: Classification accuracy (in %) of DA methods. P and A
indicate learning atom distributions and barycentric coefficients re-
spectively. T indicates an additional transport step towards QT .

Method P A T A D W C Avg.

WB 88.54 ± 1.16 90.62 ± 8.38 93.89 ± 3.30 83.73 ± 1.49 89.19
WBTreg � 92.74 ± 0.45 95.87 ± 1.43 96.57 ± 1.76 85.01 ± 0.84 92.55
WBR-R � 91.35 ± 1.19 91.87 ± 9.47 81.69 ± 3.26 86.31 ± 1.73 86.09
WBR-E � 91.97 ± 2.40 91.87 ± 2.79 83.73 ± 2.57 86.13 ± 1.84 88.42
DaDiL-R � � 94.06 ± 1.82 98.75 ± 1.71 98.98 ± 1.51 88.97 ± 1.06 95.19
DaDiL-E � � 94.16 ± 1.58 100.00 ± 0.00 99.32 ± 0.93 89.15 ± 1.68 95.66

We report our findings in table 3. Overall, WB and WBR have
sub-optimal performance. On the one hand, this implies that Q̂T �∈
M(QS). On the other hand, this implies that DiL is key for MSDA.
Indeed, since P̂k ∈ P are free, DaDiL learns P s.t. Q̂T ∈ M(P).
WBTreg compensates this fact by transporting the B̂ towards Q̂T ,
thus minimizing the residual shift W2(B̂, P̂T ).
Refurbished Office 31. In this experiment, we use the Office 31
benchmark of [30], with the improvements proposed by [28]. This
benchmark has 3 domains: Amazon (A), dSLR (D) and Webcam
(W). Our goal is to establish a comparison with deep DA methods.
As follows, we consider: (i) Domain Adversarial Neural Network
(DANN) of [13], (ii) Wasserstein Distance Guided Representation
Learning (WDGRL) of [33], (iii) Deep-JDOT of [9], (iv) Moment
Matching for MSDA (M3SDA) of [23], (v) WJDOT and (vi) WBT.
While (i) - (iii) are single source baselines, (iv) is a standard method
for MSDA. We use a ResNet-50 [15] as backbone.

Table 4: Classification accuracy (in %) of DA methods on the Office
31 benchmark. Each column represents a target domain for which we
report mean ± standard deviation over 5 folds.

Method A D W Avg

Baseline 70.57 97.00 95.47 87.68

DANN 78.19 97.00 93.08 89.42
WDGRL 76.06 97.00 93.71 88.92
DeepJDOT 80.85 94.00 93.38 89.61

M3SDA 64.89 98.00 96.85 86.58
WBTreg 77.48 96.00 95.59 89.69
WJDOT 70.21 97.00 94.96 87.39
DaDiL-R 85.46 93.00 97.48 91.98

DaDiL-E 83.51 94.00 94.34 90.61

A summary of our results is shown in table 4. Overall, DaDiL-R
and E are especially better than previous algorithms in the Amazon
domain. As a consequence, in terms of average domain performance,
DaDiL-R and E improve over the second-best method (WBTreg) by
a margin of 2.29% and 1.37% respectively.

CWRU. In this benchmark, we explore DaDiL for cross-domain fault
diagnosis. The goal is to classify which type of fault has occurred,
based on sensor readings. Hence, we extract 2048 Fourier coeffi-
cients from a sub-set of 4096 time-steps extracted from the raw sig-
nals (see [38], or our appendix for more details). As feature extractor,
we use a 3-layer fully connected encoder1. We compare 3 single, and
5 multi-source DA algorithms to DaDiL, namely, DANN, OTDA,
TCA, M3SDA, LTC-MSDA of [37], JCPOT of [26], WBTreg and
WJDOT.

Table 5: Classification accuracy (in %) of DA methods on the CWRU
benchmark. Each column represents a target domain for which we
report mean ± standard deviation over 5 folds.

Method 1772rpm 1750rpm 1730rpm Avg

Baseline 70.90 ± 0.40 79.76 ± 0.11 72.26 ± 0.23 74.31

DANN 67.96 ± 8.52 64.38 ± 5.03 57.75 ± 17.06 63.37
OTDA 70.48 ± 2.25 79.61 ± 0.25 74.98 ± 1.26 75.02
TCA 87.17 ± 4.25 84.11 ± 4.77 92.74 ± 4.12 88.01

M3SDA 56.86 ± 7.31 69.81 ± 0.36 61.06 ± 6.35 62.57
WJDOT 65.01 ± 0.27 69.81 ± 0.07 57.40 ± 1.18 64.07
M3SDAβ 60.15 ± 8.38 70.00 ± 0.00 64.00 ± 5.47 64.72
LTC-MSDA 82.21 ± 8.03 75.33 ± 5.91 81.04 ± 5.45 79.52
JCPOT 77.48 ± 0.86 96.00 ± 0.10 95.59 ± 0.56 91.74
WBTreg 99.28 ± 0.18 79.91 ± 0.04 97.71 ± 0.76 92.30
DaDiL-R 99.86 ± 0.21 99.85 ± 0.08 100.00 ± 0.00 99.90

DaDiL-E 93.71 ± 6.50 83.63 ± 4.98 99.97 ± 0.05 92.33

We present a summary of our results in table 5. Overall, WBTreg

and DaDiL are the best performing methods, demonstrating the
power of Wasserstein barycenters for DA. Our method outperforms
WBTreg by 7.71%, in terms of average domain performance. Fur-
thermore, our methods surpass other deep learning baselines, such as
M3SDA [23] and LTC-MSDA [37], by a margin of 19.90%.

5.2 Domain Adaptation using Atom Interpolations

Besides performing MSDA with optimal barycentric coordinates
αT ∈ ΔK , in this section we explore the question how well do
α ∈ ΔK perform? We explore these questions in terms of Wasser-
stein distance W2(B(α;P), Q̂T ), and classification accuracy of us-
ing α in DaDiL-R and E, as shown in figure 5.
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A
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A
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83.20 87.24 91.29

82.76 86.89 91.02

Figure 5: Analysis of DA on Caltech-Office with interpolations of
dictionary atoms. The black cross represents the α found by DaDiL.

1 i.e., 2048 → 1024 → 512 → 256 with ReLU activations.
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In figure 5 we construct an uniform grid over Δ3. For each α in
such grid, we reconstruct B(α;P), then we evaluate: (i) the recon-
struction loss W2(B(α;P), Q̂T ); (ii) the classification accuracy of
DaDiL-E, with α, on Q̂T ; (iii) the classification accuracy of DaDiL-
R with α, on Q̂T . These correspond to the 3 rows in figure 5. As
shown, the weights found by DaDiL are optimal w.r.t. other choices
α ∈ Δ3. Nonetheless, a wide region of the simplex yield equally
good reconstructions, either w.r.t. reconstruction loss, or w.r.t. DA
performance. We conclude that DaDiL is able to learn distribution
whose interpolations generalize well to the target domain.

Furthermore, in figure 6 we analyze the correlation between DA
performance and reconstruction loss, for α ∈ Δ3. Our analysis
shows that these 2 terms are negatively correlated, for both DaDiL-R
and E. Indeed, based on our theoretical analysis (theorems 1 and 2),
classification risk is bounded by the reconstruction loss. Since DA
performance is inversely proportional to the classifier risk in a given
domain, our analysis agrees with both theorems.
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Figure 6: Correlation between DiL loss and the performance of
DaDiL-R and E.

Finally, we analyze the performance of DaDiL-R and E forα taken
uniformly from ΔK , for K ∈ {3, · · · , 8}. We report our findings in
figure 7, and compare the performance w.r.t. DaDiL performance in
table 2, for α := αT . As shown in Figure 7 αT is above average for
most domains and number of atoms K.
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Figure 7: Performance analysis of latent space interpolations on the
Caltech-Office 10 benchmark. The red dotted line corresponds to the
results reported in Table 2 for DaDiL.

Overall, figures 5, 6 and 7 show that DaDiL learns an optimal set
of barycentric coordinates for the target domain. Nonetheless, inter-
polations in the Wasserstein hull M(P) of atom distributions can be
equally interesting for MSDA. These remarks indicate that DaDiL is
able to (i) learn common discriminant information about the source
domains; (ii) interpolate the distributional shift between the various
distributions in Q = {Q̂S�}NS

�=1 ∪ {Q̂T } through the atoms P .

6 Discussion

Benefits of Dictionary Learning. Our proposed framework allows
for the learning of new, virtual distributions, which can then be used
to reconstruct distributions seen during DiL by generating new sam-
ples. As such, our algorithm is able to improve over past SOTA,
and, as shown in section 5.2, we are able to generate new domains
by interpolating the atom distributions in Wasserstein space. Espe-
cially, we improve previous SOTA and barycenter-based algorithms
by 3.15% in the Caltech-Office 10 benchmark.
Benefits of Wasserstein Barycenters. In our experiments, we estab-
lished a comparison between DaDiL, WBT [17] and WJDOT [35].
The first two methods rely on Wasserstein barycenters for recon-
structing the target domain, while WJDOT aggregates the source do-
mains linearly. Overall we show that Wasserstein barycenters are an
important component of MSDA, as they allow to average probabil-
ity distributions non-linearly. On the other hand, the linear average
of distributions can be understood as importance weighting on sam-
ples. Under the covariate shift hypothesis, re-weighting samples is
enough, but under more complicated shifts (i.e. non-linear data trans-
formations), Wasserstein barycenters are more flexible.
Shallow vs. Deep Domain Adaptation. As remarked by [35], the
assumption of having a meaningful feature extractor φ before per-
forming DA is realistic, as in modern practice pre-trained models
are widely available. It is noteworthy that a fine-tuning step with
source-domain data may be necessary in order to achieve better per-
formance. In addition, doing so allows for the comparison with deep
DA methods. In this context, we remark that our method improves
over previous deep DA SOTA in the context of the Refurbished Of-
fice 31 and CWRU benchmarks. Overall, shallow DA is computa-
tionally simpler than deep DA, as one needs to learn a smaller set of
parameters (i.e., the classification layer).

7 Conclusion

In this work, we tackle the problem of MSDA through OT-based
DiL of probability distributions. We view elements in DiL as em-
pirical distributions. As such we learn a dictionary that is able to
interpolate the distributional shift of distributions in DiL. We make
2 methodological contributions to MSDA, through methods called
DaDiL-R, based on the reconstruction of labeled samples in the tar-
get domain, and DaDiL-E, based on ensembling of atom classifiers.
Our methods are theoretically grounded on previous theorems from
the literature [25, Theorem 2] and a novel result (theorem 2).

Our proposed methods are compared to 11 methods from the
SOTA in MSDA in 3 benchmarks, namely, Caltech-Office 10 [30,
14], Refurbished Office 31 [30, 28] and CWRU. We improve pre-
vious performance by 3.15%, 2.29% and 7.71% respectively. More-
over, we show that general interpolations in the Wasserstein hull of
our learned dictionary can be equally interesting for MSDA.

Our framework opens an interesting line of research, for learn-
ing empirical distributions, generating synthetic through Wasser-
stein barycenters and interpolating distributional shift in Wasserstein
space. It is flexible so as to accommodate other notions of barycenters
of distributions, and loss functions between reconstructions and real
datasets. In practical terms, future works will focus on parametric
formulations of DaDiL. In theoretical terms, we seek to understand
the statistical challenges posed by DaDiL.
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